Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Theory of Machines - Kinematics and Dynamics الأربعاء 08 نوفمبر 2023, 10:41 am | |
|
أخواني في الله أحضرت لكم كتاب Theory of Machines - Kinematics and Dynamics B.V.R. GUPTA Principal Simhadhri Educational Society Group of Institutions & Formerly Professor & Dean Faculty of Engineering Andhra University Visakhapatnam, A.P.
و المحتوى كما يلي :
CONTENTS Abbreviations, Notations and Symbols 1. Simple Mechanisms 1.1 Introduction 1.2 Kinematic Link or Element 1.3 Kinematic Pair Nature of Relative Motion between the Elements Nature of Contact between the Elements Nature of the Mechanical Arrangement for Complete or Successful Constraint between the Elements 1.4 Kinematic Chain 1.4.1 First Equation Using Pairs 1.4.2 Second Equation Using Joints 1.4.3 According to the Type of Closure between Elements 1.4.4 Degrees of Freedom 1.5 Mechanism 1.6 Inversion 1.6.1 Single Slider Crank Chain 1.6.2 Double Slider Crank Chain 1.6.3 Four-Bar Mechanisms 1.7 Exercise 1.7.1 Short Answer Questions 1.7.2 Problems 1.7.3 Multiple Choice Questions lX Xl xxxiii XXXV viixx Contents 2. Mechanisms with Lower Pairs 25 2.1 Introduction 27 2.2 Pantograph 27 2.3 Mechanisms for Straight Line Motions 28 2.3.1 Peaucellier Mechanism 29 2.3.2 Hart Mechanism 29 2.3.3 Scott-Russell Mechanism 30 2.4 Approximate Straight Line Mechanism 31 2.4.1 Watt Mechanism 31 2.4.2 Grasshopper Mechanism 32 2.4.3 Tchebicheff Straight Line Motion 32 2.4.4 Roberts Mechanism 33 2.5 Steering Gear Mechanism 33 2.5.1 Davis Steering Gear (Exact) 34 2.5.2 Ackermann Steering Gear (Approximate) 35 2.6 Hooke's Joint (or) Universal Joint 36 2.7 Double Hooke's Joint 41 2.8 Exercise 43 2.8.1 Short Answer Questions 43 2.8.2 Problems 45 2.8.3 Multiple Choice Questions 46 3. Velocities and Accelerations in Mechanisms 49 3.1 Introduction 51 3.2 Motion 51 3.2.1 Translatory Motion 51 3.2.2 Rotary Motion 51 3.2.3 Speed 51 3.2.4 Angular Displacement (6) 52 3.2.5 Radian 52 3.2.6 Angular Velocity (w) 52 3.2.7 Relation between Linear Velocity and Angular Velocity 53 3.3 Instantaneous Centre Method 53 3.3.1 Properties of Instantaneous Centres 54 3.3.2 Number of Instantaneous Centres in a Mechanism 55 3.3.3 Types of Instantaneous Centres 55Contents xxi 3.3.4 Location of Instantaneous Centres 55 3.3.5 Kennedy's Theorem or Three-centres-in-line Theorem 56 3.3.6 Application of Instantaneous Centre to Any Mechanism 57 3.3.7 Steps in Determining the Unknown Instantaneous Centres 57 3.4 Relative Velocity Method 64 3.5 Acceleration in Mechanisms 70 3.5.1 Introduction 70 3.5.2 Angular Acceleration 70 3.5.3 Vector form between Linear and Angular Acceleration 70 3.5.4 Various Steps to be Followed in the Acceleration Analysis 71 3.6 Coriolis Component of Acceleration 78 3.7 Exercise 83 3.7.1 Short Answer Questions 83 3.7.2 Problems 83 3.7.3 Multiple Choice Questions 88 4. Inertia Forces in Reciprocating Parts 91 4.1 Introduction 93 4.1.1 Terms Used in Static 93 4.1.2 D-Alembert's Principle 94 4.2 Analytical Method for Reciprocating Mechanism 95 4.2.1 Displacement of Piston (Xp) 96 4.2.2 Velocity of Piston (vp) 97 4.2.3 Acceleration of Piston (ap) 97 4.2.4 Angular Velocity of Connecting Rod (cot) 98 4.2.5 Angular Acceleration (ac) 98 4.3 Klien's Construction for Reciprocating Mechanisms 100 4.3.1 Klien's Velocity Diagram 100 4.3.2 Klien's Acceleration