Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Mechanics of Solid Polymers - Theory and Computational Modeling الإثنين 07 أغسطس 2023, 1:40 am | |
|
أخواني في الله أحضرت لكم كتاب Mechanics of Solid Polymers - Theory and Computational Modeling Jörgen Bergström
و المحتوى كما يلي :
Contents Preface xiii 1 Introduction and Overview 1 1.1 Introduction 1 1.2 What Is a Polymer? 2 1.3 Types of Polymers 4 1.4 History of Polymers 7 1.5 Polymer Manufacturing and Processing 11 1.6 Polymer Mechanics 11 1.7 Exercises 15 References 16 2 Experimental Characterization Techniques 19 2.1 Introduction 20 2.2 Mechanical Testing for Material Model Calibration 22 2.2.1 Uniaxial Compression Testing 24 2.2.2 Uniaxial Tension Testing 29 2.2.3 Plane Strain Tension 33 2.2.4 Simple Shear Testing 37 2.2.5 Impact Testing 40 2.2.6 Dynamic Mechanical Analysis 43 2.2.7 Hardness and Indentation Testing 47 2.2.8 Split-Hopkinson Pressure Bar Testing 53 2.2.9 Bulk Modulus Testing 64 2.2.10 Other Common Mechanical Testing Modes 71 2.2.11 Testing for Failure Model Calibration 73 2.3 Mechanical Testing for Material Model Validation 73 2.3.1 Material Model Verification and Validation 75 2.3.2 Small Punch Testing 77 2.3.3 V-Notch Shear Testing 80 2.4 Surface Characterization Techniques 80 2.4.1 Optical Microscopy 81 2.4.2 Scanning Electron Microscopy 84 2.4.3 Atomic Force Microscopy 87 vvi Contents 2.5 Volume Characterization Techniques 89 2.5.1 Differential Scanning Calorimetry 89 2.5.2 Transmission Electron Microscopy 90 2.5.3 X-Ray Diffraction 92 2.5.4 Birefringence 95 2.5.5 Swell Testing 97 2.6 Chemical Characterization Techniques 99 2.6.1 Fourier Transform Infrared Spectroscopy 100 2.6.2 Energy Dispersive Spectroscopy 101 2.6.3 Size-Exclusion Chromatography 103 2.6.4 Thermogravimetric Analysis 107 2.6.5 Raman Spectroscopy 109 2.7 Exercises 110 References 112 3 Finite Element Analysis as an Engineering Tool 115 3.1 Introduction 115 3.1.1 Required Inputs for FEA 117 3.2 Types of FEA 119 3.3 Review of Modeling Techniques 120 3.3.1 Deformation Modeling 120 3.3.2 Failure Modeling 125 3.4 Exercises 130 References 130 4 Continuum Mechanics Foundations 131 4.1 Introduction 132 4.2 Classical Definitions of Stress and Strain 133 4.2.1 Uniaxial Loading 133 4.2.2 Multiaxial Loading 135 4.3 Large Strain Kinematics 137 4.4 Vector and Tensor Algebra 141 4.4.1 Vector Operations 141 4.4.2 The Dyadic Product 143 4.4.3 Tensor Operations 144 4.4.4 Derivatives of Scalar, Vector, and Tensor Fields 147Contents vii 4.4.5 Coordinate Transformations 149 4.4.6 Invariants 150 4.5 Deformation Gradient 150 4.5.1 Eigenvalue and Spectral Decompositions 154 4.6 Strain, Stretch, and Rotation 157 4.7 Rates of Deformation 164 4.8 Stress Tensors 165 4.8.1 Stress Invariants 169 4.9 Balance Laws and Field Equations 171 4.9.1 Conservation of Mass 173 4.9.2 Balance of Linear Momentum 175 4.9.3 Balance of Angular Momentum 178 4.9.4 First Law of Thermodynamics 180 4.9.5 Second Law of Thermodynamics 183 4.10 Energy Balance and Stress Power 184 4.11 Constitutive Equations 187 4.11.1 Constitutive Equations for a Thermoelastic Material 189 4.12 Observer Transformation 194 4.12.1 Objective Rates 198 4.13 Material Symmetry 198 4.14 List of Symbols 199 4.15 Exercises 202 References 206 5 Elasticity/Hyperelasticity 209 5.1 Introduction 210 5.2 Linear Elasticity 211 5.2.1 Isotropic Elasticity 211 5.2.2 Anisotropic Elasticity 215 5.2.3 Transversely Isotropic Elasticity 217 5.3 Isotropic Hyperelasticity 218 5.3.1 Continuum Mechanics Foundations 219 5.3.2 Similarity Between Uniaxial Compression and Biaxial Tension 225 5.3.3 Similarity Between Pure Shear and Planar Tension 226viii Contents 5.3.4 Dependence of Stored Energy