Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Handbook of Hydraulic Geometry - Theories and Advances الخميس 09 مارس 2023, 1:31 am | |
|
أخواني في الله أحضرت لكم كتاب Handbook of Hydraulic Geometry - Theories and Advances VIJAY P. SINGH Texas A&M University
و المحتوى كما يلي :
Contents Preface page xvii Acknowledgments xx 1 Introduction 1 1.1 Definition 2 1.2 Analytical Basis forHydraulic Geometry Equations 4 1.3 Types of Hydraulic Geometry 5 1.3.1 At-a-Station Hydraulic Geometry 5 1.3.2 Downstream Hydraulic Geometry 6 1.3.3 Reach-Averaged Hydraulic Geometry 8 1.3.4 At-Many-Stations Hydraulic Geometry 11 1.4 Application of Hydraulic Geometry 11 1.5 Basis of Hydraulic Geometry Relations 12 1.6 Equilibrium State 12 1.7 Equilibrium Assumption 13 1.8 Validity of Power Relations 13 1.9 Stability of Hydraulic Geometry Relations 14 1.10 Variability of Exponents 15 1.11 Variation of Channel Width 17 1.12 Variation of Channel Velocity 17 1.13 Effect of Stream Size 18 1.14 Effect of River Channel Patterns 18 1.15 Effect of Hyper-concentrated Floods on Channel Geometry Adjustment 22 1.16 Effect of Dam Removal 22 1.17 Power Relations for Drainage Basins 23 1.18 Effect of Land Use 23 1.19 Boundary Conditions 24 viiviii Contents 1.20 Organizationof Contents 24 References 25 2 Governing Equations 30 2.1 Introduction 33 2.2 Continuity Equation 34 2.3 Flow Characterization 34 2.4 Energy Equation 35 2.5 Gradually Varied Flow Equation 37 2.6 Flow Resistance Equations 37 2.6.1 Chezy’s Equation 38 2.6.2 Manning’s Equation 38 2.6.3 Einstein-Chien Equation 41 2.6.4 Darcy-Weisbach Equation 41 2.6.5 Friction Factor Equations 43 2.6.6 Shear Stress in Alluvial Channels 47 2.7 Sediment Transport 51 2.7.1 Criteria for Incipient Motion 51 2.7.2 Transport Equations 53 2.8 Stream Power 56 2.9 Entropy 61 References 62 3 Regime Theory 65 3.1 Introduction 67 3.2 Regime Theory 69 3.2.1 Lacey’s Equations 70 3.2.2 Blench’s Equations 75 3.3 Generalized Regime Theory 77 3.4 Process-Based Regime Equations 84 3.5 Natural Channels 89 3.6 Applications 98 3.6.1 Width between Incised River Banks 98 3.6.2 Scour between Bridge Piers 99 3.6.3 Scour Downstream from Piers 99 3.6.4 Aggradation Upstream from Reservoirs 99 3.6.5 Degradation Downstream fromReservoirs 99 3.6.6 Estimation of Dredging 100 3.6.7 Model Scales 100 3.6.8 Meandering 100Contents ix 3.6.9 Channel Design 102 3.6.10 Gravel-Bed River Response to Environmental Change 105 References 106 4 Leopold-Maddock (LM) Theory 110 4.1 Introduction 112 4.2 At-a-Station Hydraulic Geometry 112 4.2.1 Geomorphologic Data and Their Measurement 113 4.2.2 Bankfull Discharge 114 4.2.3 Effective Discharge 115 4.2.4 Frequency of Discharge 116 4.2.5 Variations in Hydraulic Characteristics 119 4.2.6 Relation of Channel Shape to Frequencyof Discharge 124 4.2.7 Suspended Sediment and Discharge at a Particular Cross-Section 125 4.2.8 Width, Depth, Velocity, and Suspended Sediment at a Given Discharge 127 4.2.9 Role of Channel Roughness and Slope in the Adjustment of Channel Shape to Sediment Load 127 4.3 Downstream Hydraulic Geometry 130 4.3.1 Variation of Hydraulic Characteristics 131 4.3.2 Relation of Channel Shape to Frequencyof Discharge 131 4.3.3 Relation of Suspended Sediment to Discharge in a Downstream Direction 132 4.3.4 Width, Depth, Velocity, and Suspended Sediment at a Given Discharge 133 4.3.5 Width, Depth, and Suspended Load at a Variable Discharge 134 4.3.6 Relations between Width, Depth, Velocity, and Bed Load at a Given Discharge 134 4.3.7 Channel Shape Adjustment during Individual Floods 135 4.3.8 Significance of Channel Roughness and Slope in Adjustment of Channel Shape to Sediment Load 136 4.3.9 Stable Irrigation Canal: An Analogy to a Graded River 139 4.3.10 Sediment and Longitudinal Profile 140 4.4 Variation of Exponents 141 4.5 b-f-m Diagram 142 4.6 Analytical Determination of Exponents and Coefficients 147 4.7 Comparison with Stable Irrigation Channels 152 4.8 Reconstruction of Discharges 152 References 155X Contents 5 Theory of Minimum Variance 159 5.1 Introduction 160 5.2 Minimum Sum of Variances of Independent Variables 162 5.3 Minimum Total Variance of Components of Stream Power 167 5.4 Knight’s Formulation of Minimum Variance Hypothesis 172 5.5 Minimum Variance of Stream Power 177 5.6 Influence