Diagram 101 4.4 Forces on the Reciprocating parts of an Engine 104 4.4.1 Neglecting the Weight of the Connecting Rod 104 4.4.2 Considering the Weight of the Connecting Rod 109 4.5 Equivalent Dynamical System 110 4.5.1 Dynamically Equivalent System 110 4.5.2 Determination of Dynamically Equivalent System of Two Masses Placed Arbitrarily (Analytically) 111xxii Contents 4.5.3 Determination of Dynamically Equivalent System of Two Masses Placed Arbitrarily (Graphically) 112 4.6 Inertia Forces in a Reciprocating Engine 113 4.6.1 Graphical Method 113 4.6.2 Analytical Method 114 4.7 Exercise 120 4.7.1 Short Answer Questions 120 4.7.2 Problems 120 4.7.3 Multiple Choice Questions 122 5. Turning Moment Diagrams and Design of Flywheel 125 5.1 Introduction 127 5.2 Single-Cylinder Double-Acting Steam Engine 127 5.3 Four-Stroke Cycle Internal Combustion Engine 128 5.3.1 Fluctuation of Energy 129 5.4 Flywheel 130 5.4.1 Coefficient of Fluctuation of Speed 131 5.4.2 Energy Stored in the Flywheel (E) 131 5.4.3 Design of Flywheel 132 5.5 Typical Worked Examples 133 5.6 Flywheel in Punching Press 141 5.7 Exercise 144 5.7.1 Short Answer Questions 144 5.7.2 Problems 144 5.7.3 Multiple Choice Questions 145 6. Friction 147 6.1 Introduction 149 6.2 Laws of Friction 150 6.2.1 Friction between Dry Surfaces 151 6.2.2 Friction between Rough Surfaces 151 6.2.3 Friction is Self Adjusting 151 6.2.4 Angle of Friction (0) 151 6.2.5 Rolling Friction 152 6.3 Equilibrium of Body on a Rough Inclined Plane 153 6.3.1 Motion Up the Plane 154Contents xxiii 6.3.2 Motion Down the Plane 154 6.3.3 Maximum Efficiency 155 6.4 Screw Friction 156 6.4.1 Square Thread 156 6.4.2 Relation Between Effort and Weight Lifted by a Screw Jack 157 6.4.3 V-Thread 158 6.4.4 Mechanical Advantage 158 6.5 Pivot and Collar Friction 159 6.5.1 Uniform Intensity of Pressure 161 6.5.2 Uniform Rate of Wear 162 6.6 Clutches 164 6.6.1 Single-plate Clutch 165 6.6.2 Multi-plate Clutch 165 6.6.3 Cone Clutch 166 6.7 Brakes and Dynamometers 168 6.7.1 Introduction 168 6.7.2 Types of Brakes 168 6.7.3 Dynamometers 176 6.7.4 Types of Frictions 178 6.8 Exercise 181 6.8.1 Short Answer Questions 181 6.8.2 Problems 182 6.8.3 Multiple Choice Questions 185 7. Governors 187 7.1 Introduction 189 7.2 Centrifugal Governors 189 7.3 Various Parts and Terms Used in Governors 191 7.3.1 Height of the Governor (h) 191 7.3.2 Equilibrium Speed 191 7.3.3 Sleeve Lift 191 7.4 Simple Watt Governor 191 7.4.1 Analytical Method 192 7.4.2 Graphical Method 193 7.5 Porter Governor 194 7.5.1 Analytical Method 195 7.5.2 Graphical Method 197xxiv Contents 7.6 Proell Governor 197 7.6.1 Analytical Method 198 7.6.2 Graphical Method 199 7.6.3 Comparison between Flywheel and Governor 209 7.7 Hartnell Governor 209 7.8 Hartung Governor 213 7.9 Definitions 218 7.9.1 Sensitiveness 218 7.9.2 Stable and Unstable 218 7.9.3 Isochronous/Isochronism 218 7.9.4 Hunting 218 7.9.5 Effort 218 7.9.6 Power 218 7.9.7 Controlling Force 218 7.9.8 Coefficient of Insensitiveness 219 7.10 Wilson-Hartnell Governor 219 7.11 Exercise 221 7.11.1 Short Answer Questions 221 7.11.2 Problems 221 7.11.3 Multiple Choice Questions 223 8. Belt, Rope and Chain Drives 225 8.1 Introduction 227 8.2 Types of Belts 227 8.2.1 Flat Belt 228 8.2.2 V-belt 228 8.2.3 Circular Belt or Rope 229 8.3 Types of Belt Drives 230 8.3.1 Compound Belt Drives 231 8.3.2 Stepped or