Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Theory of Machines and Mechanisms - Third Edition الإثنين 25 ديسمبر 2023, 1:46 am | |
|
أخواني في الله أحضرت لكم كتاب Theory of Machines and Mechanisms Third Edition John J. Dicker, Jr. Professor of Mechanical Engineering University of Wisconsin-Madison Gordon R. Pennock Associate Professor of Mechanical Engineering Purdue University Joseph E. Shigley Late Professor Emeritus of Mechanical Engineering The University of Michigan
و المحتوى كما يلي :
Contents PREFACE XIII ABOUT THE AUTHORS XVII Part1 KINEMATICS AND MECHANISMS 1 1 The World of Mechanisms 3 1.1 Introduction 3 1.2 Analysis and Synthesis 4 1.3 The Science of Mechanics 4 1.4 Terminology, Definitions, and Assumptions 5 1.5 Planar, Spherical, and Spatial Mechanisms 10 1.6 Mobility II 1.7 Classification of Mechanisms 14 1.8 Kinematic Inversion 26 1.9 Grashof's Law 27 1.10 Mechanical Advantage 29 Problems 31 2 Positionand Displacement 33 2.1 Locus of a Moving Point 33 2.2 Position of a Point 36 2.3 Position Difference Between Two Points 37 2.4 Apparent Position of a Point 38 2.5 Absolute Position of a Point 39 2.6 The Loop-Closure Equation 41 2.7 Graphic Position Analysis 45 2.8 Algebraic Position Analysis 51 2.9 Complex-Algebra Solutions of Planar Vector Equations 55 2.10 Complex Polar Algebra 57 2.11 Position Analysis Techniques 60 2.12 The Chace Solutions to Planar Vector Equations 64 2.13 Coupler-Curve Generation 68 2.14 Displacement of a Moving Point 70 2.15 Displacement Difference Between Two Points 71vi CONTENTS 2.16 Rotation and Translation 72 2.17 Apparent Displacement 74 2.18 Absolute Displacement 75 Problems 76 3 Velocity 79 3.1 Definition of Velocity 79 3.2 Rotation of a Rigid Body 80 3.3 Velocity Difference Between Points of a Rigid Body 82 3.4 Graphic Methods; Velocity Polygons 85 3.5 Apparent Velocity of a Point in a Moving Coordinate System 92 3.6 Apparent Angular Velocity 97 3.7 Direct Contact and Rolling Contact 98 3.8 Systematic Strategy for Velocity Analysis 99 3.9 Analytic Methods 100 3.10 Complex-Algebra Methods 101 3.11 The Method of Kinematic Coefficients 105 3.12 The Vector Method 116 3.13 Instantaneous Center of Velocity 117 3.14 The Aronhold-Kennedy Theorem of Three Centers 119 3.15 Locating Instant Centers of Velocity 120 3.16 Velocity Analysis Using Instant Centers 123 3.17 The Angular-Velocity-Ratio Theorem 126 3.18 Relationships Between First-Order Kinematic Coefficients and Instant Centers 127 3.19 Freudenstein' s Theorem 129 3.20 Indices of Merit; Mechanical Advantage 130 3.21 Centrodes 133 Problems 135 4 Acceleration 141 4.1 Definition of Acceleration 141 4.2 Angular Acceleration 144 4.3 Acceleration Difference Between Points of a Rigid Body 144 4.4 Acceleration Polygons 151 4.5 Apparent Acceleration of a Point in a Moving Coordinate System 155 4.6 Apparent Angular Acceleration 163 4.7 Direct Contact and Rolling Contact 164 4.8 Systematic Strategy for Acceleration Analysis 167 4.9 Analytic Methods 168 4.10 Complex-Algebra Methods 169CONTENTS vii 4.11 The Method of Kinematic Coefficients 171 4.12 The Chace Solutions 175 4.13 The Instant Center of Acceleration 177 4.14 The Euler-Savary Equation 178 4.15 The Bobillier Constructions 183 4.16 Radius of Curvature of a Point Trajectory Using Kinematic Coefficients 187 4.17 The Cubic of Stationary Curvature 188 Problems 190 Part 2 DESIGN OF MECHANISMS 195 5 Carn Design 197 5.1 Introduction 197 5.2 Classification of Cams and Followers 198 5.3 Displacement Diagrams 200 5.4 Graphical Layout of Cam Profiles 203 5.5 Kinematic Coefficients of the Follower