of Choice of Variables 178 5.7 Entropy Maximizing 181 References 184 6 Dimensional Principles 186 6.1 Introduction 187 6.2 Derivation of Hydraulic Geometry 190 6.3 Derivation of Width and Depth 192 6.4 Computation of Regime Channels 195 6.5 Computational Procedure 198 6.6 Method of Synthesis 205 References 209 7 Hydrodynamic Theory 210 7.1 Introduction 212 7.2 Smith Theory 213 7.2.1 Hydrodynamic Formulation 214 7.2.2 Derivation of Hydraulic Geometry 217 7.3 Julien-Wargadalam (JW) Theory 221 7.3.1 Continuity Equation 221 7.3.2 Resistance Equation 222 7.3.3 Sediment Transport Equation 223 7.3.4 Angle between Transversal andDownstream Shear Stress Components 223 7.3.5 Hydraulic Geometry Relations 224 7.3.6 Calculation Procedure 226 7.3.7 Further Discussion 228 7.4 Parker Theory 232 7.5 Griffiths Theory 233 7.5.1 Derivation of Downstream Hydraulic Geometry 234 7.5.2 Stable Channel Design 236 7.6 Ackers Theory 237 7.6.1 Governing Equations 237 7.6.2 Hydraulic Geometry Equations 238Contents xi 7.6.3 Significance of Width-Depth Ratio 239 7.6.4 Comparison with Regime Relations 240 References 241 8 Scaling Theory 245 8.1 Introduction 247 8.2 Scaling Theory 247 8.2.1 Immobile Boundary Channels 248 8.2.2 Effect of Roughness 251 8.2.3 Mobile Bed 253 8.3 Comparison with Stable ChannelDesign Theories 254 8.3.1 Threshold Theory 254 8.3.2 Stability Index Theory 255 8.3.3 Regime Theory 256 8.4 Application to Channel Design 257 References 259 9 Tractive Force Theory 261 9.1 Introduction 262 9.2 Threshold Condition 263 9.3 Tractive Force Theory 264 9.3.1 Assumptions 265 9.3.2 Forces Acting on Threshold ChannelShape 265 9.3.3 Channel Geometry 268 9.3.4 Hydraulic Geometry 273 9.3.5 Downstream Hydraulic Geometry 277 9.3.6 Validity of Assumptions 280 9.4 Henderson Theory 281 9.4.1 Governing Equations of Threshold Theory 283 9.4.2 Bed Eoad Equation and Eacey’s Equations 287 9.4.3 Application to Design of Artificial Channels 288 9.4.4 Application to Rivers 290 References 290 10 Thermodynamic Theory 292 10.1 Introduction 294 10.2 Hypothesis 295 10.3 Determination of A* 295 10.3.1 Variation of Flow Energy 297 10.3.2 Variation of Flow Energy with Dimensionless Time 299xii Contents 10.4 Transport Equation 302 10.5 System of Regime Equations 303 10.6 Computation of Hydraulic Geometry 305 10.6.1 Basic Equations 305 10.6.2 Determination of Friction Coefficient 306 10.6.3 Computation of Geometry 307 References 336 11 Similarity Principle 338 11.1 Introduction 339 11.2 Dominant Discharge 340 11.3 Basic Parameters 340 11.4 Similarity Principle 341 11.4.1 Flow Velocity, FrictionVelocity, and Settling Velocity 341 11.4.2 Bed Shear Stress 342 11.4.3 Energy Slope 343 11.4.4 Hydraulic Roughness 344 11.4.5 Loss of Energy 344 11.4.6 Energy Gradient 345 11.4.7 Geometric and Dynamic Similarity 347 11.5 Comparison with Regime Relations 352 References 354 12 Channel Mobility Theory 355 12.1 Introduction 356 12.2 Sediment Transport 357 12.3 Hypothesis of Channel Mobility 359 12.3.1 Index of Mobility 359 12.4 Hydromorphometric Relationships 361 12.5 Tidal Estuaries Morphology 362 12.6 Relation of Channel Width to Depth and Degree of Widening of the Channel of Tidal Estuaries 365 12.7 Longitudinal Channel Profile 366 12.7.1 Index of Mobility 367 12.8 Another Analysis of Generalized Mobility Index 368 References 371 13 Maximum Sediment Discharge and Froude Number Hypothesis 372 13.1 Introduction 374 13.2 Hypotheses 374Contents xiii 13.2.1 Flow Resistance 375 13.2.2 Sediment Transport 375 13.2.3 Energy Equation 376 13.2.4 Coefficient Ks 377 13.2.5 Water Surface Slope 378 13.3 Case 1: Straight and Meandering Single Beds 378 13.4 Case 2: Multiple Meandering Bed 380 13.5 Case 3: Meanders 380 13.6 Maximum Sediment Efficiency 386 13.6.1 Governing Equations 386 13.6.2 At-a-Station Hydraulic Geometry 388 13.6.3 Downstream Hydraulic Geometry 389 References 391 14 Principle of Minimum Froude Number 393 14.1 Introduction 394 14.2 River Stability and Froude Number 394 14.2.1 Channel Stability 395 14.2.2 Role of Potential Energy 395 14.2.3 Role of Sediment Movement 395 14.2.4 Role of Froude Number 395 14.3 Modeling and Simulation 396 14.3.1 Assumptions 396 14.3.2 Mass Conservation 396 14.3.3 Flow Resistance 396 14.3.4 Sediment Transport 397 14.4 Minimization of Froude Number 399 