Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Biopolymers - Reuse, Recycling, and Disposal الأربعاء 13 ديسمبر 2023, 11:12 am | |
|
أخواني في الله أحضرت لكم كتاب Biopolymers - Reuse, Recycling, and Disposal Michael Niaounakis
و المحتوى كما يلي :
Abbreviations of Biopolymers b-PPL poly(b-propiolactone) b-PBL poly(b-butyrolactone) g-PGA poly(g-glutamic acid) e-PL poly(e-lysine) CA cellulose acetate CAB cellulose acetate butyrate CAP cellulose acetate propionate CN cellulose nitrate P2HB poly(2-hydroxybutyrate) P3HB poly(3-hydroxybutyrate) (or PHB) P3HB4HB poly(3-hydroxybutyrate-co-4- hydroxybutyrate) P3HD poly(3-hydroxydecanoate) (or PHD) P3HN poly(3-hydroxynonanoate) (or PHN) P3HP poly(3-hydroxypropionate) P4HB poly(4-hydroxybutyrate) P4HB2HB poly-(4hydroxybutyrate-co-2- hydroxybutyrate) P4HP poly(-4-hydroxypropionate) P4HV poly(4-hydroxyvalerate) P5HV poly(5-hydroxyvalerate) P6HH poly(6-hydroxyhexanoate) PA 1010 polyamide 1010 PA 1012 polyamide 1012 PA 11 polyamide 11 PA 410 polyamide 410 PA 610 polyamide 610 PBA poly(butylene adipate) PBAT poly(butylene adipate-coterephthalate) PBT poly(butylene carbonate) PBP poly(butylene pimelate) PBS poly(butylene succinate); see also poly(tetramethylene succinate) (PTeMS); (different CAS) PBSA poly(butylene succinate-coadipate) PBSC poly(butylene succinate-cocarbonate) PBSE poly(butylene sebacate) PBSL poly(butylene succinate-colactide) PBST poly(butylene succinate-coterephthalate) PCHC poly(cyclohexene carbonate) PCL poly(e-caprolactone) PDLA poly(D-lactide) PDLLA poly(D,L-lactide) PDLGA poly(D,L-lactide-co-glycolide) PDO polydioxanone (or PDS) PE polyethylene (biobased) PEA poly(ethylene adipate) PEAM poly(ester amide) PEAz poly(ethylene azelate) PEC poly(ethylene carbonate) PEDe poly(ethylene decamethylate) PEF poly(ethylene furanoate) PEOx poly(ethylene oxalate) PES poly(ethylene succinate) PESA poly(ethylene succinate-coadipate) PESE poly(ethylene sebacate) xviiPEST poly(ethylene succinateterephthalate) PESu poly(ethylene suberate) PET poly(ethylene terephthalate) (biobased) PEUU poly(ester urethane urea) (biodegradable) PGA polyglycolide, poly(glycolic acid) PGCL poly(glycolide-co-caprolactone) PHA polyhydroxyalkanoate PHB polyhydroxybutyrate (or P3HB) PHBHD poly(3-hydroxybutryrate-co-3- hydroxydecanoate) PHBHP poly(3-hydroxybutyrate-co-3- hydroxypropionate) PHBHx poly(3-hydroxybutyrate-co- 3- hydroxyhexanoate) or poly(hydroxybutyrate-cohydroxyhexanoate) PHBO poly(3-hydroxybutyrate-co-3- hydroxyoctanoate) ( or P3HB/ 3HO) PHBHV poly(3-hydroxybutyrate-co-3- hydroxyvalerate) PHD polyhydroxydecanoate (or P3HD) PHHp poly(3-hydroxyheptanoate) PHHx poly(3-hydroxyhexanoate) PHN polyhydroxynonanoate (or P3HN) PHO poly(3-hydroxyoctanoate) PHP poly(3-hydroxypropionate) (or P3HP) PHSE poly(hexamethylene sebacate) PHV poly(3-hydroxyvalerate) PLA polylactide, poly(lactic acid) PLCL poly(lactide-co-caprolactone) PLGA poly(lactide-co-glycolide) PLLA poly(L-lactide) PLLGA poly(L-lactide-co-glycolide) a-PMA a-type polymalic acid, polymalate POE I poly(ortho ester) I POE II poly(ortho ester) II POE III poly(ortho ester) IIII POE IV poly(ortho ester) IV PPA polyphthalamide PPHOS polyphosphazene PPF poly(propylene fumarate) PPL poly(b-propiolactone) PPS poly(propylene succinate) PPT poly(propylene terephthalate) (biobased); see also PTT PTeMAT poly(tetramethylene adipateco-terephthalate); see also