on I1 and I2 229 5.3.5 Freely Jointed Chain Model 232 5.3.6 Neo-Hookean Model 236 5.3.7 Mooney-Rivlin Model 243 5.3.8 Yeoh Model 245 5.3.9 Polynomial in I1 and I2 Model 250 5.3.10 Eight-Chain Model 250 5.3.11 Ogden Model 259 5.3.12 Gent Model 263 5.3.13 Horgan and Saccomandi Model 265 5.3.14 Knowles Model 268 5.3.15 Response Function Hyperelasticity 270 5.3.16 Extended Tube Model 273 5.3.17 BAM Model 275 5.4 Summary of Predictive Capabilities of Isotropic Hyperelastic Models 277 5.5 Anisotropic Hyperelasticity 281 5.5.1 Generalized Fung Model 282 5.5.2 Invariant Based Anisotropy 282 5.5.3 Bischoff Anisotropic Eight-Chain Model 283 5.5.4 Bergstrom Anisotropic Eight-Chain Model 285 5.5.5 Holzapfel-Gasser-Ogden Model 285 5.6 Hyperelastic Foam Models 287 5.6.1 Blatz-Ko Foam Model 289 5.6.2 Hyperfoam Model 290 5.7 Mullins Effect Models 292 5.7.1 Ogden-Roxburgh Mullins Effect Model 293 5.7.2 Qi-Boyce Mullins Effect Model 295 5.8 Use of Hyperelasticity in Polymer Modeling 295 5.8.1 Experimental Testing 296 5.8.2 Drucker Stability 297 5.8.3 Determination of Material Parameters 298 5.8.4 Limitations of Hyperelasticity 298 5.9 Hyperelastic Code Examples 299 5.10 Exercises 303 References 304Contents ix 6 Linear Viscoelasticity 309 6.1 Introduction 310 6.2 Small Strain Linear Viscoelasticity 310 6.2.1 Stress Relaxation Behavior 313 6.2.2 Monotonic Loading Response 314 6.2.3 Cyclic Loading Response 320 6.2.4 Experimental Determination of the Storage and Loss Moduli 322 6.2.5 Representing Linear Viscoelasticity Using Spectra 328 6.2.6 Computer Implementation 329 6.3 Large Strain Linear Viscoelasticity 331 6.3.1 Numerical Implementation 332 6.4 Creep Compliance Behavior 335 6.4.1 Relationships Between Creep Compliance and Relaxation Modulus 336 6.5 Differential Form of Linear Viscoelasticity 337 6.5.1 Rheological Models 338 6.6 The Use of Shift Functions to Generalize Linear Viscoelasticity Theory 340 6.6.1 Time-Temperature Equivalence 341 6.6.2 Vertical Shifts 345 6.7 Use of Linear Viscoelasticity in Polymer Modeling 345 6.8 Exercises 349 References 350 7 Plasticity Models 353 7.1 Introduction 353 7.2 J2-Plasticity with Isotropic Hardening 354 7.2.1 Cyclic Loading 355 7.2.2 Matlab Implementation 357 7.2.3 Python Implementation 359 7.2.4 Application to Thermoplastics 361 7.3 Plasticity with Kinematic Hardening 362 7.4 Johnson-Cook Plasticity 365 7.5 Drucker Prager Plasticity 366x Contents 7.6 Use of Plasticity Models in Polymer Modeling 367 7.7 Exercises 368 References 369 8 Viscoplasticity Models 371 8.1 Introduction 372 8.2 Bergström-Boyce Model 372 8.2.1 Matlab Implementation of the BB-Model 382 8.2.2 Python Implementation of the BB-Model 384 8.2.3 Generic Numerical Implementation 386 8.2.4 Dynamic Loading Predictions 387 8.2.5 Use of the BB-Model for Polymer Modeling 392 8.3 Arruda-Boyce Model 393 8.4 Dual Network Fluoropolymer Model 397 8.4.1 Matlab Implementation of the DNF Model 404 8.4.2 Use of the DNF Model for Polymer Modeling 404 8.5 Hybrid Model 409 8.5.1 Matlab Implementation of the Hybrid Model 413 8.5.2 Use of the Hybrid Model for Polymer Modeling 414 8.6 Three Network Model 417 8.6.1 Matlab Implementation of the Three Network Model 422 8.6.2 Python Implementation of the Three Network Model 422 8.6.3 Use of the Three Network Model for Polymer Modeling 426 8.7 Parallel Network Model 427 8.8 Use of Viscoplasticity in Polymer Modeling 431 8.9 Python Code Examples 432 8.10 Exercises 434 References 435Contents xi 9 Determination of Material Parameters from Experimental Data 437 9.1 Introduction 437 9.2 Mathematics of Material Parameter Determination 438 9.3 Initial Guess of the Material Parameters 440 9.4 Error Measurement Functions 442 9.5 