14.5 Testing 399 14.6 Another Look at Froude Number Minimization 402 References 405 15 Hypothesis of Maximum Friction Factor 407 15.1 Introduction 408 15.2 Formulation of Maximum Friction FactorHypothesis 408 15.3 Maximization 410 References 418 16 Maximum Flow Efficiency Hypothesis 419 16.1 Introduction 420 16.2 Basic Relations 420xiv Contents 16.2.1 Continuity Equation 420 16.2.2 Resistance Equation 421 16.2.3 Sediment Transport 421 16.2.4 Shape Parameter 422 16.3 Derivation of Hydraulic Geometry Relations 422 16.3.1 Optimum Hydraulic Geometry Relations 425 16.3.2 Lower Threshold Geometry Relations 425 16.3.3 Upper Threshold Geometry Relations 426 16.3.4 Average Channel Geometry Relations 427 16.4 Physical Evidence for Maximum Flow Efficiency 432 References 434 17 Principle of Least Action 436 17.1 Introduction 437 17.2 Adjustment of Alluvial Cross-Sections 438 17.3 Validity 440 17.4 Comparison 443 17.5 Stable HydraulicSection Using Calculus of Variation 444 References 448 18 Theory of Minimum Energy Dissipation Rate 450 18.1 Introduction 451 18.2 Theory of Minimum Energy Dissipation Rate 452 18.2.1 Flow Resistance Equation 452 18.2.2 Energy Dissipation Rate for Water Transport 453 18.2.3 Energy Dissipation Rate for Sediment Transport 453 18.2.4 Total Rate of Energy Dissipation 453 18.3.5 Sediment Concentration 454 18.3 Derivation of Hydraulic Geometry 454 18.3.1 Trapezoidal Section 454 18.3.2 Triangular Geometry 460 18.3.3 Rectangular Geometry 460 18.4 Analysis and Application 465 References 469 19 Entropy Theory 470 19.1 Introduction 471 19.2 Formulation 472 19.3 Derivation of At-a-Station Hydraulic Geometry Using Entropy 476 19.4 Derivation of Downstream Geometry Using Entropy 482Contents xv 19.5 Cross-Sectional Shape 482 19.6 Energy Gradient or Channel Slope 487 References 490 20 Minimum Energy Dissipation and Maximum Entropy Theory 491 20.1 Introduction 492 20.2 Downstream Hydraulic Geometry Relations 493 20.2.1 Primary Morphological Equations 497 20.2.2 Downstream Hydraulic Geometry Equations for a Given Discharge 500 20.3 At-a-Station Hydraulic Geometry Relations 501 20.3.1 Morphological Equations 505 20.3.2 Derivation of At-a-Station Hydraulic Geometry Relations 507 References 508 21 Theory of Stream Power 510 21.1 Introduction 511 21.2 Definition 512 21.3 Two Postulates 513 21.4 Constraints for Hydraulic Geometry 513 21.5 Regime River Geometry 518 21.6 Stream Power and Probability 519 21.6.1 Governing Equations 520 21.6.2 Derivation of Regime Equations 522 21.6.3 Basic Regime Coefficient 523 21.7 Variation of Stream Power 524 21.8 Computation of Variation in Stream Power 527 References 527 22 Regional Hydraulic Geometry 529 22.1 Introduction 531 22.2 Relation between Discharge, Channel Shape, and Drainage Area 531 22.3 Regional Hydraulic Geometry 534 22.4 Relation between Mean Annual Discharge and Drainage Area 535 22.5 Leopold-Miller Extension of Horton Laws 536 22.6 Gupta-Mesa Theory of Hydraulic Geometry 538 22.6.1 Physical Variables andParameters 539 22.6.2 Dimensionless Ratios 539 22.6.3 Mass Conservation 540 22.6.4 Derivation of Horton Laws 541xvi Contents 22.6.5 Determination of Width Exponent 542 22.6.6 Determination of Velocity and Depth Exponents 542 22.6.7 Manning’s Roughness Coefficient and ItsExponent 545 22.7 Channel Geometry Method 546 22.8 Variation of Channel Geometry and Drainage Area 550 References 551 Index 555 Index Acceleration due to gravity, 34, 37-38, 51, 294, 341, 344, 409 Ackers theory, 210, 237 Aggradation, 99 Alluvial channels, 5, 12, 15, 79, 90, 103, 357 Alluvial stream hydraulics, 339 Amplitude of meanders, 374 Angle of repose, 58, 283 Annual flood series, 116 Annual sediment load, 115 Antidunes, 8 Aquatic life, 23 Arc length of meanders, 89 Area ratio, 540 Armoring, 93 Armoured surface particle distribution, 257 Aspect ratio, 302, 376, 485 4-86 At-a-station hydraulic geometry, 110, 112, 124, 142, 146, 261, 388, 476, 491, 501-502, 507-508 Average cross-sectional flow velocity, 421 Average flow velocity, 41 Average sediment size, 6 Average settling velocity, 57 Average shear stress, 21 Backwater, 99 Bank erosion, 69, 90, 258 Bank full cross-sectional area, 550 Bank roughness, 103 Bank slope, 361 Bank stability, 2, 4, 65, 70 Bank stabilization, 465 Bank threshold equation, 280 