poly(butylene adipate-coterephthalate (PBST). PTeMC poly(tetramethylene carbonate) PTMC poly(trimethylene carbonate) PTeMS/ PTeMC poly[(tetramethylene succinate)-co-(tetramethylene carbonate)] PTMA poly(trimethylene adipate) PTMAT poly(methylene adipate-coterephthalate) PTeMA poly(tetramethylene adipate) PTMG poly(tetramethyl glycolide) PTeMS poly(tetramethylene succinate); see also poly(butylene succinate) (PBS) (different CAS) PTT poly(trimethylene terephthalate) (biobased); see also PPT PU polyurethane (biobased) PVOH poly(vinyl alcohol) TPS thermoplastic starch 1 Introduction to Biopolymers O U T L I N E 1.1 Rationale for Use of Biopolymers 1 1.2 Types of Biopolymers 2 1.3 Polyesters 5 1.3.1 Poly(hydroxy acid)s 5 1.3.1.1 Poly(a-hydroxyalkanoic acid)s 5 1.3.1.2 Poly(b-, g-, d-hydroxyalkanoate)s (PHAs) 11 1.3.1.3 Poly(u-hydroxyalkanoate)s 16 1.3.2 Poly(alkylene dicarboxylate)s 17 1.3.2.1 Aliphatic (co)polyesters 17 1.3.2.2 Aliphatic-aromatic copolyesters 20 1.3.2.3 Aromatic polyesters (bio-based) 20 1.4 Poly(ether-ester)s 22 1.5 Aliphatic Polycarbonates 23 1.6 Polyamides 24 1.6.1 Polycondensation of Diamines and Dicarboxylic Acids 25 1.6.2 Polycondensation of u-Amino Carboxylic Acids or Lactams 25 1.6.3 Poly(a-amino acid)s 25 1.7 Poly(ester amide)s 28 1.8 Poly(ether amide)s 29 1.9 Polyurethanes (Bio-Based PUs) 29 1.10 Polysaccharides 31 1.11 Vinyl Polymers 37 1.12 Diene Polymers 39 1.13 Other Biodegradable Polymers 39 1.14 Biopolymer Compositions 42 1.14.1 Blends 42 1.14.2 Additives and Modifiers 45 1.15 Biodegradable Biopolymer Additives 48 1.16 Sources of Biopolymers 48 1.17 Applications and Parts 50 1.17.1 Service Packaging 51 1.17.2 Food Services 51 1.17.3 Agriculture/Forestry/Horticulture 52 1.17.4 Consumer Electronics 52 1.17.5 Automotive Industry 53 1.17.6 Textiles/Fibers 54 1.17.7 Medical and Pharmaceutical Sectors 54 1.17.8 Cosmetics 55 1.17.9 Outdoor Sports 55 1.17.10 Building/Construction Industry 55 1.17.11 Other Applications of Biopolymers 55 1.18 Sources of Scrap and Waste Biopolymers 56 References 57 2 Definitions and Assessment of (Bio)degradation O U T L I N E 2.1 Define the Terms 77 2.2 Classification of Biopolymers 79 2.3 Biopolymers versus Oxodegradable Polymers 81 2.4 Types and Mechanisms of (Bio)degradation 84 2.4.1 Thermal Degradation 84 2.4.2 Photodegradation 85 2.4.3 Mechanical Degradation 87 2.4.4 Hydrolysis 87 2.4.5 Biodegradation 88 2.5 (Bio)degradation Testing 89 2.5.1 Visual Examination 89 2.5.2 Changes in Thermo-mechanical and Physical Properties 89 2.5.3 Molecular Weight 90 2.5.4 Chemical Changes 90 2.5.5 Hydrolysis 90 2.5.6 Thermal Degradation 90 2.5.7 Weight Loss 90 2.5.8 Gas (CO2 /CH4) Evolution 90 2.5.9 Oxygen Consumption 90 2.5.10 Radiolabeling 91 2.5.11 Clear-Zone Formation 91 2.5.12 Ecotoxicity 91 References 91 3 Reuse O U T L I N E 3.1 Recuperation 95 3.2 Restabilization 98 3.3 Blending Recycled Biopolymers with other Polymers 98 3.4 Modification of the Chemical Structure 101 3.5 Multiple Processing 101 References 102 4 Disposal O U T L I N E 4.1 General 107 4.2 Landfilling 107 4.2.1 Pretreatment Before Disposal 109 4.3 Biological Processes 109 4.3.1 Aerobic Biodegradation 109 4.3.1.1 Biodegradation in soil (soil burial) 109 4.3.1.2 Composting 111 4.3.2 Anaerobic Biodegradation 114 4.3.3 Microbes and Enzymes 116 4.3.3.1 Aerobic 116 4.3.3.2 Anaerobic 125 4.4 (Bio)degradation in Water 126 