Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Carbon Nanotube Reinforced Composites الأربعاء 13 ديسمبر 2023, 3:29 pm | |
|
أخواني في الله أحضرت لكم كتاب Carbon Nanotube Reinforced Composites Marcio Loos
و المحتوى كما يلي :
Table of contents Series page Dedication Foreword Preface Chapter 1. Nanoscience and Nanotechnology 1.1. Introduction to the nanoscale 1.2. What makes the nanoscale important? 1.3. Properties of nanoparticles and effect of size 1.4. N&N history 1.5. Nano in history 1.6. Moore's Law 1.7. Applications of nanotechnology 1.8. Nanoscience and nanotechnology: A look to the future To learn more… Chapter 2. Composites 2.1. Conventional engineering materials 2.2. The concept of composites 2.3. Raw material for manufacture of composites 2.4. Advantages and disadvantages of composites 2.5. Influence of fiber length in fiber composites 2.6. Applications of composites To learn more… Chapter 3. Allotropes of Carbon and Carbon Nanotubes 3.1. Allotropes of carbon 3.2. Carbon nanotubes 3.3. Treatment of CNTs To learn more… Chapter 4. Production of CNTs and Risks to Health 4.1. Production methods of carbon nanotubes 4.2. Cost and production capacity of CNTs 4.3. CNTs: risks to health, safe disposal, and environmental concerns 4.4. Commercially available CNTs To learn more… Chapter 5. Fundamentals of Polymer Matrix Composites Containing CNTs 5.1. Use of CNTs for improvement of polymer properties 5.2. Mechanical properties of composites containing CNTs 5.3. Thermal conductivity of composites containing CNTs 5.4. Electrical conductivity of composites containing CNTs To learn more… Chapter 6. Processing of Polymer Matrix Composites Containing CNTs 6.1. Processing of polymer matrix composites containing CNTs 6.2. Technologies applied for the preparation of polymeric matrix nanocomposites To learn more… Chapter 7. Applications of CNTs 7.1. Carbon nanotubes: present and future applications To learn more… Chapter 8. Is It Worth the Effort to Reinforce Polymers with Carbon Nanotubes? 8.1. Introduction 8.2. Theories 8.3. Conclusion Chapter 9. Reinforcement Efficiency of Carbon Nanotubes—Myth and Reality 9.1. Introduction 9.2. Models development 9.3. Application 9.4. Conclusion Appendix A. Richard Feynman’s Talk Appendix B. Periodic Table of Elements Appendix C. Graphene Sheet Appendix D. Simulations Using Matlab Appendix E. Questions and Exercises Index Index Note: Page numbers followed by “b”, “f”, and “t” indicate boxes, figures, and tables respectively. A American Physical Society, 10 Aramid fibers Kevlar, 59 properties, 58e59, 61t sleeve and tapes, 58e59, 59f stressestrain curves, 59, 60f Twaron, 59 Arc discharge, 104, 104fe105f Armchair nanotube, 81, 81f B Bismaleimides, 57 C Carbon allotropes, 74e75, 74f Carbon fibers, 58, 59f, 61t Carbon nanotubes (CNTs) advantages, 209e213 applications, 119 Adidas adizero shoes, 192, 192f antibody functionalized single-walled carbon nanotubes, 196e197, 196f artificial muscles, 194, 194f bicycle with frame, 190, 192f catalytic materials, 199, 199f CNT-based organic solar cells, 197e198, 198f drug delivery systems, 196e197 Easton baseball bat, 190, 191f electrochemical supercapacitor electrodes, 197, 197f electromagnetic interference shielding, 201, 201f electrophoretic display (EPD) e-paper, 194e195 hard tissue engineering, 194e195 hockey sticks, 190, 191f hydrophilic microbiosensor, 192e194, 193f hydroxylapatite formation, collagen composite, 195, 196f lithium-ion battery, 199e201, 200f paper-thin cylinder, 199, 200f printed CNT transistors, 201e202, 202f sail boat, 190, 191f Samsung display, 194e195, 195f sound frequency electric currents, 199 synthetic gecko tape, 194, 195f tennis