Cone Pulley 232 8.4 Speed Ratio or Velocity Ratio of a Belt Drive 232 8.4.1 Velocity Ratio of a Compound Belt Drive 233 8.4.2 Slip of the Belt 234 8.4.3 Effect of Creep on Velocity Ratio 235 8.5 Length of an Open Belt 235 8.6 Length of a Crossed Belt 237 8.7 Ratio of Tensions 239Contents xxv 8.7.1 Power Transmitted by a Belt 241 8.7.2 Effect of Centrifugal Tension Tc on Power Transmitted 241 8.7.3 Condition for Maximum Power 242 8.7.4 Effect of Initial Tension (To) 243 8.8 Rope Drive 243 8.8.1 Ratio of Tensions 243 8.9 Chain Drives 245 8.9.1 Types of Chains 246 8.10 Exercise 248 8.10.1 Short Answer Questions 248 8.10.2 Problems 249 8.10.3 Multiple Choice Questions 251 9. Gyroscope 255 9.1 Introduction 257 9.2 Gyroscopic Couple and its Effect 258 9.3 Effect of Gyroscopic Couple on an Aeroplane 259 9.4 Special Terms Used in Ships 263 9.4.1 Effect of Gyroscopic Couple on the Ship During Steering 264 9.4.2 Effect of Gyroscopic Couple on the Ship During Pitching 265 9.4.3 Effect of Gyroscopic Couple on the Ship During Rolling 266 9.5 Stability of Four-Wheeler 268 9.5.1 Effect of the Gyroscopic Couple 269 9.5.2 Effects of the Centrifugal Couple 270 9.6 Stability of a Two-wheeler 273 9.6.1 Effect of the Gyroscopic Couple 274 9.6.2 Effects of the Centrifugal Couple 275 9.7 Exercise 278 9.7.1 Short Answer Questions 278 9.7.2 Problems 279 9.7.3 Multiple Choice Questions 280 10. Cams 283 10.1 Introduction 285 10.2 Classification of Followers 286 10.2.1 Based on the Surface in Contact 287xxvi Contents 10.2.2 Based on the Type of Movement of the Follower 287 10.2.3 Based on the Line of Motion of Follower 287 10.2.4 Based on the Desired Mathematical Motions 288 10.3 Types of Cams 288 10.3.1 Based on Follower Motion 288 10.3.2 Based on the Shape of the Cam 288 10.4 Terminology 289 10.4.1 Cam Profile 289 10.4.2 Base Circle 289 10.4.3 Trace Point 289 10.4.4 Pitch Curve 290 10.4.5 Prime Circle 290 10.4.6 Pressure Angle 290 10.4.7 Cam Angle 290 10.4.8 Pitch Point 290 10.4.9 Lift or Stroke(s) 290 10.4.10 Pitch Circle 291 10.5 Analysis of Motion of the Follower 291 10.5.1 Uniform Velocity 292 10.5.2 Simple Harmonic Motion (SHM) 294 10.5.3 Uniform Acceleration and Retardation 296 10.5.4 Cycloidal Motion 297 10.6 Construction of Displacement Diagrams 299 10.6.1 Displacement Diagram for Uniform Velocity 300 10.6.2 Displacement Diagram for Simple Harmonic Motion (SHM) 300 10.6.3 Displacement diagram for Uniform Acceleration and Retardation (UAR) 301 10.6.4 Displacement Diagram for Cycloidal Motion 302 10.7 Construction of Cam Profiles 303 10.7.1 Cam Profile with Radial Knife Edge Follower Having Outward Cycloidal Motion and Return Uniform Velocity Motion 303 10.7.2 Cam Profile with a Radial Knife Edge Follower Having Outward SHM and Return Uniform Acceleration and Retardation (UAR) 305 10.7.3 Cam Profile with an Offset Knife Edge Follower Having Outward SHM and Return UAR 305 10.7.4 Cam Profile with the Radial Roller Follower with Outward Cycloidal Motion and Return Uniform Velocity 306 10.7.5 Cam Profile with an Offset Roller Follower with Outward Cycloidal Motion and Return with Uniform Velocity 308Contents xxvii 10.7.6 Cam Profile for Radial Flat Faced Radial Follower with Outward Cycloidal Motion and Return Uniform Velocity 309 10.8 Cams with Specified Contours 312 10.8.1 Circular Arc Cam with Flat-faced Reciprocating Follower 