4.4.1 Hydrolysis 135 4.4.1.1 Size reduction via hydrolysis 136 4.4.2 Enzymatic Hydrolysis 136 4.4.3 Wastewater Treatment 138 4.4.4 Marine and Freshwater 138 4.5 Other Waste Disposal Systems 139 4.6 Destructive Thermal Processes 140 4.6.1 Incineration (Combustion) 140 4.6.2 Pyrolysis 141 References 141 5 Physical Recycling O U T L I N E 5.1 General 151 5.2 Grinding 152 5.3 Sorting 153 5.3.1 Density Separation Systems 153 5.3.2 Electrostatic Separation Systems 154 5.3.3 Optical Systems 156 5.3.3.1 Near infrared (NIR) 156 5.3.3.2 Laser 157 5.3.3.3 Marker systems 158 5.3.4 Dissolution 160 5.4 Drying 162 References 162 6 Chemical Recycling O U T L I N E 6.1 Dry-Heat Depolymerization (in the Melt) 167 6.2 Hydrolysis/Solvolysis (Alcoholysis) 171 6.2.1 Hydrolysis 171 6.2.2 Alcoholysis 175 6.2.3 Foam Hydrolysis 178 6.3 Hydrothermal Depolymerization 178 6.4 Enzymatic Depolymerization 182 6.5 Miscellaneous Processes 187 References 188 7 Degradability on Demand O U T L I N E 7.1 Control of Degradation Rate 193 7.2 Suppression of (Bio)-degradability 195 7.2.1 Control of the Physical Features of the Biopolymer 195 7.2.1.1 Structure (chemical structure, higher molecular weight) 195 7.2.1.2 Morphology (stereoisomerism, increased crystallinity, orientation) 195 7.2.1.3 Composition (reduced number of impurities or residues) 202 7.2.1.4 Form (less porosity, smaller surface area, higher density) 203 7.2.1.5 Condition of the article (physical aging, processing conditions) 203 7.2.2 Modification of the Polymer Backbone (Hydrophobic Bonds, Grafting) 203 7.2.3 Functional Group-Capping Agents and Catalyst-Deactivation Agents 204 7.2.4 Desiccants (Blotting Compounds) 208 7.2.5 Antibacterial (Antibiotic) Compounds 209 7.2.6 Antioxidants, UV and Light Stabilizers 210 7.2.7 Cross-linking 212 7.2.8 Plasticizers 212 7.2.9 Blending with other Polymers 213 7.2.10 Physical Separation of Degradation Additives (e.g., by Encapsulation or Coating) 214 7.2.11 Coatings 215 7.2.12 Surface Modification 215 7.3 Promotion of (Bio)-degradability 215 7.3.1 Control of the Physical Features of Biopolymers 221 7.3.1.1 Structure (chemical structure, lower molecular weight) 221 7.3.1.2 Morphology (reduced stereoisomerism, less crystallinity) 221 7.3.1.3 Form (increased porosity, higher surface area, higher density) 221 7.3.1.4 Composition (increased number of impurities or residues) 222 7.3.1.5 Condition of the article (processing conditions, no orientation, no physical aging) 222 7.3.2 Modification of the Polymer Backbone 222 7.3.3 Enzymes and Microbial Nutrients 223 7.3.4 Compounds Which Can Initiate and/or Propagate Depolymerization 225 7.3.5 Specially Selected Additives (e.g., Capsules, (Nano)particles Acting as Degradation Agents) 228 7.3.6 Plasticizers 229 7.3.7 Blending with other Polymers 229 7.3.8 Mixtures of Biodegradation-Promoting and -Retarding Agents 230 7.3.9 Environmental Conditions (Temperature, Moisture, Radiation, and Time of Exposure) 231 7.3.10 Surface Modification 232 References 232 7 Degradability on Demand O U T L I N E 7.1 Control of Degradation Rate 193 7.2 Suppression of (Bio)-degradability 195 7.2.1 Control of the Physical Features of the Biopolymer 195 7.2.1.1 Structure (chemical structure, higher molecular weight) 195 7.2.1.2 Morphology (stereoisomerism, increased crystallinity, orientation) 195 7.2.1.3 Composition (reduced number of impurities or residues) 