Bankfull channel width, 547 Bankfull depth, 114, 152, 233 Bankfull discharge, 6, 8, 18, 96, 98, 102, 112, 114—116, 225, 233, 236, 247, 257, 261, 263, 290, 374, 396, 471, 529, 534 Bankfull elevation, 114 Bankfull flow, 7, 69 Bankfull width, 152, 233 Bar crests, 94 Bari Doab, the Punjab, India, 70 Bars, 5, 33, 68, 89 Basin Froude number, 539 Bathurst Equation, 44 Bed, 152 Bed armoring, 407 Bed configuration, 53 Bed degradation, 102 Bed features, 48 attidunes, 48 chutes, 48 dunes, 48 pools, 48 ripples, 48 surface waves, 48 Bed form, 68, 89, 374, 396-397, 473 Bed form factor, 61 Bed form resistance, 50, 397 Bed friction, 510-511 Bed gradation, 69 Bed load, 5-6, 53, 59, 87, 135, 236, 342, 374-375, 391 Bed load discharge, 376, 378 Bed load equation, 287 Bed load transport, 44, 55, 58, 134, 254, 349, 376 Bed load transporting capacity, 374 Bed material load, 236 Bed material size, 285 Bed ripples, 48 Bed roughness, 94, 350 Bed sediment load transport, 96 Bed sediment size, 71, 245 Bed sediment transport, 79 Bed shear, 345, 349 Bed shear stress, 48, 59, 342, 348-349 Bed slope, 41, 73, 85, 95, 245, 247, 257, 266, 275-276, 421 Bed threshold equation, 280 Bedload concentration, 391 555556 Index Bedload transport equation, 386 387 Bed-sediment size distribution, 258 Bifurcation ratio, 540, 543 Blasius equation, 75 Blench equation, 75, 241 b-m-f diagram, 143, 146 boundary composition cohesive, 19 noncohesive, 19 Boundary conditions, 3, 12, 15, 24 Boundary shear, 6 Braiding, 93 Bray equation, 44 Carnot’s formula, 344 Cayley formula, 448 Channel braiding, 2 meandering, 2 sinuosity, 2 straight, 19 transitional, 19 wandering, 23 Channel bank, 24 Channel bars, 258 Channel bed, 2 Channel bed slope, 248 Channel cross-section shape, 419 Channel design, 102 Channel flow depth, 409 Channel form, 2, 5-6, 8, 15 Channel geometry, 22, 374 Channel geometry method, 546, 550 Channel gradient (slope), 394 Channel mobility, 357, 359 360 Channel pattern, 6, 19, 33, 53, 247, 374 Channel resistance, 65 Channel shape, 65, 70, 127, 273 Channel slope, 391, 414, 540 Channel stability, 146, 387 Channel width, 394, 421 Channel width at the water surface, 357 Channel-forming discharge, 80 Channels in equilibrium and regime, 24 Channels with erodible beds and banks, 24 Channels with rigid boundaries, 24 Chezy’s coefficient, 38, 72, 358 Chezy’s equation, 150, 453, 495, 497, 516, 545 Chezy’s friction factor, 187 Chezy’s roughness coefficient, 453, 494, 545 Cohesive banks, 84 Competence, 145, 364 Conservation of energy, 35-36 Continuity equation, 3, 34, 71, 88, 94, 149, 167, 210, 212, 221, 233, 235, 250, 280, 409, 414, 420, 432, 464, 517, 520-521 Continuity principle, 68 Conveyance, 38 Conveyance factor, 37 Cowan method, 39 Critical discharge, 54 Critical shear power, 524 Critical shear stress, 52 Critical shear stress, 58, 421 Critical shear velocity, 294 Critical velocity, 52, 358, 360 Critical velocity ratio, 72 Cross-section, 95, 110, 112, 114, 119-120, 123 Cross-sectional area, 22, 34, 41, 71, 74, 80, 270, 375, 396-397 Cross-sectional shape, 482 Cumulative distribution function, 484, 488 Cumulative frequency, 116-117, 132 Cumulative probability distribution, 478 Current-meter measurements, 114 Dam construction, 22 Dam removal, 22 Darcy-Weisbach equation, 41, 249, 343, 386, 494 495, 497, 522-523 Darcy-Weisbach friction factor, 38, 47, 95, 143, 164, 171, 176, 222, 540 Darcy-Weisbach resistance factor, 543 Degradation, 100 Density, 3 Density ratio, 51 Deposition, 68 Depth, 2-7, 12 13, 15, 30, 65, 68-70, 89, 95-96, 100, 103, 110, 112-113, 119, 123-124, 127, 130-131, 133 135, 160, 162, 212-213, 245, 247, 340, 351, 365 Depth ratio, 275 Design discharge, 87, 103 Dimensional principles, 186 Dimensionless principles, 24 Dimensionless slope, 383 Discharge, 2, 5-7, 12, 15, 69-70, 90, 95, 100, 103, 110, 112, 119-120, 123 124, 127 Discharge frequency, 110, 124, 132 Discharge hydrograph, 101 Discharge ratio, 275, 539-540 Distribution of energy, 472, 474 Dominant discharge, 69, 94, 340, 372, 374, 385, 396 Dominant grain size, 387, 389 Dominant water discharge, 386 Downstream discharge, 7 Downstream hydraulic geometry, 110, 112, 114, 130, 212-213, 221, 225, 245, 247, 261, 277, 386, 482, 491, 493, 497, 500 Drag, 341 Drag force, 52, 265-266, 342 Drainage area, 7, 14, 23, 116, 