Algorithms for Parameter Extraction 444 9.6 Exercises 445 References 446 10 User Material Subroutines 447 10.1 Introduction 447 10.2 Abaqus/Explicit VUMAT for the Neo-Hookean Model 448 10.3 Abaqus/Implicit UMAT for the Neo-Hookean Model 450 Reference 454 11 Material Modeling Case Studies 455 11.1 Introduction 455 11.2 Acrylate-Butadiene Rubber 455 11.3 Chloroprene Rubber 460 11.4 Nitrile Rubber 464 11.5 Santoprene 468 11.6 High-Density Polyethylene 474 11.7 Polytetrafluoroethylene 479 11.8 Polyethylene Terephthalate 487 11.9 Polyether Ether Ketone 490 11.10 Exercises 496 References 497 Index 49 Index Note: Page numbers followed by f and t refers to figures and tables respectively. A Abaqus/Explicit VUMAT subroutine, for NeoHookean model, 448–450 Abaqus/Implicit UMAT subroutine, for NeoHookean model, 450–454 AB model. See Arruda–Boyce (AB) model Acrylate-Butadiene rubber (ABR) Bergstrom–Boyce model, 458, 459–460, 459f calibrations, 456, 458t linear viscoelasticity model, 458, 459f mechanical response, 455–456 stress-time response, 456, 457f uniaxial compression data, 456, 456f Yeoh hyperelastic model, 456, 457f Addition polymerization, 11 Adiabatic thermoelastic material, 194 Almansi strain, 163 Amorphous polymers, 5–7, 6f Anisotropic elasticity, 215–217 Anisotropic hyperelasticity Bergstrom anisotropic eightchain model, 285 Bischoff anisotropic eightchain model, 283–285 generalized Fung model, 282 Holzapfel–Gasser–Ogden model, 285–287 invariant based anisotropy, 282–283 Anisotropic material, 199 Arrhenius model, 344–345 Arruda–Boyce (AB) model, 283 athermal shear resistance, 396 deviatoric back stress, 394–395 glassy polymers, 393–394 linear elastic response, 394 plastic flow rate, 395–396 rheological representation, 394, 394f stress-strain predictions, 396, 397f Atomic force microscopy (AFM), 87–88 B Balance law, 171–184 Balance of angular momentum, 178–180 Balance of linear momentum, 175–178 BAM model, 275–277 Barcol hardness testing, 50 BB model. See Bergstrom–Boyce (BB) model Bergstrom anisotropic eight-chain model, 285 499500 Index Bergstrom–Boyce (BB) model, 27–28 acrylate-butadiene rubber, 458, 459–460, 459f applied strain history, 372–374, 373f Brownian motion, 379, 380f Cauchy stress, 376–377 chain stretch, 379–381 chloroprene rubber, 372–374, 373f , 462, 463f creep experiment, 379–381 crosslinked polymer, 378, 379f dynamic loading predictions, 387–392 eight-chain model, 376–377 elastic and viscoelastic components, 376, 376f elastomers, 375 equilibrium stress, 374–375, 374f generic numerical implementation, 386– 387 hyperelastic response, 377 hypothetical stress-strain curve, 374–375 Matlab implementation, 382–384 nitrile rubber, 466, 467f non-linear viscoelastic flow element, 375 polyether ether ketone, 491, 493f polymer modeling, 392–393 Python implementation, 384–386 Rouse relaxation time, 379–381 santoprene, 470–474, 473f , 474f strain amplitude dependence, 372 time derivative, 378 viscous components, 377–378 viscous flow, 381–382 Biot strain, 163 Birefringence spectroscopy, 95–97 Bischoff anisotropic eight-chain model, 283–285 Blatz–Ko foam model, 289 Boltzmann’s superposition principle, 310 Bulk modulus, 64–71, 241 Buna-N. See Nitrile rubber C Cauchy stress theorem, 176–178 Cauchy surface tractions, 176 Chemical characterization techniques energy dispersive X-ray spectroscopy, 101–103 Fourier transform infrared spectroscopy, 100–101 Raman spectroscopy, 109–110 size-exclusion chromatography, 103–107 thermogravimetric analysis, 107–109 Chloroprene rubber (CR) BB model with Mullins damage, 462, 463f calibrations, 461–462, 461t linear viscoelastic model, 462, 463f stress relaxation response, 460, 461f uniaxial compression data, 