Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB الجمعة 03 مارس 2023, 9:44 pm | |
|
أخواني في الله أحضرت لكم كتاب Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB Alexander Stanoyevitch
و المحتوى كما يلي :
Contents Preface ix PART I: Introduction to MATLAB and Numerical Preliminaries Chapter 1: MATLAB Basics 1 Section 1.1: What Is MATLAB? Section 1.2: Starting and Ending a MATLAB Session Section 1.3: A First MATLAB Tutorial Section 1.4: Vectors and an Introduction to MATLAB Graphics Section 1.5: A Tutorial Introduction to Recursion on MATLAB Chapter 2: Basic Concepts of Numerical Analysis 23 with Taylor's Theorem Section 2.1: What Is Numerical Analysis? Section 2.2: Taylor Polynomials Section 2.3: Taylor's Theorem Chapter 3: Introduction to M-Files 45 Section 3.1: What Are M-files? Section 3.2: Creating an M-file for a Mathematical Function Chapter 4: Programming in MATLAB 57 Section 4.1: Some Basic Logic Section 4.2: Logical Control Flow in MATLAB Section 4.3: Writing Good Programs Chapter 5: Floating Point Arithmetic and Error Analysis 85 Section 5.1: Floating Point Numbers Section 5.2: Floating Point Arithmetic: The Basics Section 5.3:1 Floating Point Arithmetic: Further Examples and Details Chapter 6: Rootfinding 107 Section 6.1: A Brief Account of the History of Rootfinding Section 6.2: The Bisection Method Section 6.3: Newton's Method Section 6.4: The Secant Method Section 6.5: Error Analysis and Comparison of Rootfmding Methods Chapter 7: Matrices and Linear Systems 143 Section 7.1: Matrix Operations and Manipulations with MATLAB Section 7.2: Introduction to Computer Graphics and Animation Section 7.3: Notations and Concepts of Linear Systems Section 7.4: Solving General Linear Systems with MATLAB Section 7.5: Gaussian Elimination, Pivoting, and LU Factorization Section 7.6: Vector and Matrix Norms, Error Analysis, and Eigendata Section 7.7: Iterative Methods PART II: Ordinary Differential Equations Chapter 8: Introduction to Differential Equations 285 Section 8.1: What Are Differential Equations? Section 8.2: Some Basic Differential Equation Models and Euler's Method Section 8.3: More Accurate Methods for Initial Value Problems Section 8.4: Theory and Error Analysis for Initial Value Problems Section 8.5: Adaptive, Multistep, and Other Numerical Methods for Initial Value Problems Chapter 9: Systems of First-Order Differential Equations 355 and Higher-Order Differential Equations Section 9.1: Notation and Relations Section 9.2: Two-Dimensional First-Order Systems Section 9.3: Phase-Plane Analysis for Autonomous First-Order Systems Section 9.4: General First-Order Systems and Higher-Order Differential Equations Chapter 10: Boundary Value Problems for Ordinary 399 Differential Equations Section 10.1: What Are Boundary Value Problems and How Can They Be Numerically Solved? Section 10.2: The Linear Shooting Method Section 10.3: The Nonlinear Shooting Method Section 10.4: The Finite Difference Method for Linear BVPs Section 10.5: Rayleigh-Ritz Methods Contents vii PART III: Partial Differential Equations Chapter 11: Introduction to Partial Differential Equations 459 Section 11.1: Three-Dimensional Graphics with MATLAB Section 11.2: Examples and Concepts of Partial Differential Equations Section 11.3: Finite Difference Methods for Elliptic Equations Section 11.4: General Boundary Conditions for Elliptic Problems and Block Matrix Formulations Chapter 12: Hyperbolic and Parabolic Partial Differential 523 Equations Section 12.1: Examples and Concepts of Hyperbolic PDEs Section 12.2: Finite Difference Methods for Hyperbolic PDEs Section 12.3: Finite Difference