202 7.2.1.4 Form (less porosity, smaller surface area, higher density) 203 7.2.1.5 Condition of the article (physical aging, processing conditions) 203 7.2.2 Modification of the Polymer Backbone (Hydrophobic Bonds, Grafting) 203 7.2.3 Functional Group-Capping Agents and Catalyst-Deactivation Agents 204 7.2.4 Desiccants (Blotting Compounds) 208 7.2.5 Antibacterial (Antibiotic) Compounds 209 7.2.6 Antioxidants, UV and Light Stabilizers 210 7.2.7 Cross-linking 212 7.2.8 Plasticizers 212 7.2.9 Blending with other Polymers 213 7.2.10 Physical Separation of Degradation Additives (e.g., by Encapsulation or Coating) 214 7.2.11 Coatings 215 7.2.12 Surface Modification 215 7.3 Promotion of (Bio)-degradability 215 7.3.1 Control of the Physical Features of Biopolymers 221 7.3.1.1 Structure (chemical structure, lower molecular weight) 221 7.3.1.2 Morphology (reduced stereoisomerism, less crystallinity) 221 7.3.1.3 Form (increased porosity, higher surface area, higher density) 221 7.3.1.4 Composition (increased number of impurities or residues) 222 7.3.1.5 Condition of the article (processing conditions, no orientation, no physical aging) 222 7.3.2 Modification of the Polymer Backbone 222 7.3.3 Enzymes and Microbial Nutrients 223 7.3.4 Compounds Which Can Initiate and/or Propagate Depolymerization 225 7.3.5 Specially Selected Additives (e.g., Capsules, (Nano)particles Acting as Degradation Agents) 228 7.3.6 Plasticizers 229 7.3.7 Blending with other Polymers 229 7.3.8 Mixtures of Biodegradation-Promoting and -Retarding Agents 230 7.3.9 Environmental Conditions (Temperature, Moisture, Radiation, and Time of Exposure) 231 7.3.10 Surface Modification 232 References 232 8 Developments and Trends in Patenting O U T L I N E 8.1 Biopolymers and Patents 243 8.2 Patent Analysis 245 8.2.1 Distribution of Patent Applications Per Category of Waste Treatment 246 8.2.2 Geographical Distribution of Patent Applications on Waste Treatment 246 8.3 Prospects and Limitations of the Waste Treatment Options of Biopolymers 247 8.4 Conclusions 248 8.5 Development of New Waste Treatment Processes/Materials 249 References 250 9 Regulatory Aspects Framework O U T L I N E 9.1 Standards 251 9.1.1 Standards Related to the Recycling of Biopolymers 252 9.1.2 Standards Related to the Disposal of Biopolymers 254 9.1.2.1 Standard specifications on compostability 254 9.1.2.2 Biodegradation testing standards 256 9.1.3 Determination of Bio-Based Content 266 9.1.4 Ecotoxicity 267 9.1.5 Sample Preparation 267 9.1.6 Terminology 268 9.1.7 Life Cycle Assessment (LCA) Related Standards 268 9.1.8 Eco-Labeling 271 9.2 Certification 271 9.2.1 Certification Systems 272 References 274 9 Regulatory Aspects Framework O U T L I N E 9.1 Standards 251 9.1.1 Standards Related to the Recycling of Biopolymers 252 9.1.2 Standards Related to the Disposal of Biopolymers 254 9.1.2.1 Standard specifications on compostability 254 9.1.2.2 Biodegradation testing standards 256 9.1.3 Determination of Bio-Based Content 266 9.1.4 Ecotoxicity 267 9.1.5 Sample Preparation 267 9.1.6 Terminology 268 9.1.7 Life Cycle Assessment (LCA) Related Standards 268 9.1.8 Eco-Labeling 271 9.2 Certification 271 9.2.1 Certification Systems 272 References 274
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Biopolymers - Reuse, Recycling, and Disposal رابط مباشر لتنزيل كتاب Biopolymers - Reuse, Recycling, and Disposal
|
|