460, 460fIndex 501 uniaxial tension, 440, 441f Yeoh hyperelastic model, 461–462, 462f Coefficient of determination, 444 Condensation polymerization, 11 Conductive polymers, 9 Confocal microscopy, 83 Conservation of mass, 173–175 Continuum mechanics foundations, 219–224 balance laws and field equations, 171–184 constitutive equations, 187–194 coordinate transformations, 149 deformation gradient, 150–157 derivatives of scalar, vector, and tensor fields, 147–149 Dyadic product, 143–144 energy balance and stress power, 184–186 invariants, 150 large strain kinematics, 137–141 material symmetry, 198–199 multiaxial loading, 135–137 observer transformation, 194–198 rates of deformation, 164–165 strain, stretch, and rotation, 157–164 stress tensors, 165–170 symbols, 199 tensor operations, 144–147 uniaxial loading, 133–135 vector operations, 141–143 Coordinate transformations, 149 Corrugated hose failure, 127 CR. See Chloroprene rubber (CR) Creep compliance definition, 335 vs. relaxation modulus, 336–337 D Dark field microscopy, 83 Deformation modeling, 120–125 simple shear, 152 undeformed state, 151 uniaxial tension, 151 volumetric deformation, 153 Dependence of stored energy, 229–232 Differential interference contrast (DIC) microscopy, 83 Differential scanning calorimetry (DSC), 89–90 Digital image correlation (DIC) strain measurement system, 66 DNF model. See Dual network fluoropolymer (DNF) model Drucker Prager plasticity, 366–367, 367f Drucker stability, 297 Dual network fluoropolymer (DNF) model, 121–122 Cauchy stress, 398–400 constant viscosity, 402 deviatoric viscoelastic flow, 401–402 kinematics of deformation, 398, 399f material parameters, 403 Matlab implementation, 404 plastic flow, 402–403 polymer modeling, 404 strain rates, 397–398 structure, 398, 399f502 Index Dual network fluoropolymer (DNF) model (Continued) thermal expansion, 398–400 thermoplastics, 398 velocity gradient, 401 viscoelastic deformation gradient, 400–401 volumetric viscoelastic flow, 401–402 Dyadic product, 143–144 Dynamic mechanical analysis (DMA), 43–47, 347 E Eigenvalue and spectral decompositions, 154– 157 Eight-chain (EC) model, 250–259 Elastomers, 24, 25f Energy balance and stress power, 184–186 Energy dispersive X-ray spectroscopy (EDS), 101–103 Entropy, 183 Environmental SEM (ESEM), 86 Environmental stress cracking (ESC), 126 Euler–Almansi strain, 164 Extended tube (ET) model, 273–275 F Failure model calibration, 73 Failure modeling, 125–130 FEA. See Finite element analysis (FEA) Fiber-reinforced composite, 217, 218f Finite element analysis (FEA) deformation modeling, 120– 125 failure modeling, 125–130 polymer mechanics, 115 properties of polymers and metals, 116–117 required inputs, 117–118 types, 119 First law of thermodynamics, 180–182 First Piola–Kirchhoff stress tensor, 167 Flex circuit pressure sensor, 124 Fluorescence microscopy, 84 Fourier transform approach, 326 Fourier transform infrared spectroscopy (FTIR), 100–101 Freely jointed chain (FJC) model, 232–236 G Gaussian chains, 258 Gel permeation chromatography (GPC), 103–107 Generalized Fung model, 282 Genetic algorithm, 445 Gent model, 263–265 Glass transition temperature, PET, 24 Green–Lagrange strain, 163 H Hardness and indentation testing, 47–51 HDPE. See High-density polyethylene (HDPE) Heaviside step function, 310 Helmholtz free energy, 191–192 Hencky strain, 163, 164Index 503 High-density polyethylene (HDPE) Arruda–Boyce eight-chain model, 477–478, 478f calibrations, 477, 477t elastic-plastic material model, 477–478, 478f linear viscoelastic model, 479, 479f PN model, 479, 480f power-flow model, 479, 481f stress relaxation data, 474–476, 476f stress-strain response, 474–476 uniaxial tension