Methods for Parabolic PDEs Chapter 13: The Finite Element Method 599 Section 13.1: A Nontechnical Overview of the Finite Element Method Section 13.2: Two-Dimensional Mesh Generation and Basis Functions Section 13.3: The Finite Element Method for Elliptic PDEs Appendix A: Introduction to MATLAB's Symbolic 691 Toolbox Appendix B: Solutions to All Exercises for the Reader 701 References 799 MATLAB Command Index 805 General Index 809 General Index Adams family methods, 338 Adams-Bashforth method, 338 Adams-Moulton method, 339 Abel, Niels Henrik, 108,109 Actual error, 24 Adaptive method, 327 Admissible function, 427 Affine transformation, 163 Algebraic multiplicity, 243 Approximation, 24 Associated matrix norm, 226 Asymptotic error constant, 133 Augmented matrix, 195 Autonomous, 357 Auxiliary condition, 286 Back substitution, 206 Backward difference approximation, 509 Backward Euler method, 332 Base, 85, 94 Basin of attraction, 382 Basis theorem, 193 Bendixson, Ivar, 382 Big-0 notation, 320 Binary arithmetic, 85 Birthrate, 290 Birthday problem, 70 Bisection method, 110 Boundary condition, 475 -Cauchy, 527 -Dirichlet, 476 -Neumann, 476 -Robin, 637 Boundary value problem, 355, 399 Bracket, 116 Bunyakowsky, Viktor Yakovlevich, 455 Cantor, Georg F.L.P., 169 Cantor square, 184 Cardano, Girolamo, 108 Carrying capacity, 292 Cauchy, Augustin Louis, 455 Cauchy-Bunyakowski-Schwarz inequality, 455 Cauchy problem, 527 Center, 362 Central difference formula, 43,418-419, 544 Characteristic polynomial, 241, 342 Chopped arithmetic, 89 Clay Foundation, 68 Cofactor expansion, 76 Collatz, Lothar, 77 Collatz conjecture, 67,68 Column, 143 Combinatorics: alternating power sums, 202 Combinatorics: power sums, 202 Compatibility condition, 508 Component-wise operation, 9 Computed solution, 231 Computer graphics, 157 Condition number, 228-230 Conservation of energy, 537 Convergence order, 132 Convergence theorem, 262,264, 265, 266 Convex hull, 609 Contact rate, 366 Counter, 60 Courant, Richard, 597-598 Courant-Friedrichs-Levy condition, 548 Cramer, Gabriel, 203 Cramer's rule, 203 Crank, John, 575 Crank-Nicolson method, 575-577 Cycling, 122 D'Alembert, Jean Le Rond, 525 Death rate, 290 Degree, 25 Delaunay triangulation, 608 Determinant, 75,222 Diagonal matrix, 147 Diameter, 71 Differential Equation (DE), 285 Diffusivity, 469 Dilation, 172 Dimension, 171 Direct method, 252 Dirichlet's principle, 520 Discriminant, 379, 474 Divergence theorem, 519 Divided difference, 131 Domain of dependence, 531 Dot product, 22, 144 Double root, 130 Eigendata, 240 Eigenfunction, 441,496 Eigenspace, 243 Eigenvalue, 240,496, 497 Eigenvector, 240 Element, 598 -Standard, 633 - Standard rectangular, 629 Elementary row operation (ERO), 207 Epicycloids, 13 809 810 Epidemie, 366 Equilibrium solution, 299, 362, 373 -Isolated, 377 Equivalent linear system, 195 Error bound via residual, 233 Error function, 42 Error term, 231 Essentially disjoint, 172 Euclidean length, 224 Euler, Leonhard, 292-293 Euler's method, 292-294 Exact answer, 24,231 Expected value, 83 Existence theorem, 314, 376, 402,494, 496, 507,515,585 Explicit method, 332 False, 57 Fern leaf fractal, 185 Finite difference schemes - Crank-Nicolson, 575-577 -Elliptic, Sec. 11.3, 11.4 -Explicit, 542-543 - Forward-time central-space, 573 - Backward-time central-space, 574 -Implicit, 558 -ODEs, 418-425 - Richardson, 575 Finite element interpolant, 607 Finite element method, 597 First generation, 170 Fixed point iteration, 140 Floating point number, 85 Flop, 74 Flop counts (for Gaussian elimination), 226 Flow, 323 Fontana, Niccolo 108 Forward substitution, 207 Forward difference