312 10.8.2 Tangent Cam with Reciprocating Roller Follower 315 10.9 Exercise 318 10.9.1 Short Answer Questions 318 10.9.2 Problems 319 10.9.3 Multiple Choice Questions 320 11. Toothed Gearing 323 11.1 Introduction 325 11.2 Classification of Toothed Gearing 325 11.2.1 According to Axes 325 11.2.2 According to the Range of Peripheral Velocity 326 11.2.3 According to Position of Teeth on the Gear Surface 326 11.2.4 According to Type of Gearing 327 11.2.5 According to Materials Used for Gears 328 11.3 Terminology Used in Gears 328 11.3.1 Pitch Circle 328 11.3.2 Addendum (a) 329 11.3.3 Addendum Circle 329 11.3.4 Dedendum (d) 330 11.3.5 Dedendum Circle 330 11.3.6 Clearance 330 11.3.7 Face 330 11.3.8 Flank 330 11.3.9 Face Width 331 11.3.10 Top Land 331 11.3.11 Tooth Profile 331 11.3.12 Circular Pitch (Pa) 331 11.3.13 Pitch Point (P) 331 11.3.14 Diametral Pitch (Pa) 331 11.3.15 Module (m) 331 11.3.16 Pressure Angle or Obliquity (p) 332 11.3.17 Path of Contact 332 11.3.18 Length of Path of Contact 332xxviii Contents 11.3.19 Arc of Contact 332 11.4 Condition for Constant Velocity Ratio or Law of Gearing 332 11.5 Length of the Arc of Contact 335 11.6 Minimum Number of Teeth on the Pinion to Avoid Interference 340 11.7 Interference in Involute Gears 344 11.8 Methods of Avoiding Interference 344 11.9 Forms of Teeth 344 11.9.1 Cycloidal Teeth 345 11.9.2 Involute Tooth 346 11.10 Helical Gears 346 11.11 Bevel Gears 347 11.12 Spiral Gears 348 11.13 Exercise 348 11.13.1 Short Answer Questions 348 11.13.2 Problems 349 11.13.3 Multiple Choice Questions 351 12. Gear Trains 353 12.1 Introduction 355 12.2 Simple Gear Train or Simple Gear Drive 355 12.2.1 Speed Value or Speed Ratio or Velocity Ratio (VR) 356 12.2.2 Train Value 356 12.2.3 Power Transmitted by a Simple Gear Train 357 12.3 Compound Gear Train 358 12.4 Reverted Gear Train 359 12.5 Epicyclic Gear Train 362 12.6 Torque in Epicyclic Gear Trains 369 12.7 Compound Epicyclic Gear Train 371 12.8 Epicyclic Gear Trains with Bevel Gears 375 12.9 Exercise 380 12.9.1 Short Answer Questions 380 12.9.2 Problems 382 12.9.3 Multiple Choice Questions 386Contents xxix 13. Balancing of Rotating Masses 389 13.1 Introduction 391 13.2 Checking of a Rotating Element 391 13.3 Types of Balancing of Rotating Elements 392 13.3.1 Balancing of a Single Unbalanced Rotating Mass 392 13.3.2 Balancing of Several Unbalanced Rotating Masses 392 13.4 Balancing of a Single Unbalanced Rotating Mass 393 13.4.1 By a Single Balancing Mass Rotating in the Same Plane 393 13.4.2 By Two Balancing Masses in Two Different Planes 394 13.5 Balancing of Several Unbalanced Masses Rotating in the Same Plane 399 13.5.1 Analytical Method 400 13.5.2 Graphical Method 400 13.6 Balancing of Several Unbalanced Masses Rotating in Several Planes 402 13.7 Exercise 410 13.7.1 Short Answer Questions 410 13.7.2 Problems 410 13.7.3 Multiple Choice Questions 412 14. Balancing of Reciprocating Masses 413 14.1 Introduction 415 14.2 Partial Balancing 416 14.3 Effect of Partial Balancing in Two-Cylinder Locomotives 417 14.3.1 Tractive Force (FT) 418 14.3.2 Swaying Couple 419 14.3.3 Hammer Blow 419 14.3.4 Types of Locomotives 420 14.4 Multi-cylinder In-line Engines 428 14.5 Radial Engines 434 14.5.1 Direct and Reverse Crank Method 435 14.5.2 Analytical Method 436 14.6 V-Engines 439 14.6.1 Analytical Method 440 14.6.2 Direct and Reverse