Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Ultra-precision High Performance Cutting - Report of DFG Research Unit FOR 1845 الأحد 24 سبتمبر 2023, 3:17 am | |
|
أخواني في الله أحضرت لكم كتاب Ultra-precision High Performance Cutting Report of DFG Research Unit FOR 1845 Ekkard Brinksmeier , Lars Schönemann Editors
و المحتوى كما يلي :
Contents Introduction to Ultra-Precision High Performance Cutting 1 Lars Schönemann Diamond Milling with Multiple Cutting Edges 11 Lars Schönemann, Oltmann Riemer, and Ekkard Brinksmeier Ultra-Precision High Speed Cutting 43 Daniel Berger, Lars Schönemann, Oltmann Riemer, and Ekkard Brinksmeier Electromagnetic Ultra-Precision Linear Guide 75 Rudolf Krüger, Benjamin Bergmann, and Berend Denkena Spindle Balancing for Ultra-Precision High Speed Cutting 107 Timo Dörgeloh, Nasrin Parsa, Christian Schenck, Oltmann Riemer, Ekkard Brinksmeier, and Bernd Kuhfuss Ultra Precision High Performance Axis Control 147 Per Schreiber, Johannes Hochbein, Benjamin Bergmann, Christian Schenck, Bernd Kuhfuss, and Berend Denkena Achievements and Future Perspectives for Ultra-Precision High Performance Cutting . 171 Lars Schönemann ixList of Contributors Daniel Berger MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany; Leibniz Institute for Materials Engineering IWT, Bremen, Germany Benjamin Bergmann Institute of Production Engineering and Machine Tools IFW, Leibniz University Hannover, Garbsen, Germany Ekkard Brinksmeier Leibniz Institute for Materials Engineering IWT, Bremen, Germany; MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany Berend Denkena Institute of Production Engineering and Machine Tools IFW, Leibniz University Hannover, Garbsen, Germany Timo Dörgeloh Leibniz Institute for Materials Engineering IWT, Bremen, Germany Johannes Hochbein Bremen Institute for Mechanical Engineering bime and MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany Rudolf Krüger Institute of Production Engineering and Machine Tools IFW, Leibniz University Hannover, Garbsen, Germany Bernd Kuhfuss Bremen Institute for Mechanical Engineering bime and MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany Nasrin Parsa Bremen Institute for Mechanical Engineering bime and MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany Oltmann Riemer Leibniz Institute for Materials Engineering IWT, Bremen, Germany; MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany xiLars Schönemann Leibniz Institute for Materials Engineering IWT, Bremen, Germany; MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany Christian Schenck Bremen Institute for Mechanical Engineering bime and MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany Per Schreiber Institute of Production Engineering and Machine Tools IFW, Leibniz University Hannover, Garbsen, Germany xii List of ContributorsAcronyms 42CrMo4 heat treatable steel type 1.7225/AISI 4140/42CrMo4 AE acoustic emission AFM atomic force microscope AlMg3 aluminium 3.3535/EN AW-5754/AlMg3 AlMg5 aluminium 3.3555/EN AW-5019/AlMg5 ARM advanced RISC machines ASPE The American Society for Precision Engineering CCLD constant current line drive CEEMD complementary ensemble empirical mode decomposition CHR control parameter calculation method according to Chien, Hrones and Reswick CIRP The International Academy for Production Engineering (French: Collège International pour la Recherche en Productique) CNC computer numerical control CPU central processing unit CuNi18Zn19Pb1 nickel silver CuNi18Zn19Pb1 CUPE Cranfield Unit for Precision Engineering CuZn30 brass 2.0265/EN CW505L/CuZn30 CuZn39Pb3 brass 2.0401/EN CW614N/CuZn39Pb3/MS58 CuZn40Pb2 brass 2.0402/AISI CW617N/CuZn40Pb2 DoF degrees of freedom EtherCAT ethernet for control and automation technology euspen The European Society for Precision Engineering and Nanotechnology FEM finite element method FF feed forward FFT2 two-dimensional fast Fourier transformation FOR1845 German research unit (“Forschungsgruppe”) No. 1845 Ge germanium xiiiHFIM high-frequency-impulse-measurement HPC high performance cutting HSC high speed cutting HSM high speed machining IPC industrial PC IR infrared IS input shaping JL jerk limitation JSPE The Japan Society for Precision Engineering LED light emitting diode LiPo lithium-ion polymer LLNL Lawrence