data, 476f Holzapfel–Gasser–Ogden (HGO) model, 285–287 Hooke’s law, 67–68, 211–212 Horgan and Saccomandi model, 265–266 Hybrid model (HM) backstress network, 411 deformation map, 409, 410f energy activation approach, 412 isotropic linear elasticity expression, 410–411 Matlab implementation, 413–414 polymer modeling, 414–416 relative stiffness, 411 rheological representation, 409, 410f strain elastic constants, 412 ultra-high molecular weight polyethylene, 409 viscoelastic deformation gradient, 412 viscoplastic flow, 411–412 Hyperelastic foam models Blatz–Ko foam model, 289 hyperfoam model, 290–291 Hyperelasticity code examples, 299–303 Drucker stability, 297 experimental testing, 296–297 limitations, 298–299 material parameters, 298 Hyperfoam model, 290–291 II1 and I2 model, 250 Impact testing, 40–43 Incompressible biaxial deformation, 237–238 Incompressible planar deformation, 237–238 Incompressible uniaxial deformation, 237–238 Interface friction, 27–28 Invariant based anisotropy, 282–283 Inverse Langevin function, 256–257 Isothermal thermoelastic material, 194 Isotropic elasticity, 211–215 Isotropic hardening plasticity model. See J2-plasticity, isotropic hardening Isotropic hyperelasticity BAM model, 275–277 continuum mechanics foundations, 219–224 dependence of stored energy, 229–232 eight-chain model, 250–259 extended tube model, 273–275 freely jointed chain model, 232–236 Gent model, 263–265504 Index Isotropic hyperelasticity (Continued) Horgan and Saccomandi model, 265–266 I1 and I2 model, 250 Knowles hyperelastic model, 268–270 Mooney–Rivlin model, 243–245 Neo–Hookean model, 236–242 Ogden model, 259–261 predictive capabilities, 277–281 pure shear vs. planar tension, 226–228 response function hyperelasticity, 270– 272 uniaxial compression vs. biaxial tension, 225–226 Yeoh model, 245–248 Isotropic material, 199 J Johnson–Cook plasticity model, 365–366, 366f J2-plasticity, isotropic hardening abacus, 354 ANSYS, 354 cyclic loading, 355–357, 356f Matlab implementation, 357–359 Python implementation, 359–360, 359f , 360f stress-strain representation, 355, 355f UHMWPE thermoplastic material, 361–362, 361f , 362f K Kinematic hardening plasticity model Abaqus material definition, 363, 364, 365 backstress network, 363, 363f , 364f , 365 Chaboche type, 362–363 limitations, 365 MCalibration software, 363 Knowles hyperelastic model, 268–270 L Lagrangian and Eulerian Formulations, 139 Large strain kinematics, 137–141 Large strain linear viscoelasticity generalization, 331–332 hyperelastic stress function, 332 numerical implementation, 332–334 Linear elasticity anisotropic elasticity, 215–217 isotropic elasticity, 211–215 transversely isotropic elasticity, 217–218 Linear viscoelasticity creep compliance, 335–337 differential form, 337–340 large strain, 331–334 polymer modeling, 345–349 shift functions, 340–345 small strain, 310–331 Loss modulus, 322–323 M Material parameters, 437 determination, 438–440Index 505 error measurement functions, 442–444 extraction, 439, 439f find_material_params, 444–445 initial guess, 440–442, 441f mathematical minimization problem, 439–440 Monte Carlo method, 442 optimization algorithm, 444–445 prior knowledge, 442 Matlab implementation Bergstrom–Boyce model, 382–384 dual network fluoropolymer model, 404 hybrid model, 413–414 J2-plasticity, isotropic hardening, 357–359 small strain linear viscoelasticity, 329, 330f three network model, 422 Maxwell rheological model, 338–339, 339f MCalibration software, 445 Mechanical stress, 134 Metal plasticity model, 353 Mises stress, 123, 123f , 170 Monte Carlo method, 442 Mooney–Rivlin (MR) model, 243–245 Mullins effect models Ogden–Roxburgh, 293–295 Qi–Boyce, 295 Multiaxial