racket, 190, 190f thermo-acoustic effect, 199 water molecules, 198, 198f wind turbine blades, 192, 193f chemical fibers and yarns, 228 cost, 213, 214t and production capacity, 106e107 vs. property analysis, 220e221 covalent functionalization, 94, 97f double-walled carbon nanotube, 75e76, 76f electrical conductivity, 88, 88t fiber composites, micromechanics modeling critical length, 218e219 effective fiber, 218e219 fiber volume fraction, 218 HalpineTsai equations, 217 hybrid composites, 219e220 materials cost, 219e220 nanotube reinforced composites, 217 single reinforcing phase, 218 strength efficiency factor, 219 tensile strength, 218e219 fitting experimental data, 241e244, 242fe243f graphene sheet, 75e76 hallow carbon fibers, 77, 78f HalpineTsai model, 217 health risk and safe disposal asbestos fibers, 109 electrolyte imbalance, water consumption, 109 environmental precaution, 110e111 glove box, 110, 111f granulomas, 109e110, 110f MSDS, 111e119, 111b toxicological effects, 110 hybrid composites, 222 impurities, 89 material selection process, 220 mechanical properties, 85t arc discharge, 84 covalent bond, 83 density and price, 223, 224t nanocomposite materials, 208, 210t SEM, 84, 84f single-walled carbon nanotubes, 86e87, 86f specific resistance value, 83e84 models development, 235e240, 236f multi-walled carbon nanotube, 75e77, 76f, 79f 285Carbon nanotubes (CNTs) (Continued) non-covalent functionalization adsorption models, 94, 96f block copolymers, 94, 96f single-walled carbon nanotube, polyethylene polymer chain, 94, 95f patents and published articles, 77, 80f polymer matrix composites (see Polymer matrix composites) production methods adaptations and improvements, 103e104 arc discharge, 104, 104fe105f carbon monoxide conversion, 106, 108f CVD, 105e106, 106fe108f laser ablation, 104e105, 105f properties, 213, 214t, 222, 222t published articles and patents, 208, 209f purification and oxidation characteristics, 89e90, 92 hydrochloric acid, 90, 90f metal oxides, 90 oxidation temperature, MWCNTs, 92f, 92b oxidation time, MWCNTs, 93f, 93b single-walled carbon nanotube defects, 90, 91f solvents and polymer matrices, 93 reinforcement efficiency applications, 234 3D network, 234 epoxy system, elastic modulus, 234, 235f percolation threshold, 234 properties, 234 semiconductor carbon nanotubes, 87, 87f series and parallel composite modulus, 237 filler volume fractions, 237e238 large-diameter CNT bundles, 236 nano-fillers, 236 percolation threshold, 238 switching function, 237e238 three-phase composite system, 236, 237f single-phase reinforced epoxy composites, 222 single-walled carbon nanotube, 75e76, 76fe77f stiffness, 223e226, 226fe227f structure armchair nanotube, 81, 81f CeC bond length, 79 chiral vector, 78, 80f graphene sheet, 74f, 77e78 SWCNT, 82b van der Waals attractions, 82 zigzag hexagonal lattice, 78 surface modification, 213 Takayanagi model, 238e240 elastic modulus, 240e241, 240f tensile strength, 209e213, 213f, 223, 226fe227f thermal conductivity, 88e89, 89t tight-binding, superposition energy, 88 types, 75e76 Young’s modulus and break up elongation, 209e213, 213f Ceramic matrix composites (CMC), 50 Ceramics, 61 Chemical vapor deposition (CVD) apparatus, 105, 106f nanotube synthesis, 105e106, 108f structures growth, 105e106, 107f Composites advantages and disadvantages, 61, 62t applications, 69 Boeing aircraft structure, 64 Boeing 787 Dreamliner, 65, 66f Bulletproof vest, 65e68, 67f concrete columns, 68, 68f Enertia, electric bike, 65, 67f F-22A Raptor fighter aircraft, 63, 64f Mercedes CLK Cabriolet, body components, 65, 66f plastic bridge, 68, 69f polymer composite biomaterials, 68e69, 70f Super Jumbo Airbus