Livermore National Laboratory MBSM motion band sub-model NiP electroless nickel/nickel phosphorous OFHC oxygen-free high conductivity PEM predictive error method PI proportional-integral controller PID proportional-integral-differential controller PLC programmable logic controller PSoC programmable system on a chip PWM pulse width modulation RBSM residual band sub-model RFM radio frequency module RISC reduced instruction set computer S355J2(+N) low-alloy steel 1.0577/AISI A738/S355J2(+N) Si silicon SSD sub surface damage TCP tool center point TP1 sub-project (German: “Teilprojekt”) 1 of the FOR1845 on “Ultra-precision milling with multiple diamond cutting inserts” TP2 sub-project 2 of the FOR1845 on “Ultra-precision high-speed milling” TP3 sub-project 3 of the FOR1845 on “Electromagnetic ultra-precision linear guide” TP4 sub-project 4 of the FOR1845 on “Balancing of spindles for ultra-precision high speed milling” TP5 sub-project 5 of the FOR1845 on “Model-based toolpath correction for ultra-precision machining” UDB universal digital block UP ultra-precision UP-HPC Ultra-Precision High Performance Cutting USM ultrasonic motor WLI white light interferometer, a specific type of a coherence scanning interferometer X40Cr14 stainless steel type 1.2083/AISI 420/X40Cr14 xiv AcronymsX5CrNi18-10 high-strength steel 1.4301/AISI 304/X5CrNi18-10 ZnS zinc sulfide ZnSe zinc selenide ZV zero vibration ZVD zero vibration derivative Acronyms xvSymbols D y lm mean profile height deviation a ° angle of first unbalance mass for rotary redistribution a nm mm-1 K-1 coefficient of thermal expansion b ° angle of second unbalance mass for rotary redistribution vact ° angular spacing of actuators d m magnetic air gaps Da ° difference in clearange angle of two tools Dd nm depth difference of machined cutting marks Dc ° difference in rake angle angle of two tools Dℎel nm differential elastic springback of a grain DL max nm maximum thermal expansion at elevated temperature DLmin nm minimal required thermal expansion for tool setting DL nm thermal expansion of a beam Dqpos lm vector of position offsets on q Dr fly lm difference in fly-cut radius of two tools Ds lm difference in tool spur/track of two tools DT K temperature difference Dt s time interval DT max K maximum allowed temperature difference above ambient DTmin K minimal temperature difference for a specific expansion η - thermal absorption c ° rake angle angle of a tool c ° rotation angle of the USM j W m−1 K−1 thermal conductivity k nm wavelength of IR-LED k c Hz cut-off frequency used in filters x Hz rotational frequency x rad s−1 angular velocity of the rotor u ° half-angle of IR-LED / ° effective angle of the resultant force /AB ° phase shift of travelling waves in the ultrasonic motor U e mW total radiant flux of IR-LED (continued) xvii(continued) q gmm−3 density f - damping ratio A lm2 surface area A - system matrix of state space model A m, (bi-directional) positioning accuracy (ISO 230-2) here lm a nm gain parameter for CHR method (a = kL/T) a e lm width of cut AE max Mv acoustic emission signal amplitude A1, A2 - input shaping gains A max lm2 cross section of the tool plunging into the material while cutting a max ms−2 acceleration limit a max ms−2 acceleration limit a p lm depth of cut, infeed B - input matrix of state space model C JK−1 heat capacity c ms−1 propagation velocity of radio frequency signals (3 108 ms−1) C - output matrix of state space model cH - coherence shock response spectrum c p J kg−1 K−1 specific heat capacity d mm diameter of a fly-cutter D N/(m/s), damping matrix of the system model Nm/ (rad/s) dc nm critical depth of cut dS m position signals of the air gap sensors E Nm−2 Young’s modulus eiRj lrad inclination error around j-axis for i-movement eiTj lm straightness error in j-direction for i-movement e p gmm permissible specific unbalance F N resultant force f0 Hz carrier frequency of the RFM module f lm (lateral) feed f−3dB Hz frequency at −3 dB (bandwidth frequency FA N actuator force fc Hz commutation frequency of the ultrasonic motors Fc N cutting force F c,∞ N constant cutting force at infinite speed F c,var N variable value of cutting force according to Ben Amor f0 Hz Doppler shift Ff N feed force Fi N force of i-axis F imp N impulse force FM N magnet