loading, 135–137 Multi-network Maxwell model, 340f N Nanoindentation, 51 Nanson’s formula, 156 Natural polymers, 4–5, 5f NBR. See Nitrile rubber Near-field scanning optical microscopy (NSOM), 83 Nelder–Mead simplex method, 444–445 Neo–Hookean hyperelastic material model Abaqus/Explicit VUMAT, 448–450 Abaqus/Implicit UMAT, 450–454 stress, 447–448 Neo–Hookean (NH) model, 236–242 Neoprene. See Chloroprene rubber (CR) Nitrile rubber BB model, 466, 467f calibrations, 464, 465t linear viscoelastic model, 466, 467f stress-time response, 464, 465f uniaxial compression data, 464, 464f Yeoh hyperelastic model, 465–466, 466f Nominal strain, 164 Nominal traction vector, 167 Normalized mean absolute difference, 444 Normalized root-mean square difference, 444 O Ogden model, 259–261 Ogden–Roxburgh Mullins effect model, 293–295506 Index Optical microscopy, 81–84 Orthotropic elasticity, 216–217 P Parallel network (PN) model, 427–431, 459–460 high-density polyethylene, 479, 480f polyether ether ketone, 491–492, 494f Payne effect, 348–349 PEEK. See Polyether ether ketone (PEEK) Plane strain tension, 33–37 Plasticity theory. See J2-plasticity, isotropic hardening Polarized light microscopy, 82 Polyether ether ketone (PEEK) BB model, 491, 493f calibrations, 490, 492t force-displacement results, 494–495, 495f Johnson–Cook plasticity model, 491, 493f PN model, 491–492, 494f spherical indentation test, 495–496 TN model, 492, 494f uniaxial tension and compression data, 490, 491f Polyethylene terephthalate (PET), 487–489 Polylactic acid (PLA), 7 Polymers description, 1, 2–3 history, 7–10 manufacturing and processing, 11 mechanics, 11–15 plasticity models, 367–368 types, 4–7 Polypropylene (PP), 10 Polytetrafluoroethylene (PTFE) calibrations, 484t dual network fluoropolymer model, 483–484, 486f elastic-plastic material model, 482–483, 485f mechanical behavior, 479–481 microporosity, 479–481 TN model, 484, 487f volumetric compression data, 483f yield stress, 479–481 PolyUMod library, 447–448 Powell method, 445 Pressure-volume-temperature (PVT) testing, 66 Prony series, 315–316, 317f , 336–337, 345–346 PTFE. See Polytetrafluoroethylene (PTFE) Pure shear vs. planar tension, 226–228 Python implementation Bergstrom–Boyce model, 384–386 J2-plasticity, isotropic hardening, 359–360, 359f , 360f small strain linear viscoelasticity, 330– 331, 331f three network model, 422 viscoplasticity models, 432– 434 Q Qi–Boyce Mullins effect model, 295Index 507 R Raman spectroscopy, 109–110 Rates of deformation, 164–165 Relaxation time spectrum, 328 Residual error strain-controlled experiment, 442, 443f stress-controlled experiment, 443, 443f Response function hyperelasticity, 270–272 Retardation time spectrum, 328 Rheologically simple material, 342 Rheological models, 338–340, 339f , 340f Rockwell hardness testing, 47–48 S Santoprene BB model, 470–474, 473f , 474f , 475f calibrations, 468, 470t elastic-plastic material model, 469–470, 472f , 473f isotropic hardening plasticity model with ratedependence, 469, 472f linear viscoelastic model, 469, 471f uniaxial tensile stress-strain data, 468, 468f , 469f Yeoh hyperelastic model, 468–469, 471f Scanning electron microscopy (SEM), 84–86 Second law of thermodynamics, 183–184 Semicrystalline polymers, 5–7, 6f Shear and bulk relaxation moduli, 312–313 Shear modulus, 239 Shore (durometer) testing, 48–49 Simple anisotropic hyperelastic model, 283 Simple shear, 37–39, 152 Size-exclusion chromatography (SEC), 103–107 Small-angle X-ray diffraction, 95 Small punch testing, 77–79 Small-strain classical theory, 135 Small strain linear viscoelasticity applied strain history, 311, 312f Boltzmann’s superposition principle, 310 characteristic relaxation