Motion 207 5.6 High-Speed Cams 211 5.7 Standard Cam Motions 212 5.8 Matching Derivatives of the Displacement Diagrams 222 5.9 Plate Cam with Reciprocating Flat-Face Follower 225 5.10 Plate Cam with Reciprocating Roller Follower 230 Problems 250 6 Spur Gears 252 6.1 Terminology and Definitions 252 6.2 Fundamental Law of Toothed Gearing 255 6.3 Involute Properties 256 6.4 Interchangeable Gears; AGMA Standards 257 6.5 Fundamentals of Gear-Tooth Action 259 6.6 The Manufacture of Gear Teeth 262 6.7 Interference and Undercutting 265 6.8 Contact Ratio 268 6.9 Varying the Center Distance 270 6.10 Involutometry 271 6.11 Nonstandard Gear Teeth 274 Problems 282 7 Helical Gears 286 7.1 Parallel-Axis Helical Gears 286 7.2 Helical Gear Tooth Relations 287viii CONTENTS 7.3 Helical Gear Tooth Proportions 289 7.4 Contact of Helical Gear Teeth 290 7.5 Replacing Spur Gears with Helical Gears 291 7.6 Herringbone Gears 292 7.7 Crossed-Axis Helical Gears 292 Problems 295 8 Bevel Gears 297 8.1 Straight-Tooth Bevel Gears 297 8.2 Tooth Proportions for Bevel Gears 301 8.3 Crown and Face Gears 302 8.4 Spiral Bevel Gears 303 8.5 Hypoid Gears 304 Problems 305 9 Worms and Worm Gears 306 9.1 Basics 306 Problems 310 10 Mechanism Trains 311 10.1 Parallel-Axis Gear Trains 311 10.2 Examples of Gear Trains 313 10.3 Determining Tooth Numbers 314 10.4 Epicyclic Gear Trains 315 10.5 Bevel Gear Epicyclic Trains 317 10.6 Analysis of Planetary Gear Trains by Formula 317 10.7 Tabular Analysis of Planetary Gear Trains 319 10.8 Adders and Differentials 323 10.9 All Wheel Drive Train 327 Problems 329 11 Synthesisof Linkages 332 11.1 Type, Number, and Dimensional Synthesis 332 11.2 Function Generation, Path Generation, and Body Guidance 333 11.3 Two-Position Synthesis of Slider-Crank Mechanisms 333 11.4 Two-Position Synthesis of Crank-and-Rocker Mechanisms 334 11.5 Crank-Rocker Mechanisms with Optimum Transmission Angle 335 11.6 Three-Position Synthesis 338 11.7 Four-Position Synthesis; Point-Precision Reduction 339 . 11.8 Precision Positions; Structural Error; Chebychev Spacing 341 11.9 The Overlay Method 34311.10 Coupler-Curve Synthesis 344 11.11 Cognate Linkages; The Roberts-Chebychev Theorem 348 11.l2 Bloch's Method of Synthesis 350 11.I3 Freudenstein's Equation 352 11.I4 Analytic Synthesis Using Complex Algebra 356 11.15 Synthesis of Dwell Mechanisms 360 II.I 6 Intermittent Rotary Motion 361 Problems 366 12 Spatial Mechanisms 368 12.1 Introduction 368 12.2 Exceptions in the Mobility of Mechanisms 369 12.3 The Position-Analysis Problem 373 12.4 Velocity and Acceleration Analyses 378 12.5 The Eulerian Angles 384 12.6 The Denavit-Hartenberg Parameters 387 12.7 Transformation-Matrix Position Analysis 389 12.8 Matrix Velocity and Acceleration Analyses 392 12.9 Generalized Mechanism Analysis Computer Programs 397 Problems 400 13 Robotics 403 13.1 Introduction 403 13.2 Topological Arrangements of Robotic Arms 404 13.3 Forward Kinematics 407 13.4 Inverse Position Analysis 411 13.5 Inverse Velocity and Acceleration Analyses 414 13.6 Robot Actuator Force Analyses 418 Problems 421 Part 3 DYNAMICS OF MACHINES 423 14 Static;: ForceAnalysis 425 14.1 Introduction 425 14.2 Newton's Laws 427 14.3 Systems of Units 428 14.4 Applied and Constraint Forces 429 14.5 Free-Body Diagrams 432 14.6 Conditions for Equilibrium 433 14.7 Two- and Three-Force Members 435 14.8 Four-Force Members 443 CONTENTSx CONTENTS 14.9 Friction-Force Models 445 14.10 Static Force Analysis with Friction 448 14.11 Spur- and Helical-Gear Force Analysis 451 14.12 Straight- Bevel-Gear Force Analysis 457 14.13 The