Crank Method 441 14.7 Exercise 443 14.7.1 Short Answer Questions 443 14.7.2 Problems 443 14.7.3 Multiple Choice Questions 445xxx Contents 15. Longitudinal and Transverse Vibrations 447 15.1 Introduction 449 15.2 Basic Elements of Any Vibratory System 449 15.2.1 Inertial Element or Mass 449 15.2.2 Restoring Element or Spring 449 15.2.3 Damping Elements or Damper 450 15.3 Various Terms Used in Vibration and their Meanings 450 15.3.1 Period 450 15.3.2 Cycle 450 15.3.3 Frequency 450 15.3.4 Resonance 450 15.4 Types of Vibrations 450 15.4.1 Free or Natural Vibrations 450 15.4.2 Forced Vibrations 450 15.4.3 Damped Vibrations 450 15.5 Types of Vibrations Based on the Deflection 451 15.5.1 Longitudinal Vibrations 451 15.5.2 Transverse Vibrations 451 15.5.3 Torsional Vibrations 451 15.6 Natural Frequency of Free Longitudinal Vibrations 451 15.6.1 Equilibrium Method 452 15.6.2 Energy Method 453 15.6.3 Rayleigh's Method 454 15.7 Natural Frequency of Free Transverse Vibrations 459 15.7.1 Energy (Rayleigh's) Method of a Shaft Subjected to Number of Point Loads 464 15.7.2 Dunkerley's Method for a Shaft Subjected to a Number of Point Loads 464 15.8 Critical Speed or Whirling Speed of a Shaft 468 15.9 Frequency of Free Damped Vibrations (Viscous Damping) 471 15.9.1 When the Roots are Real (Overdamping or Large Damping) 473 15.9.2 When the Roots are Equal (Critical Damping) 473 15.9.3 When the Roots are Complex Conjugate (Underdamping or Small Damping) 473 15.9.4 Logarithmic Decrement 474 15.10 Frequency of Forced Damped Vibration 476 15.10.1 Magnification Factor or Dynamic Magnifier (D) 478 15.11 Exercise 480 15.11.1 Short Answer Questions 480 15.11.2 Problems 481 15.11.3 Multiple Choice Questions 483Contents xxxi 16. Torsional Vibrations 485 16.1 Introduction 487 16.2 Natural Frequency of Free Torsional Vibrations 487 16.3 Torsional Vibrations of a Shaft with Number of Rotors 488 16.3.1 Free Torsional Vibrations of a Single Rotor System 488 16.3.2 Free Torsional Vibrations of a Two-Rotor System 490 16.3.3 Free Torsional Vibrations of a Three Rotor System 493 16.4 Torsionally Equivalent Shaft 499 16.5 Free Torsional Vibrations of a Geared System 505 16.6 Exercise 509 16.6.1 Short Answer Questions 509 16.6.2 Problems 509 16.6.3 Multiple Choice Questions 510 Bibliography 513 Index 515 Index A Accelerating force, 487 Acceleration, 51, 291, 415 Ackermann steering gear, 18, 35 Addendum, 329 Addendum circle, 329 Aeroplane, 259 Aft, 263 Air pump, 19 Angle of friction, 151 Angular acceleration, 40, 98, 259 Angular displacement, 32, 267, 487 Angular velocity, 13, 98, 415 Anti-friction bearing, 178 Approximate straight line mechanism, 31 Arc of approach, 332 Arc of contact, 332 Arc of recess, 332 B Balancing, 391, 416 Band and block brake, 168, 174 Band brake, 168, 170 Beam engine, 18 Bed plate, 3 Belts, 152, 227 Bevel gears, 347 Binary, 4 Block or shoe brake, 168 Bow, 265 Brakes, 168 Bull engine, 14 C Cam angle, 290 Cam profile, 289 Cams, 285, 288 Centre of mass, 93, 391 Centrifugal couple, 270 Centrifugal governor, 189 Centrifugal tension, 241 Centroid, 93 Chain, 4, 29, 227 Circular arc cam, 312 Circular belt, 229 Circular pitch, 331 Clearance, 330 Clutches, 164 Coefficient of fluctuation of speed, 131, 215 Collar bearing, 162 Complex conjugates, 473 Compound belt drive, 231 Compound gear train, 358 Compound mechanism, 12, 23 