133, 215, 280, 340 Drainage basin, 23 Drainage-basin scale, 68 Dredging, 100 DuBoys equation, 53, 420Index 557 DuBoys sediment transport equation, 440, 444 DuBoys sediment transport formula, 421 Dune height, 345, 349-350 Dune length, 347 Dunes, 8, 48, 60, 68, 89, 129, 188, 190, 344, 375 Dynamic equilibrium, 4-5, 13, 67, 103, 160 Dynamic similarity, 249, 340, 347, 349 Dynamic viscosity, 35, 253, 294 Ecoregions, 529 Effective discharge, 115 Efficiency criterion, 390 Einstein bed load function, 282, 288 Einstein-Brown equation, 56 Einstein-Chien Equation, 41 Energy, 53 Energy dissipation, 12, 372, 374, 450 453, 456, 461-462, 465, 491, 494, 502 Energy dissipation rate and entropy theory, 24 Energy equation, 35, 188, 190, 376 Energy flux, 297 Energy grade line, 131 Energy gradient, 71, 345-346, 487 4-88 Energy potential, 141 Energy slope, 37-38, 53, 56, 248, 340, 342, 421, 452, 455, 487, 491, 495 Energy transfer, 297 Engelund and Hansen Equation, 55 Entropy, 30, 61, 300, 370 Entropy theory, 24, 470, 487 Equilibrium state, 12 Erosion, 2, 21, 68 gully, 125 nil, 125 sheet, 125 Euler-Lagrange equation, 446, 478 Exponents, 3, 7, 11, 13 15, 19, 120, 123-124, 133, 142, 147, 151, 166, 169, 171, 174 Extremal hypotheses, 408 Fall diameter, 341-342, 347 Fall velocity, 52-53, 60, 85, 232, 238, 341, 464 Fill, 67, 119, 139 First law of thermodynamics, 297 Flood crest, 129 Flood frequency, 115 Flood frequency analysis, 551 Flood hydrograph, 129 Floodplain width and surface area, 7 Floods, 17 Flow critical, 34 laminar, 35 subcritical, 38 turbulent, 38 uniform, 38 Flow cross-section, 374 Flow depth, 53, 80, 99, 253, 396 Flow duration, 23 Flow efficiency, 419 Flow energy, 297, 299 Flow equation, 248 Flow resistance, 4, 7, 37, 68, 145, 375, 396-397, 454 Flow resistance equation, 37, 280, 440, 442, 452, 521 Flow turbulence, 57 Flow uniformity, 296 Flow-duration curve, 116 Fluid density, 35, 253, 294 Fluvial processes index, 524 Force ratio, 540 Form drag, 299, 342 Form factor, 439 Frequency distribution, 116, 388 Frequency of discharge, 116, 119, 125 Frequency of flow, 5 Friction, 2-3, 6-7, 12, 15, 36-37 Friction coefficient, 52, 306, 452 Friction energy, 438 Friction equation, 210 Friction factor, 38, 41, 43, 51, 75, 193, 197, 249, 251, 295, 306, 343, 346, 386, 407-109, 413—415, 417, 471, 473 Friction force, 265 Friction slope, 37, 41, 249, 252, 278 Friction velocity, 53, 341, 343 Frictional force, 540 Frictional resistance, 160 Frictional velocity, 351 Froude number, 34, 43, 70, 73, 85, 129, 145, 187, 190, 196, 248, 302, 305, 307, 343, 347-348, 374, 393-395, 398-399, 505, 542 Fully rough flow, 43, 375 Fully turbulent flow, 253 Ganguillet-Kutter (G.-K.) formula, 72 Generalized index of channel mobility, 368 Geometric and dynamic similarity, 340, 348 Geometric standard deviation of the distribution, 257 Geomorphic thresholds, 19 Gibbs equation, 292 Governing equations, 30 Graded equilibrium, 14 Gradedrivers, 119 Gradient, 65, 70 Gradually varied flow, 37 Gradually Varied flow Equation, 37 Grain diameter, 15 Grain resistance, 48, 50 Grain roughness, 252 Grain shear velocity, 251 Grain size, 7, 51 Grain size Reynolds number, 303 Granular roughness, 306 Gravel bed rivers, 43, 45, 232-234 Gravel bed streams, 106 Gravel transport, 95558 Index Gravitational force, 540 Griffiths Equation, 44 Griffiths theory, 210, 233 Gully erosion, 125 Head elevation, 35 pressure, 35 total, 35 velocity, 35 Head loss, 377 Henderson Equation, 43 Henderson theory, 281 Hey equation, 44 Hillslopes, 7 Horizontal length scale ratio, 350 Horton law, 536, 540-541 Horton ratio, 542-543 Horton’s law for velocity, 546 Horton’s law of stream areas, 531 Horton’s law of stream numbers, 540 Hydraulic depth, 73, 89, 271, 274 Hydraulic energy loss, 298 Hydraulic geometry, 2-A, 7-8, 11 17, 21, 23-24, 30, 34-37, 52-53, 89, 95, 105, 112, 120, 124, 141 143, 159, 161, 166, 172, 174, 182, 186-188, 212-214, 224, 227, 232, 238, 263-264, 280-281, 292, 338, 419, 422, 427 Hydraulic geometry equations, 280 Hydraulic geometry relations, 3, 247, 277, 280 Hydraulic geometry theory, 544 Hydraulic grade, 36 Hydraulic head, 36 Hydraulic mean depth, 89 Hydraulic or most efficient section, 462 Hydraulic radius, 2, 16, 34, 38, 41 42, 72, 80-81, 85, 96-97, 127, 131, 139, 221-222, 248, 271, 275, 279, 375-376, 