Method of Virtual Work 461 Problems 464 15 Dynamic ForceAnalysis (Planar) 470 15.1 Introduction 470 15.2 Centroid and Center of Mass 470 15.3 Mass Moments and Products of Inertia 475 15.4 Inertia Forces and D' Alembert's Principle 478 15.5 The Principle of Superposition 485 15.6 Planar Rotation About a Fixed Center 489 15.7 Shaking Forces and Moments 492 15.8 Complex Algebra Approach 492 15.9 Equation of Motion 502 Problems 511 16 Dynamic ForceAnalysis(Spatial) 515 16.1 Introduction 515 16.2 Measuring Mass Moment of Inertia 515 16.3 Transformation of Inertia Axes 519 16.4 Euler's Equations of Motion 523 16.5 Impulse and Momentum 527 16.6 Angular Impulse and Angular Momentum 528 Problems 538 17 Vibration Analysis 542 17.1 Differential Equations of Motion 542 17.2 A Vertical Model 546 17.3 Solution of the Differential Equation 547 17.4 Step Input Forcing 551 17.5 Phase-Plane Representation 553 17.6 Phase-Plane Analysis 555 17.7 Transient Disturbances 559 17.8 Free Vibration with Viscous Damping 563 17.9 Damping Obtained by Experiment 565 17.10 Phase-Plane Representation of Damped Vibration 567 17.11 Response to Periodic Forcing 571 17.12 Harmonic Forcing 574CONTENTS xi 17.13 Forcing Caused by Unbalance 579 17.14 Relative Motion 580 17.15 Isolation 580 17.16 Rayleigh's Method 583 17.17 First and Second Critical Speeds of a Shaft 586 17.18 Torsional Systems 592 Problems 594 18 Dynamics of Reciprocating Engines 598 18.1 Engine Types 598 18.2 Indicator Diagrams 603 18.3 Dynamic Analysis-General 606 18.4 Gas Forces 606 18.5 Equivalent Masses 609 18.6 Inertia Forces 610 18.7 Bearing Loads in a Single-Cylinder Engine 613 18.8 Crankshaft Torque 616 18.9 Engine Shaking Forces 616 18.10 Computation Hints 617 Problems 620 19 Balancing 621 19.1 Static Unbalance 621 19.2 Equations of Motion 622 19.3 Static Balancing Machines 624 19.4 Dynamic Unbalance 626 19.5 Analysis of Unbalance 627 19.6 Dynamic Balancing 635 19.7 Balancing Machines 638 19.8 Field Balancing with a Programmable Calculator 640 19.9 Balancing a Single-Cylinder Engine 643 19.10 Balancing Multicylinder Engines 647 19.11 Analytical Technique for Balancing Multicylinder Reciprocating Engines 651 19.12 Balancing Linkages 656 19.13 Balancing of Machines 661 Problems 663 20 Cam Dynamics 665 20.1 Rigid- and Elastic-Body Cam Systems 665 20.2 Analysis of an Eccentric Cam 666 20.3 Effect of Sliding Friction 670xii CONTENTS 20.4 Analysis of Disk Cam with Reciprocating Roller Follower 671 20.5 Analysis of Elastic Cam Systems 673 20.6 Unbalance, Spring Surge, and Windup 675 Problems 676 21 Flywheels 678 21.1 Dynamic Theory 678 21.2 Integration Technique 680 21.3 Multicylinder Engine Torque Summation 682 Problems 683 22 Governors 685 22.1 Classification 685 22.2 Centrifugal Governors 686 22.3 Inertia Governors 687 22.4 Mechanical Control Systems 687 22.5 Standard Input Functions 689 22.6 Solution of Linear Differential Equations 690 22.7 Analysis of Proportional-Error Feedback Systems 695 23 Gyroscopes 699 23.1 Introduction 699 23.2 The Motion of a Gyroscope 700 23.3 Steady or Regular Precession 701 23.4 Forced Precession 704 Problems 711 APPENDIXES ApPENDIX A: TABLES Table 1 Standard SI Prefixes 712 Table 2 Conversion from U.S. Customary Units to SI Units 713 Table 3 Conversion from SI Units to U.S. Customary Units 713 Table 4 Properties of Areas 714 Table 5 Mass Moments ofInertia 715 Table 6 Involute Function 716 ApPENDIX B: ANSWERS TO SELECTED PROBLEMS 718 INDEX 725 Index Absolute Second, 210 Apparent position, 38-39 Acceleration, 142 of Spatial Mechanisms, 396-397 Equation, 39 Coordinate