Cone clutch, 166 Cone pulley, 232 Connecting rod, 12, 96, 415 Constraint, 5, 286, 509 Contact ratio, 337 Coriolis component, 78 Couple, 419, 488 Coupled, 420 Coupling rod, 18 Crank-pin, 116, 421 Crankshaft, 3,127, 416 Creep , 235 Critical damping, 473 Critical speed, 468 Cross belt drive, 230 Cross head, 4, 105, 415 Cycle, 450 Cycloidal gears, 344 Cycloidal motion, 288, 309 Cylinder head, 3 D D-Alembert's principle, 94 Damped vibrations, 450 Damper, 450516 Index Four-bar mechanism, 11, 121 Free vibrations, 450 Frequency, 450 Friction, 5, 149 Friction circle, 180 Davis steering gear, 34 Dedendum, 330 Dedendum circle, 330 Degrees of freedom, 11, 264 Design of flywheel, 132 Diametral pitch, 331 Differential band brake, 170 Direct crank method, 435 Displacement diagram, 299, 309 Double hooke's joint, 41 Double slider crank chain, 15 Dry surfaces, 151 Dunkerlay's method, 464 Dynamic friction, 150 Dynamic magnifier, 478 Dynamically equivalent system, 111 Dynamics, 3, 93 Dynamometers, 168, 176 E Effort, 218 Element, 3, 209, 415 Ellipse trammel, 15 Energy method, 453 Energy stored, 131 Epi-cyclic gear train, 362, 369 Equal roots, 473 Equilibrium method, 452 Equilibrium of body, 153 Equilibrium speed, 191 External gearing, 327 G Gear train, 355 Geared system, 488, 505 Governor, 189 Grass hopper mechanism, 32 Greasy friction, 180 Gyroscope, 259 Gyroscopic couple, 258, 259 H Hammer blow, 419 Hart mechanism, 30 Hartnell governor, 209 Hartung governor, 213 Height of governor, 193 Helical gears, 346 High velocity, 326 Higher pairs, 5, 20 Hooke's joint, 36, 41 Hunting, 218 Hydraulic brakes, 4 Hydraulic jacks, 4 F Face, 330 Face width, 331 Flank, 330 Flat belt, 228 Flat faced, 309 Fluctuation of energy, 129 Fluids, 4 Flywheel, 3, 127, 488 Followers, 286, 358 Foot step bearing, 10 Forced closed pair, 10 Forced vibration, 476 Fore-end, 263 Four stroke cycle internal combustion engine, I Idlers, 356 Indexing mechanism, 11 Inertia force, 113, 416 Inertial element, 449 Initial tension, 243 Instantaneous centre method, 53, 100 Interference, 340 Internal brake, 168 Internal expanding shoe brake, 176 Internal gearing, 327 Intersecting axes, 326 Inversion, 12, 27, 86 Inverted chain, 247 128 Involute gears, 344Index 517 Inward, 319 Isochronism, 218 Isochronous, 218 K Kennedy's theorem, 56 Kinematic chain, 7, 11 Kinematic link, 3, 56 Kinematic pair, 5, 7, 23 Kinematics, 3, 53 Kinetic energy, 505 Kliens construction, 100 Knife edge, 287 L Large damping, 473 Law of gearing, 333 Laws of friction, 150 Left turn, 261 Length of a crossed belt, 237 Length of an open belt, 235 Length of path of contact, 332 Length of the arc of contact, 335 Lift, 290 Linear velocity, 53, 259 Link, 3,121, 245 Locomotives, 420 Logarithamic decrement, 474 Longitudinal vibration, 451 Low velocity, 326 Lower pairs, 6, 27 M Machine, 3,141,443 Magnification factor, 478 Main bearings, 3 Mass, 93, 242, 415 Matter, 93 Maximum efficiency, 155 Maximum power, 242 Mechanical advantage, 158 Mechanism, 3, 248, 415 Medium velocity, 326 Minimum number of teeth, 340 Modified uniform velocity, 293 Module, 331 Motion, 3, 149, 488 Multi plate clutch, 165 Multi-cylinder in-line engines, 428 N Natural frequency , 451 Natural vibrations, 450 Non-intersecting and non-parallel, 326 0 Offset, 287 Oldham coupling, 16 Open belt drive, 230 Oscillating mechanism, 11 Outward, 291 Over damping, 