formula, 43, 508 Fractals (fractal sets), 169 Future value annuities, 72, 73 Galerkin, Boris Grigorievich, 440 Galerkin method, 440 Galois, Evariste, 109 Gauss, Carl Friedrich, 204 Gauss quadrature, 662 Gauss-Seidel iteration, 256 Gaussian elimination, 203-213 General solution, 286 Generalized minimum residual method, 273-274 Geometric multiplicity, 243 Ghost node, 509 Global solution, 315 Global variables, 46 Gomperz law, 300 Gosper island fractal, 185,186 Green 's identities, 519 -First, 519 General Index -Second, 520 Growth rate, 290 Hamming, Richard Wesley, 348 Hamming method, 348 Harmonic function, 476 Hat function, 432 Heat conductivity, 469 Heat (diffusion) equation, 469,470 - Fundamental solution, 478 - With source term, 470 Heun's method, 303 Higher-order Taylor methods, 318 Hubert, David, 193 Homogeneous, 401,472 Homogeneous coordinates, 163,164 Hyper convergence of order or, 133 IEEE double precision standard, 86 Ill-conditioned, 102 Ill-posed, 187 Implicit method, 332 Improved Euler method, 303-304 Infectivity, 364 Initial condition (IC), 286 Initial value problem (IVP), 286 Inline function, 51 Infinite loop, 16 Infinity matrix norm, 227 Infinity (vector) norm, 225 Initial population, 290 Inner product, 427 Input-output analysis, 200,201 Internal demand matrix, 201 Internal elastic energy, 428 Inverse of a matrix, 148 Invertible (nonsingular), 148 Iterative, 109 Iterative method, 252 Iterative refinement, 249 Jacobi-Gauss convergence theorem, 262 Jacobi iteration, 253 Jacobian matrix, 378 Julia, Gastón, 169 Kinetic energy, 535 Kronecker delta, 608 Kutta, Martin W., 305 Lagrange, Joseph Louis, 471 Laplace, Pierre Simon, 471 Laplace equation, 471 Laplace operator (Laplacian), 470 - in polar coordinates, 686 Leading one, 195 Leontief, Wassily, 200 Linear convergence, 133 General Index 811 Linear operator, 473 Linear ODE, 401 Linear PDE, 472 Linear transformation, 160 Linearization, 378 Lipschitz condition, 313, 376 Load potential, 428 Load vector, 434,443 Local basis, 607 Local solution, 315 Local truncation error, 317 Local variables, 46 Logic, 57 Logical operators, 58 Logistical growth model, 291 Lorenz, Edward N., 387 Lorenz strange attractor, 387 Lotka, Alfred, 359 Lower triangular, 205 LU decomposition (or factorization), 213 M-file, 45 - Function M-files, 45 - Script M-files, 45 Machín, John, 43 Machine epsilon, 86 Maclaurin, Colin, 39 Maclaurin series, 38 Malthus, Thomas, 290 Malthus growth model, 290 Mandelbrot, Benoit, 170 Mantissa, 87 Matrix, 143 -Banded, 152,420 - Block, 502 - Diagonally-dominant, 221, 264, 422 - Elementary, 208 -Hubert, 192 -Identity, 148 - Nonsingular (in vertible), 148 - Positive definite, 265 -Sparse, 151,269-278,420 - Stiffness, 434,443 -Technology, 201 - Tridiagonal, 420 Matrix arithmetic, 144 Max norm, 225 Maximum principle, 477, 586, 595 Midpoint method, 343 Monte-Carlo method, 173 Mother loop, 62 Multiple root, 125 Multiplicity 1, 55 Multistep method, 337 Natural growth rate, 292 Nearly singular (poorly conditioned), 228 Necrotic, 300 Nested loop, 61 Newton's method, 118, 119 Newton-Coates formula, 669 Nicolson, Phyllis, 575 Node, 602 Nonautonomous, 357 Nullclines, 373 Numerical differentiation, 43 Numerically stable, 334 Numerically unstable, 335 One-step method, 303 Orbit, 362 -Closed, 382 Order, 130,285,308,317 Ordinary Differential Equation (ODE), 285 Output matrix, 201 Overflow, 88 Parallel, 239 Parametric equations, 11 Partial Differential Equation (PDE), 285, 459 - Divergence form, 637 -Elliptic, 474 -Hyperbolic, 474 - Parabolic, 474 Partial pivoting, 211 Path (MATLAB's), 45 Peano, Guiseppe, 169 Pendulum model, 389 Perfect