Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Configurable Intelligent Optimization Algorithm - Design and Practice in Manufacturing الخميس 12 أكتوبر 2023, 3:08 am | |
|
أخواني في الله أحضرت لكم كتاب Configurable Intelligent Optimization Algorithm - Design and Practice in Manufacturing Fei Tao , Lin Zhang , Yuanjun Laili
و المحتوى كما يلي :
Contents Part I Introduction and Overview 1 Brief History and Overview of Intelligent Optimization Algorithms . 3 1.1 Introduction 3 1.2 Brief History of Intelligent Optimization Algorithms . 5 1.3 Classification of Intelligent Algorithms . 8 1.4 Brief Review of Typical Intelligent Optimization Algorithms . 12 1.4.1 Review of Evolutionary Learning Algorithms 12 1.4.2 Review of Neighborhood Search Algorithms . 16 1.4.3 Review of Swarm Intelligence Algorithm . 20 1.5 The Classification of Current Studies on Intelligent Optimization Algorithm 23 1.5.1 Algorithm Innovation . 23 1.5.2 Algorithm Improvement . 24 1.5.3 Algorithm Hybridization . 25 1.5.4 Algorithm Parallelization . 26 1.5.5 Algorithm Application 26 1.6 Development Trends 28 1.6.1 Intellectualization 28 1.6.2 Service-Orientation . 29 1.6.3 Application-Oriented 29 1.6.4 User-Centric . 29 1.7 Summary 30 References . 31 vii2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing 35 2.1 Introduction 35 2.2 Classification of Optimization Problems in Manufacturing . 37 2.2.1 Numerical Function Optimization . 38 2.2.2 Parameter Optimization 38 2.2.3 Detection and Classification . 39 2.2.4 Combinatorial Scheduling 40 2.2.5 Multi-disciplinary Optimization 41 2.2.6 Summary of the Five Types of Optimization Problems in Manufacturing . 42 2.3 Challenges for Addressing Optimization Problems in Manufacturing 44 2.3.1 Balance of Multi-objectives . 44 2.3.2 Handling of Multi-constraints 46 2.3.3 Extraction of Priori Knowledge 47 2.3.4 Modeling of Uncertainty and Dynamics 48 2.3.5 Transformation of Qualitative and Quantitative Features . 50 2.3.6 Simplification of Large-Scale Solution Space . 51 2.3.7 Jumping Out of Local Convergence . 52 2.4 An Overview of Optimization Methods in Manufacturing 52 2.4.1 Empirical-Based Method . 53 2.4.2 Prediction-Based Method . 54 2.4.3 Simulation-Based Method 55 2.4.4 Model-Based Method . 55 2.4.5 Tool-Based Method 56 2.4.6 Advanced-Computing-Technology-Based Method 56 2.4.7 Summary of Studies on Solving Methods . 57 2.5 Intelligent Optimization Algorithms for Optimization Problems in Manufacturing . 58 2.6 Challenges of Applying Intelligent Optimization Algorithms in Manufacturing 64 2.6.1 Problem Modeling . 64 2.6.2 Algorithm Selection 65 2.6.3 Encoding Scheming 66 2.6.4 Operator Designing . 67 2.7 Future Approaches for Manufacturing Optimization 67 2.8 Future Requirements and Trends of Intelligent Optimization Algorithm in Manufacturing . 68 2.8.1 Integration . 68 2.8.2 Configuration . 69 2.8.3 Parallelization 70 2.8.4 Executing as Service 71 viii Contents2.9 Summary 72 References . 74 Part II Design and Implementation 3 Dynamic Configuration of Intelligent Optimization Algorithms 83 3.1 Concept and Mainframe of DC-IOA . 83 3.1.1 Mainframe of DC-IOA 84 3.1.2 Problem Specification and Construction of Algorithm Library in DC-IOA . 85 3.2 Case Study 90 3.2.1 Configuration System for DC-IOA 90 3.2.2 Case Study of DC-IOA 93 3.2.3 Performance Analysis . 95 3.2.4 Comparison with Traditional Optimal Process 102 3.3 Summary 103 References . 