A380, 65, 65f wind generator with blades, 68, 69f bamboo and timber, 46, 47f classification, 50f CMC, 50 fiber composites, 51, 52f MMC, 50 particulate composites, 51, 51f PMC, 51 structural composites, 52, 53f criteria for, 45 definitions, 45e46 engineering materials advantages, 45 ceramics, 41 characteristics, 38 metals, 38e41 per capita usage, 41e45, 46t polymer-based composites, 41e45 polymers, 41, 42t properties, 38, 39t fiber length, fiber composites, 62e63, 63f matrix phase, 46, 47f function, 48 performance characteristics, 48 286 Indexproperties, 46, 53 reinforcements, 48e49, 49f aramid fibers, 58e59, 59fe60f, 61t carbon fibers, 58, 59f, 61t ceramics, 61 functions, 49, 50f glass fibers, 57e58, 58f, 61t phase, 46, 47f polyester fibers, 60 polyethylene, 60 quartz, 60 types, 57 resins, 53 bismaleimides, 57 epoxy, 55, 55f, 56t ester cyanates, 57 phenolic resins, 56e57 polyamides, 57 polyester, 54, 54f, 56t polyurethanes, 57 silicones, 57 thermoplastics and thermosets, 53e54 vinyl ester, 55e56, 56f, 56t snail shell, 46, 47f teeth, 46, 47f CVD. See Chemical vapor deposition (CVD) D Double-walled carbon nanotubes (DWCNTs), 75e76, 76f modified HalpineTsai model, 149e150 Dual asymmetric centrifuge (DAC), 182e183, 184fe185f E Einstein equation aspect ratio, 134, 135f vs. Guth model, 134, 135f reinforced elastomers, 133e134 suspension viscosity, 133e134 Young’s modulus, 134 Epoxy resins, 55, 55f, 56t Ester cyanates, 57 F Fiber composites, 51, 52f fiber length, 62e63, 63f micromechanics modeling critical length, 218e219 effective fiber, 218e219 fiber volume fraction, 218 HalpineTsai equations, 217 hybrid composites, 219e220 materials cost, 219e220 nanotube reinforced composites, 217 single reinforcing phase, 218 strength efficiency factor, 219 tensile strength, 218e219 G Glass fibers, 57e58, 58f, 61t Gold and silver nanoparticles, 13e14, 16f H HalpineTsai model, 139e142, 140f, 142f Hatta model, 158, 159f Health risk and safe disposal asbestos fibers, 109 electrolyte imbalance, water consumption, 109 environmental precaution, 110e111 glove box, 110, 111f granulomas, 109e110, 110f MSDS, 111e119, 111b toxicological effects, 110 High-shear mixer applications, 178e180 oil emulsions, 177e178 PU matrix composites, 178b, 179f rotor types, 177e178, 178f K Kelly-Tyson approximation, 129e130 L Laser ablation, 104e105, 105f Lycurgus cup, 13, 15f M Material Safety Data Sheets (MSDS), 111e119, 111b Matlab simulation HalpineTsai code, 104 mixtures, code rule, 103e106 Metal matrix composites (MMC), 50 Modified HalpineTsai model DWCNTs and MWCNTs, 149e150 effective fiber modulus, 149 fibrous composites, 147 vs. HalpineTsai model, 151, 151f mechanical properties, 150, 150t micromechanics-based models, 147e148 nanotube-matrix interface, 147 tensile strength, 149 Young’s modulus, 148, 148f Index 287Molecular nanotechnology, 11 Moore’s law chip development, 15 computing power evolution, 17e18, 21f integrated circuit transistors, 18, 21f transistor, 15, 20f transistor investors, 15, 20f MSDS. See Material Safety Data Sheets (MSDS) Multi-walled carbon nanotubes (MWCNTs), 75e77, 76f, 79f modified HalpineTsai model, 149e150 oxidation temperature, 92f, 92b oxidation time, 93f, 93b N Nan model, 157, 158f Nanoscience and nanotechnology applications air pollution and water, 28e29, 29f aviation and space, 22, 23f broken bone, healing process, 23e24 energy, 27e28, 28f flexible color display monitor, 26, 26f in food industry, 25e26, 25f integrated circuit fabrication, 27 magnetic random access memory (MRAM), 27 micro and nano robots, 24e25, 24f nanocapsules, 22e23, 24f nano-silver crystals, 22e23 quantum dots, 22e23 sports, 30, 32f textiles, 29e30, 31f history, 