385-386, 421, 440, 447-448, 452, 455, 485, 487, 494 Hydraulic roughness, 37, 344 Hydraulic similitude, 256 Hydraulically rough regime, 47 Hydraulically smooth regime, 47 Hydrodynamic forces, 299 Hydrodynamic theory, 24, 210 Hydroelectric power, 512 Hydrologic regions, 529 Hydromorphometric relations, 365 Hydromorphometric relationship, 361 Hyper-concentrated floods, 22 Immobile boundary channels, 248 Index of mobility, 359, 367 Inglis-Lacey equations, 85, 87, 240 Internal distortion, 37 Internal energy, 298-299, 474 475 Internal friction, 483 Irrigation canals, 11, 78, 84 Irrigation schemes, 11 Islands, 33 Julien-Wargadalam (JW) theory, 210 Kennedy equation, 88 Kennedy formula, 73 Keulegan equation, 41, 44 Keulegan type relation, 251 Kinematic viscosity, 51 52, 75, 89, 188, 199, 206, 240, 398, 539 Kinematic wave number, 43 Kinetic energy, 3, 36, 298, 300-301, 375, 377 Kutter’s resistance formula, 71 Lacey regime theory, 85 Lacey resistance equation, 72 Lacey theory, 100, 288-289 Lacey’s equation, 74, 286-287 Lacey’s regime equations, 523 Lacey’s regime theory, 281 Lacey-Malhotra equation, 87 Lagrange multipliers, 409, 456, 477, 483, 489 Lagrangian function, 410, 461, 478, 483 Laminar flow, 47 Laminar sublayer, 47 Land use, 23 Le Chatelier’s principle, 174 Least action, 436, 438 Least mobility, 213 Least-biased probability distribution, 477 Leopold and Maddock (LM) (1953) theory, 110 Leopold-Maddock (LM) empirical theory, xviii Lift force, 52, 68, 265 Lift-to-drag ratio, 271 Logarithmic law, 52 Longitudinal bed profile, 374 Longitudinal frictional force, 58 Longitudinal profile, 102, 140-141, 366, 487 Lower threshold, 425 Manning equation, 38, 40, 43, 72, 94, 136, 213, 464, 474 Manning’s roughness coefficient, 38, 43, 71, 279, 453, 494, 545 Manning’s roughness factor, 3, 492 Manning-Strickler coefficient, 375 Manning-Strickler equation, 39, 43, 376 Manning-Strickler expression, 250 Manning-Strickler relation, 375, 378, 381 Manning-Strickler resistance equation, 254, 375 Mass conservation, 396, 540 Mass density of water, 89 Material number, 188 Material size, 6, 8-9 Maximization of Froude number, 374 Maximum bankfull depth, 89 Maximum conveyance, 446 Maximum discharge, 100Index 559 Maximum efficiency, 213, 387 Maximum entropy theory, 491 Maximum flow, 419 Maximum flow efficiency, 420, 432, 440 Maximum Flow Efficiency Hypothesis, 419 Maximum flow efficiency theory, 24 Maximum friction factor, 407 408, 410 Maximum hydraulic radius, 420, 433 Maximum sediment discharge, 372 Maximum sediment discharge and Froude number hypothesis, 24 Maximum sediment transporting capacity, 420 Mean annual discharge, 17, 42, 117, 131, 535 Mean annual flood, 69, 290, 547 Mean annual water discharge, 95 Mean channel bed slope, 409 Mean channel depth, 357 Mean depth, 39, 374 Mean flow velocity, 394, 409 Mean particle diameter ratio, 252 Mean sediment diameter, 378 Mean stream velocity, 357 Meander belt width, 100101 Meander bends, 408 Meander geometry, 100 Meander length, 69, 101, 351 Meander loops, 299 Meander width, 100-102 Meandering, 40, 89, 100, 147, 161 Meandering beds, 380 Meandering channels, 387, 407 Meandering pattern, 338, 340 Meanders, 378, 380 Median discharge, 117 Meyer-Peter bed load formula, 375 Meyer-Peter-Muller (MPM) Equation, 54 Minimization of energy dissipation, 372 Minimum energy dissipation and maximum entropy theory, 491 Minimum energy dissipation rate, 450 Minimum energy principle, 439 Minimum flow requirements, 11 Minimum Froude number, 393 Minimum stream power, 213, 420, 440, 452 Minimum stream power (MSP) hypothesis, 433 Minimum variance, 159, 161, 172, 213 Minimum variance theory, 24 Mobile bed, 253 Mobility number, 51, 190 Mobility theory, 24, 355 Momentum equation, 245, 247 Morphological constants, 412 Morphological equations, 491, 493, 497, 500, 505 Morphology channel, 4 fluvial, 4 river, 20 Multiple Meandering Bed, 380 Newton’s law of motion, 33 Newton’s law of viscosity, 47, 145 Nikuradse equivalent grain size roughness, 95 Nikuradse’s sand roughness, 48 Nontidal rivers, 362, 366 Normal depth, 38 Normal force, 266 Normal probability distribution, 162 Normal velocity, 99 Overland flow, 263 Parker theory, 210, 232 Particle diameter, 52 Particle Reynolds number. 