104 4 Improvement and Hybridization of Intelligent Optimization Algorithm . 107 4.1 Introduction 107 4.2 Classification of Improvement . 109 4.2.1 Improvement in Initial Scheme 109 4.2.2 Improvement in Coding Scheme 110 4.2.3 Improvement in Operator 112 4.2.4 Improvement in Evolutionary Strategy . 113 4.3 Classification of Hybridization . 114 4.3.1 Hybridization for Exploration 115 4.3.2 Hybridization for Exploitation . 116 4.3.3 Hybridization for Adaptation 117 4.4 Improvement and Hybridization Based on DC-IA 118 4.5 Summary 124 References . 124 5 Parallelization of Intelligent Optimization Algorithm 127 5.1 Introduction 127 5.2 Parallel Implementation Ways for Intelligent Optimization Algorithm 131 5.2.1 Parallel Implementation Based on Multi-core Processor . 131 5.2.2 Parallel Implementation Based on Computer Cluster 132 Contents ix5.2.3 Parallel Implementation Based on GPU . 132 5.2.4 Parallel Implementation Based on FPGA 133 5.3 Implementation of Typical Parallel Topologies for Intelligent Optimization Algorithm . 134 5.3.1 Master-Slave Topology 134 5.3.2 Ring Topology 136 5.3.3 Mesh Topology . 138 5.3.4 Full Mesh Topology 140 5.3.5 Random Topology . 140 5.4 New Configuration in Parallel Intelligent Optimization Algorithm . 142 5.4.1 Topology Configuration in Parallelization Based on MPI 144 5.4.2 Operation Configuration in Parallelization Based on MPI 146 5.4.3 Module Configuration in Parallelization Based on FPGA . 147 5.5 Summary 152 References . 152 Part III Application of Improved Intelligent Optimization Algorithms 6 GA-BHTR for Partner Selection Problem 157 6.1 Introduction 157 6.2 Description of Partner Selection Problem in Virtual Enterprise 160 6.2.1 Description and Motivation . 160 6.2.2 Formulation of the Partner Selection Problem (PSP) 163 6.3 GA-BHTR for PSP . 165 6.3.1 Review of Standard GA . 165 6.3.2 Framewrok of GA-BHTR 166 6.3.3 Graph Generation for Representing the Precedence Relationship Among PSP . 168 6.3.4 Distribute Individuals into Multiple Communities 172 6.3.5 Intersection and Mutation in GA-BHTR 175 6.3.6 Maintain Data Using the Binary Heap 177 6.3.7 The Catastrophe Operation . 179 6.4 Simulation and Experiment . 180 6.4.1 Effectiveness of the Proposed Transitive Reduction Algorithm 181 6.4.2 Effectiveness of Multiple Communities . 182 x Contents6.4.3 Effectiveness of Multiple Communities While Considering the DISMC Problem 183 6.4.4 Effectiveness of the Catastrophe Operation 184 6.4.5 Efficiency of Using the Binary Heap 184 6.5 Summary 187 References . 187 7 CLPS-GA for Energy-Aware Cloud Service Scheduling 191 7.1 Introduction 191 7.2 Related Works 193 7.3 Modeling of Energy-Aware Cloud Service Scheduling in Cloud Manufacturing . 195 7.3.1 General Definition . 196 7.3.2 Objective Functions and Optimization Model . 198 7.3.3 Multi-Objective Optimization Model for the Resource Scheduling Problem 200 7.4 Cloud Service Scheduling with CLPS-GA . 202 7.4.1 Pareto Solutions for MOO Problems . 202 7.4.2 Traditional Genetic Algorithms for MOO Problems . 204 7.4.3 CLPS-GA for Addressing MOO Problems . 207 7.5 Experimental Evaluation . 211 7.5.1 Data and Implementation . 211 7.5.2 Experiments and Results . 213 7.5.3 Comparison Between TPCO and MPCO 214 7.5.4 Improvements Due to the Case Library . 217 7.5.5 Comparison Between CLPS-GA and Other Enhanced GAs 218 7.6 Summary 221 References . 