pulling force Fn N normal force Fp N passive force fs Hz sample rate Fu N centrifugal force G mm s−1 balancing grade ℎ cu,max lm maximum undeformed chip thickness (continued) xviii Symbols(continued) H(f) lm N−1 shock response spectrum HV N mm−2 Vickers hardness i A coil currents of the electromagnets ibal - balancing iteration Ie W sr−1 radiant intensity of IR-LED If A forward current of IR-LED j ms−3 jerk JA - Jacobian matrix for the actuators JS - Jacobian matrix for the air gap sensors k Nm−1 (dynamic) stiffness here Nm lm−1 K N m−1, stiffness matrix of the system model Nm rad−1 Kc MPa√m fracture toughness kc GPa specific cutting force KD N sm−1 derivative feedback gain KI N m−1 s−1 integral feedback gain KP N m−1 proportional feedback gain Kp nm proportional gain of of thermal actuator controller Ku nm ultimate gain of thermal actuator plant model L0 mm base length of a beam L c km effective contact length (cumulated) L s delay time for CHR method lk mm contact length in milling ln mm balance mass vector for rotary redistribution l wp mm workpiece length M kg mass matrix of the system model M m, (bi-directional) repeatability (ISO 230-2) here lm m kg mass Mi Nm torque of i-axis mi kg balancing masses m p kg permissible residual unbalance mass m r kg rotor weight Mu Nm torque generated by the USM m u kg unbalance mass nact - number of actuators n min−1 spindle speed P kg parameter vector P1 nm summation of low-frequency parts of the FFT2 P2 nm lm−1 summation of high-frequency parts of the FFT2 pij kg feed forward parameters axis i to axis j P n - commutation pulses sent to the ultrasonic motor P_ W power of heat source (i.e. Laser or LED) PV lm peak-to-valley q m, generalized coordinate vector rad Q N, generalize force vector Nm Qff N vector of generalized force offsets (continued) Symbols xix(continued) Q J heat input Q mm3 min−1 material removal rate qn lm generalized coordinate in n of levitation guide Qset N vector generalized set-point forces qz_tol N allowance for qz r mm radial distance for calculation of Doppler shift rb ° cutting edge radius rc mm correction radius r e lm nose radius of a tool rfly mm fly-cut radius ri mm balancing radii Rkin nm kinematic roughness (for optics usually in nanometers) R m, (bi-directional) mean positioning error (ISO 230-2) here lm R2 - coefficient of determination s lm raster spacing S1, S2, mm2 contact areas in schematic model of contact geometry S eq between tool and workpiece according to Yan et al. SA - signal for first travelling wave motor S a nm arithmetic mean height (areal) SB - signal for second travelling wave motor Sp2p lm peak-to-peak value S q nm mean quadratic height (areal) Sstd lm standard deviation Sz nm maximum height (areal) t s time T0 s oscillation period Ta °C actuator temperature t acc s acceleration time T s time constant for CHR method tdec s deceleration time tfade s oscillation fading time tf ns fall time of IR-LED to zero theat s heating time theat, rev s heating time per revolution Ti s integral time of thermal actuator plant model and/or controller tk ls contact time in milling t res s residual time t r ns rise time of IR-LED to full power Ts s shaping delay ttotal s time per line for exemplary workpiece U g mm measured unbalance vector Uc g mm counterbalance Uf V forward voltage of IR-LED u - input vector U g mm residual unbalance v ms−1 relative spindle speed v c mm min−1 cutting speed v c m min−1 critical cutting speed (continued) xx Symbols(continued) vf mm min−1 feed velocity vHG m min−1 Speed limit, at which the variable part of the cutting force has decreased by 86.5%, according to Ben Amor V mm3 volume vrot m ms−1 rotational speed (circumferential speed) Vs V supply voltage of the USM vset ms−1 set-point velocity w mm width of the thermal actuator west - window size w - set-point value x - state vector x_ - state vector derivative y - output vector zac m acceleration distance zdec m deceleration distance zfade m oscilation fading distance zres m residual distance €zset m s−2 set-point acceleration in z
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Ultra-precision High Performance Cutting - Report of DFG Research Unit FOR 1845 رابط مباشر لتنزيل كتاب Ultra-precision High Performance Cutting - Report of DFG Research Unit FOR 1845
|
|