time, 313 cyclic loading response, 320–322 Heaviside step function, 310 Matlab implementation, 329, 330f mat_LVE( ) function, 329 monotonic loading response, 314–320, 317f Prony series, 315–316, 317f Python implementation, 330–331, 331f relaxation time spectrum, 328 retardation time spectrum, 328 shear and bulk relaxation moduli, 312–313 storage and loss modulus, 322–327 stress relaxation, 310, 311f , 313, 314f stretched exponential stress relaxation modulus, 316–318, 318f , 319f508 Index Small strain linear viscoelasticity (Continued) test_mat_LVE function, 329, 330f Spatial velocity gradient, 164–165 Spin tensor, 164–165 Split-Hopkinson pressure bar (SHPB) testing, 53–63 Stereo microscopy, 84 Storage modulus, 322–323 Strain matrix, 136 Stress invariants, 169–170 Stress-strain response, 24 Stress tensors, 165–170 Surface characterization techniques atomic force microscopy, 87–88 optical microscopy, 81–84 scanning electron microscopy, 84–86 Swell testing, 97–99 Synthetic polymers, 4–5, 5f T Tensor operations, 144–147 Thermoelastic material, 189–194 Thermogravimetric analysis (TGA), 107–109 Thermomechanical deformations, 121 Thermoplastics, 5, 6f , 24, 26f Thermoplastic vulcanizates (TPV). See Santoprene Thermosets, 5, 6f , 24, 27f Threaded connection gasket, 121 Three network model (TNM), 459–460 arbitrary rigid body rotation, 420–421 Cauchy–Green deformation tensor, 417–418 deformation gradient, 417–418 elastic and viscous components, 419–420 flow rate, 419–420 material parameters, 421, 421t Matlab implementation, 422 plastic strain, 418–419 polyether ether ketone, 492, 494f polymer modeling, 426 polytetrafluoroethylene, 484, 487f Python implementation, 422 rheological representation, 417, 417f shear modulus, 419 viscoelastic deformation gradient, 418–419 Time shifts, 342 Time-temperature equivalence, 341–345, 341f , 343f , 344f TNM. See Three network model (TNM) Transmission electron microscopy (TEM), 90–91 Transversely isotropic elasticity, 217–218 Tresca stress, 170 U Ultra-high molecular weight polyethylene (UHMWPE), 213–214, 214f isotropic hardening plasticity model, 361–362Index 509 Johnson–Cook model, 365– 366, 366f kinematic hardening plasticity model, 362–365 linear viscoelasticity application, 346, 346f Uniaxial compression vs. biaxial tension, 225–226 testing, 24–29 Uniaxial loading, 133–135 Uniaxial tension, 29–33, 151 User material subroutines Abaqus/Explicit VUMAT, 448–450 Abaqus/Implicit UMAT, 450–454 description, 447–448 purpose, 447–448 V Vector and tensor algebra, 141–150 Vertical shifts, 345 Viscoplastic deformations, 130 Viscoplasticity models Arruda–Boyce model, 393–396 Bergstrom–Boyce model, 372–393 dual network fluoropolymer model, 397–404 hybrid model, 409–416 parallel network model, 427–431 polymer modeling, 431–432 Python code examples, 432–434 three network model, 417–426 V-notch shear testing, 80 Volume characterization techniques birefringence, 95–97 differential scanning calorimetry, 89–90 swell testing, 97–99 transmission electron microscopy, 90–91 X-ray diffraction, 92–95 Volumetric deformation, 153 Vulcanized natural rubber, 8–9 W Water filter failure, 126 Wide-angle X-ray diffraction, 93–94 William–Landel–Ferry (WLF) equation, 343, 344, 344f Work conjugate stress, 185 X X-ray diffraction (XRD), 92–95 Y Yeoh hyperelastic model, 456, 457f acrylate-butadiene rubber, 456 chloroprene rubber, 461–462, 462f nitrile rubber, 465–466, 466f santoprene, 468–469, 471f Yeoh model, 245–248 Young’s modulus, 23, 23f
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Mechanics of Solid Polymers - Theory and Computational Modeling رابط مباشر لتنزيل كتاب Mechanics of Solid Polymers - Theory and Computational Modeling
|
|