number, 81 Phase-plane, 362 Piecewise smooth, 496 Pivot, 211 Poincaré, Henri, 378 Poincaré-Bcndixson theorem, 382 Poisson, Siméon-Denis, 649-649 Poisson's integral formula, 649 Poisson equation, 479 Polynomial, 25 Polynomial interpolation, 189, 197-199 Poorly conditioned matrix, 150, 228 Potential energy, 536 Potential theory, 476 Preconditioned conjugate gradient method, 273 Preconditioning, 273 Predator-prey model, 358-360 Predictor-corrector scheme, 339 Prime number, 81 Principle of minimum potential energy, 428 Principle of virtual work, 428 Prompt, 2 Pyramid function, 603 Quadratic convergence, 139 Quadrature, 51 Quartic, 108 Quintic, 108 812 General Index Random integer matrix generator, 152 Random walk, 82 Rayleigh-Ritz method, 426-458 Recursion formulas, 15 Reduced row echelon form, 195 Reflection, 162 -Methodof, 531 Region of numerical stability, 335 Relative error bound (via residual), 233 Relaxation parameter, 258 Remainder (Taylor's), 35 Repelling, 382 Reproduction rate, 367 Residual, 116 Residual matrix, 250 Residual vector, 232 Rhind Mathematical Papyrus, 107 Richardson's method, 575 Ritz, Walter, 426 Root, 110 Rossler, Otto, 395 Rotation, 161 Rounded arithmetic, 89 Row, 143 Runge, Carle D. T., 205 Runge-Kutta method, -Classical, 304-305 - Higher order, 350 Runge-Kutta-Fehlberg method (RKF45), 327 Scalar, 240 Scalar multiplication, 144 Scaling, 161 Schwarz, Hermann Amandus, 455 Secant method, 128, 129 Self-similarity property, 169 Separation of variables, 302 Shearing, 181 Shift transformation, 162 Shooting method, 399 -Linear, 403-411 -Nonlinear, 411-418 Sierpinski, Waclaw, 170 Sierpinski carpet fractal, 184, 185 Sierpinski gasket fractal, 170 Significant digits, 85 Similarity transformation, 172 Simple root, 125 Simpson's Rule, 325 Simulation, 79 Single-step method, 337 Singularity, 527 SIR model, 363 SIRS mode, 367 Solution, 285 SOR (successive over relaxation), 258 SOR convergence theorem, 264 Special function, 693 Specific heat, 468 Spectrum, 251,497 Spline, 449 Stability, 323,381 Stability condition, 574 Stable, 299, 323, 376 -Conditionally, 586 -Neutrally, 323 -Unconditionally, 586 - Weakly, 342 Standard local basis, 608 Statement, 57 Steady-state solution, 336 Stencil, 481,542,576 Step size, 293 Stiff, 335 Strutt, John William, 426 Submatrix, 76 Superposition principle, 473 Symbolic computation, 689 Symmetric matrix, 243 Tartaglia, 108 Taylor, Brook, 34 Taylor polynomial, 25 Taylor series, 38 Taylor's theorem, - One variable, 35 - Two variables, 350 Tessellation, 186 Thomas, Llewellyn H., 220 Thomas method, 220 Three-body problem, 391 Tolerance, 24 Torricelli, Evangelista, 312 Torricelli's law, 312 Traffic logistics, 199,200 Transient part, 335 Transpose, 7 Trapezoid method, 337 Triangulation, 598 Tridiagonal matrix, 150 Triple root, 126 True, 57 Truth value, 57 Two-body problem, 391 Unconditional numerical stability, 336 Underflow, 88 Uniqueness theorem, 314, 376,402,421, 494, 496,507,515,585 Unit roundoff, 86 Unstable, 299, 323, 376, 548 Upper triangular matrix, 204 van der Pol, Balthasar, 396 van der Pol equation, 396 Vandermonde matrix, 197 Variable precision arithmetic, 689 Vector, 7 General Index Vector norm, 225 Verhulst, Peirre Francois, 292 Volterra, Vito, 358-359 von Koch, Niels F.H., 179 von Koch snowflake, 179 Voronoi diagram, 610 Voronoi region, 609 Vortex, 362 Wave equation, 474, 523, 524 Weierstrass, Karl, 179 Weights, 662 Well-conditioned, 102 Well-posed, 187 Zero divisors, 105 Zeroth generation, 170
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB رابط مباشر لتنزيل كتاب Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB
|
|