system, 40 Tangential component of, 143 Apparent velocity, 93-94 Displacement, 75 Action, line of, 256, 259 Angular, 97-98 Motion,26 Actuator, linear, 14 Equation, 97 Position, 39--40 ADAMS (Automatic Dynamic Analysis Equation, 93 System of units, 428 of Mechanical Systems), 398 Applied force, 429 Velocity, 80 Addendum, 253, 254 Approach Acceleration,141-193 Circle, 259 Angle, 265-266 Absolute, 142 Adder and differential mechanisms, 323 Arc of, 265-266, 268 Angular, 144 Adjustments, 14 Arc Apparent, 155-163 Advance stroke, 18-20 of Approach, 265-266, 268 Angular, 163 AGMA (American Gear Manufacturers of Recess, 266, 268 Equation, 163 Association), 257, 257n Area moment of inertia, 714 Equation, 158 Air-standard cycle, 604 Arm of couple, 430 Average, 141 Alvord, H. H., 517n Aronhold,135n Cam follower, 210-211 All wheel drive train, 327-328 Aronhold-Kennedy theorem, 119-120 Centripetal component of. Amplitude of vibration, 550 Articulated arm, 404, 405 See Normal component Analysis, 4 Automotive Components of Dynamic force, 470-514 All wheel drive train, 327-328 Centripetal component. Elastic body, 5, 427, 665 Cruise-control,698 See Normal component Rigid body, 5, 426, 665 Differential,325-328 Coriolis component, 158-163, 168 Static force, 425--463 Limited slip, 326 Normal component, 143, 146-155, Angular Suspension, 398 157-163, 168 Acceleration, 144 Overhead valve arrangement, 666 Rolling-contact component, Apparent acceleration, 163 Transmission, 313 164-167, 168 Apparent velocity, 97-98 Average Tangential component, 143, Displacement, 80-81, 83 Acceleration, 141 146-155, 158-163, 168 Impulse, 528-538 Velocity, 79 Coriolis component of, 143, Momentum, 528-538, 701, 703-704 Axes, principal, 475 146-155, 157-163, 168 Velocity, 82 Axial pitch, 287-288 Definition of, 141 Ratio theorem, 126 Axodes, 135n Difference, 145-150 Angular bevel gears, 297 Equation, 148 Annular gear, 262 Back cone, 300 Image, 153 ANSI (American National Standards Backlash, 255 Instant center of, 177-178 Institute), 257n Balancing, 621-664 Normal component of, 143, 157 Answers to selected problems, 718-724 Definition of, 621 Polygon,151-155 ANSYS,397 Direct method of, 633-635 Relations Apparent acceleration, 155-163 Dynamic, 635-638 of Four-bar linkage, 148-151 Angular, 163 Field,640-643 of Slider-crank mechanism, Equation, 163 of Linkages, 656-661 160-163,607 Equation, 158 Machines, 624-626 Rolling-contact component of, Apparent displacement, 74-75 Mechanical compensation, 164-165 Equation, 74 639-640 725726 INDEX Balancing (continued) Nodal-Point, 638-639 Pivoted-cradle, 636, 638 of Machines, 661-662 of Multicylinder engines, 647-651, 651-656 of Single-cylinder engines, 643-647 Static, 624-626 Ball, R. S., 135n Ball's point, 189 Ball-and-socket joint, 9 Barrel cam, 198, 199 Base Circle, 259 of Cam, 203 of Gear, 256 Cylinder, 256 Link,7 Pitch,261 Basic units, 428 Beer, F. P., 447n Bennett's mechanism, 371, 372 Berkhoff, R. S., 656n Bernoulli, J., 461 Bevel gear, 297-305 Epicyclic trains, 317 Forces on, 457-460 Spiral, 303-304 Zerol, 303-304 Beyer, R. A., 365n Bhat, R. B., 593n Bistable mechanism, 15 Bloch, S. Sch., 350, 365n Bloch's method of synthesis, 350-352 Bobillier constructions, 183-187 Bobillier theorem, 183 Body-fixed axes, 384 Body guidance, 333 Bore-stroke ratio, 605 Bottom dead center (BDC), 646 Branch defect, 343 Bricard linkage, 372 Bridgman, P. W, 545n Brodell, R. J., 365n Calahan, D. A., 398n Cam, 17-18, 198 Definition of, 198 Displacement diagram, 200-203 Dynamics, 665-676 Elastic body, 665 Follower, 17-18 Curved-shoe, 198, 199 Flat-face, 