473 P Pairs, 4, 166, 337 Pantograph, 27 Parallel axes, 326 Partial balancing, 416 Peaucellier mechanism, 29 Pendulum engine, 14 Period, 450 Piston, 3, 176, 428 Piston rod, 3, 84,105 Pitch circle, 290 Pitch curve, 290 Pitch point, 290 Pitching, 264 Pivot bearing, 162 Port side, 265 Porter governor, 194 Power, 218 Power transmitted, 241 Pressure angle, 290 Pressure angle, 332 Primary forces, 416, 429 Prime circle, 290 Proell governor, 197 Proney brake, 176 Punching press, 17518 Index Q Quarternary, 4 Quick return mechanism, 12, 22 R Rack and pinion, 327 Radial engines, 434 Radial follower, 287, 309 Radian, 52 Ratio of tensions, 239 Rayleigh's method, 454 Real roots, 473 Reciprocating mass, 415 Reciprocating mechanism, 10, 95, 415 Reference plane, 403, 423 Relative velocity method, 51, 99 Resonance, 450 Restoring element, 449 Restoring force, 487 Reverse crank method, 435 Reverted gear train, 359 Right hand screw rule, 53, 259 Right turn, 261 Rigid, 3, 245, 489 Rigid frame, 8 Roborts mechanism, 33 Roller chain, 246 Rolling, 264, 345 Rolling friction, 150-152, 178 Rolling pair, 5, 9, 22 Rope, 4, 227, 355 Rope brake dynamometer, 177 Rotary internal combustion, 14 Rotary motion, 6, 51, 325 Rotating masses, 392, 416 Rough surfaces, 151 S Scotch yoke mechanism, 16 Screw friction, 156 Screw pair, 5, 22 Secondary forces, 429 Self closed pair, 10 Sensitiveness, 218 Several masses, 393 Shaping machine, 13, 49 Silent chain, 247 Simple band brake, 172 Simple gear train, 355, 357 Simple harmonic motion (SHM), 288 Simple mechanism, 3, 12 Simple watt governor, 191 Single cylinder double acting steam engine, 127 Single mass, 410 Single plate clutch, 165 Single rotor system, 488 Single slider crank chain, 16 Sleeve lift, 191 Sliding friction, 150 Sliding pair, 5, 27 Slip, 234 Slotting machine, 12 Small damping, 473 Specified contour, 312 Speed, 17, 93, 416 Speed ratio, 232 Speed value, 356 Spherical pair, 5 Spiral gears, 348 Spring, 449 Square thread, 156 Stability, 219, 268 Stable, 218 Star board, 264 Static, 3, 151, 420 Static friction, 149 Steering gear mechanism, 33 Stepped pulley, 232 Stern, 263 Straight line motion, 27 Strain energy, 505 Stroke, 290 Swaying couple, 419 T Tabular method, 364 Tangent cam, 315 Tchebicheff straight line motion, 32 Tensile force, 4 Ternary, 4 Three rotor system, 493 Three-centres-in-line theorem, 56 Tooth profile, 331 Toothed gearing, 325Index 519 Top land, 331 Torque, 369, 420 Torsional vibrations, 451 Torsionally equivalent shaft, 499 Tractive force, 418 Train value, 356 Transformation, 11 Translatory motion, 51 Transverse vibrations, 449 Turning moment diagram, 127 Turning pair, 4, 28 Two cylinder locomotives, 417 Two rotor system, 490 Two way brand brake, 172 Types of frictions, 178 U Uncoupled, 420 Under damping , 473 Uniform acceleration and retardation, Uniform pressure, 163 Uniform velocity, 153, 288 Uniform wear, 163 Universal joint, 36, 43 Unstable, 218 V V-belt, 228 Velocity - 13, 134, 291 Velocity of sliding, 334 Velocity ratio, 232 Velocity ratio, 325 V-Engines, 439 Viscous damping, 471 V-thread, 158 w Watt mechanism, 31 Weight, 93, 315, 510 Weight lifting jack, 19 288 Whirling speed, 468 Work, 3, 241, 435
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Theory of Machines - Kinematics and Dynamics رابط مباشر لتنزيل كتاب Theory of Machines - Kinematics and Dynamics
|
|