1e2, 4e10, 12f, 14, 18f American Physical Society, 10 atom rearrangement, 13 biological system, 9 computing machines, 11 electron microscopes, 8e9 gold and silver nanoparticles, 13e14, 16f high school competition, 15e18 lubrication problems, 10 Lycurgus cup, 13, 15f molecular nanotechnology, 11 NNI, 12 scanning tunneling microscope, 11, 11f small scale atoms, 13e15 timeline with events, 15, 19t tiny factories, 17e18 Moore’s law chip development, 15 computing power evolution, 17e18, 21f integrated circuit transistors, 18, 21f transistor, 15, 20f transistor investors, 15, 20f nano-abacus, 30, 32f nanofabrication, 33 nanoparticles electromagnetic properties, 9e10 mechanical properties, 10 optical properties, 10 sinterization, 8e9 size effect, 8 thermal properties, 9, 9f nanoscale area/volume ratio, 6 atom density, 7 atoms alignment, 1e2, 2f copper atom mass, 8 definition, 1e2 gold cube, specific surface area, 5e6, 5f International System of Units, prefixes, 1e2, 2t material outer surface, 7, 7f number of atoms, 4 objects vs. natural organisms size, 2, 3f properties, 6, 6t specific surface area, 8 SWCNTs, 31 types, 13, 14f National Nanotechnology Initiative (NNI), 12 Nielsen model, 142e145, 143t, 144f, 144t, 159e161, 160f P Particulate composites, 51, 51f Periodic table, 47f Phenolic resins, 56e57 Polyamides, 57 Polyester fibers, 60 Polyester resins, 54, 54f, 56t Polyethylene, 60 Polymer matrix composites (PMC), 51 DAC, 182e183, 184fe185f electrical conductivity advantages, 161 composite filler, 162 conduction path, 164, 165f conductive fillers, 161 contact resistance, 162 factors, 164e167 percolation threshold, 161e162, 162fe163f high-shear mixer, 177e180, 178f, 178b, 179f magnetic stirring, 175e177, 176f manufacture of, 172, 173f mechanical properties 288 Indexaspect ratio, 130 constituents density, 131 Cox model, 137e138, 138fe139f critical length, 128e129 Einstein equation, 133e134, 135f elastic modulus, nanocomposites, 133 elastic properties, 151 fractions and concentrations, 131, 131t HalpineTsai model, 139e142, 140f, 142f Kelly-Tyson approximation, 129e130 modified HalpineTsai model, 147e151, 148f, 150t Nielsen model, 142e145, 143t, 144f, 144t polymers and density, 128, 129t series and parallel models, 136e137, 136fe137f SWCNTs, 130, 130f tensile strength, nanocomposites, 145e147, 146f mechanical stirring, 177, 177f melt processing, 172e174, 174f nanosized reinforcements, 172 preparation methods, 172 properties chemical modification, 127 molecular chemical bonds, 127, 128f nano-fillers aggregation, 126, 127f van der Waals interactions, 126 reaction processing/in situ polymerization, 174e175, 175f single-screw extruder, 185e187, 186fe187f solution processing, 172, 174f sonication, 180e182, 181fe183f thermal conductivity geometric model, 154e157, 155f glass and organic fibers, 152, 153t Hatta model, 158, 159f Nan model, 157, 158f Nielsen model, 159e161, 160f parallel model, 152e154, 154f series model, 153e154, 154f two-phase composites, 152 three-roll mill (calender), 184e185, 186f Polyurethanes, 57 Q Quartz, 60 S Silicones, 57 Single-walled carbon nanotubes (SWCNTs), 31, 75e76, 76fe77f, 130, 130f defects of, 90, 91f mechanical properties, 86e87, 86f polyethylene polymer chain, 94, 95f Sonication advantages, 181 cavitation, 180, 182f industrial sonicators, 182 sodium carbonate, milling process, 180e181, 183f ultrasonic bath and probe, 180, 181f Structural composites, 52, 53f T Takayanagi model, 238e240 elastic modulus, 240e241, 240f V Vinyl ester, 55e56, 56f, 56t
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Carbon Nanotube Reinforced Composites رابط مباشر لتنزيل كتاب Carbon Nanotube Reinforced Composites
|
|