285 Perimeter, 80, 93 Periodicity, 359 Piezometric head, 36 Plan form, 89 90 Plane bed, 60 Pool, 12, 93, 512 Porosity, 263 Potential energy, 56, 298-299, 375-376, 395, 438, 493,510 Power functions, 3, 7, 13, 17 Power law, 150, 167 Power relation, 13, 20, 23 Prigogine’s principle, 474 Principle of least action, 24, 436, 438 Principle of maximum entropy, 182, 477, 483, 491, 504, 519 Principle of maximum flow efficiency, 440 Principle of maximum friction, 24 Principle of minimum Froude number, 24, 394 Principle of minimum potential energy, 439 Principle of similarity, 350, 352 Prismatic, 34 Probability density function, 61, 478, 483, 488 Production of entropy, 470 Prototype channel, 248 Quasi-equilibrium, 136, 160, 167, 174 Rate of bed load transport, 349 Recurrence interval, 115-116, 290 Regime canal, 71 Regime channel, 5, 67, 139, 186-187, 190, 195, 198, 292, 302 Regime channel geometry, 307 Regime equations, 80-81, 84, 95, 256, 303, 383, 522 Regime formula, 464 Regime relations, 352 Regime River Geometry, 518 Regime theory, 7, 53, 65, 67, 69-70, 85, 98, 240, 256, 282 ’ Regime velocity, 72 Regional geometry, 24 Regional hydraulic geometry, 529, 533-534560 Index Regional scale, 531 Relative flow intensity, 189 Representative grain size or diameter, 294 Reservoir sedimentation, 11 Resistance, 378 drag, 48 grain, 48 Resistance equation, 193, 197, 213, 221, 237, 420 421 Resistance factor, 394 Resistance force, 52 Resistance law, 419 Return period, 290 Reynolds number, 34-35, 47, 76, 189, 341, 540 Riffle geometry, 97 Riffles, 5, 23, 96, 538 Rigid bed channel, 44 Rigid boundary gravel bed rivers, 45 Ripple height, 238, 240 Ripples, 60, 68, 72, 89, 94, 188, 190, 341, 375 River basin, 3 River meandering, 518 River morphology, 372 River slope, 374 River stability, 394 River training, 11 Rivers braided, 90 meandering, 90 sinuous, 90 straight, 90 Roughness, 30, 33, 103, 112, 119, 124, 127, 129, 132, 136-138, 140-141, 146, 162, 247, 249, 374, 386 bank, 2 bed, 2 form, 8 skin, 8 Roughness coefficient, 376 Roughness diameter, 386 Roughness elements, 342, 407 408 Roughness factor, 86 Runoff ratio, 539 Sand bed, 84 Sand bed channels, 72 Sand grain roughness, 57 Sand roughness, 347 Sand waves, 20 Scale mega, 68 meso, 68 micro, 68 Scale ratios, 100 Scaling theory, 24, 245, 247 Schoklitsch equation, 54 Scour, 67, 98, 119, 136, 139 Scour holes, 5 Scouring, 20 Sediemnt transport, 221 Sediment (bed load) discharge, 421 Sediment concentration, 20, 22, 49, 73, 77, 80, 85, 87, 126, 134, 136, 140, 383, 397, 399, 431, 452, 454, 473, 494, 506 Sediment continuity equation, 263 Sediment delivery ratio, 7, 512, 526 Sediment density, 383 Sediment diameter, 71, 96, 378, 383, 386 Sediment discharge, 5, 217, 232, 263, 338, 340, 357, 375, 410 Sediment efficiency, 386 Sediment Froude number, 228 Sediment grain size, 39, 391 Sediment load, 2, 5-8, 33, 53, 68, 73, 79, 8^k87, 89-90, 105, 110, 113, 125, 128-129, 134, 213, 247, 340, 359, 374, 386, 393, 396, 399, 420, 439, 450-451, 487, 518-519, 550 Sediment movement, 395 Sediment particle size, 253, 393 Sediment particle size and gradation, 53 Sediment particles, 33, 254 Sediment rating curve, 125 Sediment routing, 13 Sediment size, 88 coarse, 6 Sediment size factor, 50 Sediment storage, 7 Sediment supply, 68, 79 Sediment transport, 4, 20, 22, 24, 30, 51, 55, 65, 68, 79, 84, 90, 105, 112, 162, 188, 213, 217, 233, 247, 253, 357, 375, 383, 385, 387, 39«97, 512 Sediment transport capacity, 12, 20, 81, 357 Sediment transport equation, 409, 420, 423, 439, 442, 521 Sediment transport equations, 53, 84, 105 Sediment transport rate, 34, 53, 81, 84-85, 116, 295, 349, 372, 374 Sediment transport rating curve, 116 Sediment transport relation, 351 Sediment weight density, 341, 376 Settlement of sediment, 99 Settling velocity, 342, 398 Shannon entropy, 476-477, 483, 488 Shape factor, 434 Shape function, 486 Shape parameter, 422 Shear force, 221, 342, 524 Shear Reynolds number, 48 Shear strength, 96 Shear stress, 2, 21, 51, 53-54, 58, 60, 141, 160-161, 164, 166, 178, 189-190, 210, 266, 340, 421-422, 441 Shear velocity, 42, 51, 53, 188-189, 254, 341 Shields criterion, 288 Shields critical stress, 524 Shields entrainment function, 54, 254 255, 287, 409Index 561 Shields equation, 54 Shields parameter, 59, 229 Shields stress, 7 Silt factor, 71, 73, 75, 85 86 Similarity principle, 