222 Part IV Application of Hybrid Intelligent Optimization Algorithms 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints . 227 8.1 Introduction 227 8.2 Preliminary 231 8.2.1 Terminology in Steiner Tree 231 8.2.2 Elmore Delay . 232 8.2.3 Problem Formulation . 233 8.3 SFB-ACO for Addressing MSTRO Problem . 237 8.3.1 ACO for Path Planning with Two Endpoints . 237 Contents xi8.3.2 Procedure for Constructing Steiner Tree Using SFB-ACO 239 8.3.3 Constraint-Oriented Feedback in SFB-ACO 241 8.4 Implementation and Results . 243 8.4.1 Parameters Selection 243 8.4.2 Improvement of Synergy . 244 8.4.3 Effectiveness of Constraint-Oriented Feedback 249 8.5 Summary 254 References . 254 9 A Hybrid RCO for Dual Scheduling of Cloud Service and Computing Resource in Private Cloud . 257 9.1 Introduction 257 9.2 Related Works 260 9.3 Motivation Example 261 9.4 Problem Description 263 9.4.1 The Modeling of DS-CSCR in Private Cloud . 263 9.4.2 Problem Formulation of DS-CSCR in Private Cloud . 267 9.5 Ranking Chaos Algorithm (RCO) for DS-CSCR in Private Cloud . 270 9.5.1 Initialization 271 9.5.2 Ranking Selection Operator . 271 9.5.3 Individual Chaos Operator 273 9.5.4 Dynamic Heuristic Operator 275 9.5.5 The Complexity of the Proposed Algorithm 277 9.6 Experiments and Discussions 277 9.6.1 Performance of DS-CSCR Compared with Traditional Two-Level Scheduling . 280 9.6.2 Searching Capability of RCO for Solving DS-CSCR . 280 9.6.3 Time Consumption and Stability of RCO for Solving DS-CSCR . 283 9.7 Summary 285 References . 286 Part V Application of Parallel Intelligent Optimization Algorithms 10 Computing Resource Allocation with PEADGA 291 10.1 Introduction 291 10.2 Related Works 294 10.3 Motivation Example of OACR . 296 10.4 Description and Formulation of OACR . 297 xii Contents10.4.1 The Structure of OACR . 298 10.4.2 The Characteristics of CRs in CMfg . 300 10.4.3 The Formulation of the OACR Problem 301 10.5 NIA for Addressing OACR . 308 10.5.1 Review of GA, ACO and IA 308 10.5.2 The Configuration OfNIA for the OACR Problem . 311 10.5.3 The Time Complexity of the Proposed Algorithms . 314 10.6 Configuration and Parallelization of NIA 316 10.7 Experiments and Discussions 318 10.7.1 The Design of the Heuristic Information in the Intelligent Algorithms 320 10.7.2 The Comparison of GA, ACO, IA and NDIA for Addressing OACR . 322 10.7.3 The Performance of PNIA 326 10.8 Summary 328 References . 329 11 Job Shop Scheduling with FPGA-Based F4SA . 333 11.1 Introduction 333 11.2 Problem Description of Job Shop Scheduling . 335 11.3 Design and Configuration of SA-Based on FPGA . 335 11.3.1 FPGA-Based F4SA Design for JSSP . 335 11.3.2 FPGA-Based Operators of F4SA . 339 11.3.3 Operator Configuration Based on FPGA 344 11.4 Experiments and Discussions 344 11.5 Summary 346 References . 346 Part VI Future Works of Configurable Intelligent Optimization Algorithm 12 Future Trends and Challenges 351 12.1 Related Works for Configuration of Intelligent Optimization Algorithm 351 12.2 Dynamic Configuration for Other Algorithms 353 12.3 Dynamic Configuration on FPGA . 356 12.4 The Challenges on the Development of Dynamic Configuration . 358 12.5 Summary 359 References . 360
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Configurable Intelligent Optimization Algorithm - Design and Practice in Manufacturing رابط مباشر لتنزيل كتاب Configurable Intelligent Optimization Algorithm - Design and Practice in Manufacturing
|
|