24, 338, 341 Similitude, 247 Sinuosity, 40, 93, 96 97, 155 Skin friction, 299, 342 Skin resistance, 37 Slope, 38, 68-71, 80, 89-90, 94, 110, 112, 119, 129, 137, 162, 212-213, 282, 340-341, 351, 374 flat, 33 side, 2 slope, 2 steep, 33 valley, 33 Smart formula, 56 Smith theory, 210, 213 Smooth turbulent flow, 75 Specific discharge, 396 Specific energy head, 36 Specific gravity of sediment, 341 Specific sediment weight, 253 Specific weight, 3, 36 Specific weight of sediment, 54 Specific weight of sediment grains, 294 Specific weight of water, 54 Spill resistance, 38 Stability criterion, 106 Stability index, 247, 257-258 Stability index theory, 245, 255 Stable canal design, 88 Stable canals, 11, 256 Stable channel design, 236, 254 Stable channel width, 254, 258 Stable channels, 144, 256 Stable gravel-bed channel, 257 Stage-discharge rating curve, 11 Stage-discharge relation, 114 Steady uniform flow, 34 Straight channels, 93 Stream fall, 56 Stream geometry, 172 Stream order, 531 Stream pattern, 21 Stream power, 3, 6, 30, 50, 53, 57-58, 161, 164, 167, 172, 177-178, 212, 395, 398, 402, 420, 440-442, 452, 473-474, 491, 494-499, 501, 503-506, 508, 510-514, 519-520, 524 Stream Size, 18 Stream transport capacity, 357 Streamflow routing, 14 Strickler equation, 473, 538 Strickler’s formula, 279, 282, 285-286 Submerged weight, 52, 265 Suspended load, 110, 113, 125, 127, 129-130, 137, 140, 145, 236, 349 Suspended sediment, 110, 113, 133 134, 145 Suspended sediment concentration, 95, 236 Suspended sediment transport, 472 Terminal velocity, 87 Thalweg, 18, 33, 93 Theory of minimum energy dissipation rate, 24, 450, 452 Theory of minimum variance, 159, 495 Theory of stream power, 24, 510 Thermodynamic theory, 24, 292 Thermodynamics, 297 Threshold channel, 79-80, 263, 276 Threshold channel geometry, 271 Threshold channel shape, 265 Threshold condition, 256, 263, 273 Threshold discharge, 261, 263, 268-269, 280-281 Threshold theory, 245, 254, 256, 263, 282-283, 287, 289, 426 Tidal estuaries, 362-363, 367 Tidal Estuaries Morphology, 362 Tidal flow, 361 Tidal prism, 366 Top width, 265, 268, 274, 456 Top width ratio, 275 Topological fractal dimension, 543 Total energy head, 36 Tractive force, 2, 51, 76, 264, 266-267, 342, 434 Tractive force theory, 24, 261, 263, 265, 282 Transition regime, 47 Transitional channels, 19 Transport equation, 223, 302 Transport equations, 210 Trapezoidal sections, 389 Turbidity, 357-359, 364, 367 Turbulence intensity, 53 Turbulent flow, 47, 92 Turbulent fluxes, 53 Turbulent stresses, 299 UBC (University of British Columbia) regime model, 105 Uniform flow, 52 Unit stream power, 56, 72, 454 Vegetation types, 96 Velocity, 2-3, 5-7, 12-13, 15-17, 30, 34, 43, 45, 47, 52-53, 68, 71-72, 7^k75, 87, 95, 97, 103, 110, 112 113, 119, 123 125, 127, 129-132, 134, 136-137, 161-162, 164 166, 169, 210, 212-213, 229, 232, 235, 245, 247 Velocity distribution, 374 Velocity profile, 48 Velocity ratio, 543 Vertical length scale ratio, 350 Viscosity, 146, 206 Viscous shear, 341 Viscous sublayer, 344 Volumetric sediment transport, 53562 Index Wash load. 79. 339 Water discharge. 393 Water flow depth. 394 Water slope. 395 Water surface slope. 19. 129. 257. 376. 378 Water temperature. 53 Watershed. 2. 6 Wave length. 100-102. 152. 154-155 Wave length of bed forms. 89 Wave length of meanders. 92. 374 Weight density. 36 Weight density of sediment. 44. 89. 410 Weight density of water. 44. 89. 177. 234. 340. 410. 439. 494 Wetted perimeter. 22. 34. 71. 96-97. 124. 270-271. 283. 286. 385. 421.426. 446. 448. 454. 485. 487 Wetted stream perimeter. 73 Width. 2. 4. 6-7. 11-13. 15-16. 30. 58. 67. 70-71. 74. 76-77. 79. 83. 87. 95-96. 98. 100. 102-103. 110. 112-113. 116-117. 119. 123-124. 127-128. 130. 132. 134-137. 142. 147. 155. 160-161. 164-166. 169. 171-172. 174. 176. 178. 208. 210. 212-213. 221. 225. 229. 232-233. 236. 240. 245. 247. 338. 340. 351. 359. 361. 370. 374. 396 Width to depth ratio. 18. 33. 88 Width-based Reynolds number. 75 Width-depth ratio. 74. 143. 145. 222. 238-239. 457. 505 Width-discharge exponents. 16 Width-discharge relation. 16. 26 Work. 3
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Handbook of Hydraulic Geometry - Theories and Advances رابط مباشر لتنزيل كتاب Handbook of Hydraulic Geometry - Theories and Advances
|
|