198-200 Knife-edge, 198, 199 Offset, 198, 199 Oscillating, 198-200 Radial, 198 Reciprocating, 198-200 Roller, 198-200 Spherical-face, 198 Forces, 667 Layout, 203-206 Pressure angle, 231-232 Maximum, 232 Profile, 203-206 Coordinates, 229, 240 Rigid-body, 665 Roller, size of, 234-239 Shaft torque, 668 Standard motions, 212-221 Types of Barrel, 198, 199 Circle-arc, 211-212 Conjugate, 200 Constant breadth, 200 Cylindric, 198 Disk, 198 Dual, 200 End,198 Face, 198, 199 Inverse, 198 Plate, 198, 199 Radial, 198 Tangent, 211-212 Wedge, 198, 199 Card factor, 605 Cardan Joint, 22, 370, 388-389 Suspension, 699-700 Cartesian coordinates, 34 Cayley, A, 349, 365n Cayley diagram, 349 Center of mass, 470-474 Center of percussion, 491, 609 Centrifugal governors, 686 Centripetal component of acceleration. See Normal component of acceleration Centrode, 133-134 Fixed, 133 Moving, 133 Normal, 134 Tangent, 134 Centroid,472 of Area, 472 Definition of, 472 Chace, M. A., 64n, 373n, 374, 398,398n Chace approach, 374 Acceleration analysis, 175-177 Position analysis, 64-68, 374 Velocity analysis, 116-117 Chain, kinematic, 6, 26 Chebychev linkage, 24-25 Chebychev spacing, 341-343 Chen, F. Y., 241n Circle-arc cam, 211-212 Circling-point curve, 188 Circular Frequency, 549-550, 623 Pitch, 254 Normal,287-288 Transverse, 287-288 Clamping mechanism, 14-15,41 Classification of mechanisms, 14-26 Clearance, 253, 255 Closed chain, 7 Closed-loop control system, 687-688 Coefficient of Friction, 447 Kinematic, 105-117 First-order, 115 Second-order, 172 of Speed fluctuation, 681 of Viscous damping, 544 Cognate linkage, 23, 348-350 Collineation axis, 130 Complex algebra, 55-57,101-105, 169-171,356-360,492-502 Components of acceleration Centripetal component. See Normal component Coriolis component, 158 Normal component, 143, 146, 157 Rolling-contact component, 164-165 Tangential component, 143, 146, 158 Compound-closed chain, 7 Compound gear train, 313 Compression, 599 Ratio, 605 Computer programs, 397-399 Concurrency, point of, 438 Concurrent forces, 436 Conjugate Cams, 200INDEX 727 Points, 179 Position analysis, 54-55 Denavit-Hartenberg parameters, Profiles, 255 Spatial, 375-384 387-389,407 Connecting rod, 54 Spherical, 370 Derived unit, 428 Articulated, 600 Synthesis, 334-338 Design, definition of Force, 614-616 Crankshaft, 60 I Diagram Master, 600 Two-throw, 648 Displacement, 200-203 Connector, 21-22 Force, 614-616 Free-body, 432-433 Conservation of angular Torque, 616 Schematic, 6 momentum, 530 Crank-shaper mechanism, 17, 19-20 Diametral pitch, 252 Conservation of momentum, 528 Critical damping, 563, 623 Normal, 287-288 Constant-breadth cam, 200 Critical damping coefficient, 563, 623 Transverse, 287-288 Constraint, 42 Critical speed, 586-591, 623 Diesel cycle, 598-599 General, 372 Crossed-axis helical gears, 292-294 Differential, automotive, 325-326 Redundant, 372 Pitch diameters of, 292-294 All wheel drive train, 327-328 Constraint force, 429 Crossed linkage, 51, 68 Limited slip, 326 Contact Crown gear, 302-303 TORSEN,326 Direct, 98-99 Crown rack, 303-304 Worm gear, 326 of Gear teeth, 265-268 Cubic of stationary curvature, 188-189 Differential equation of motion, of Helical gear teeth, 290 Curvature, 143 542-546 Path of, 267 Center of, 93, 179 Solution of, 547-551 Ratio, 269 Radius of, 93, 143, 179 Differential mechanisms, 323-327 Formula, 269 Curve generator, 23, 68-70 Differential screw, 15 of Helical gears Curved-shoe follower, 198, 199 Dimensional synthesis, 332 Axial, 290 Curvilinear translation, 73 Direct contact, 98-99, 164-167 Face, 290 Cycloid, definition, 164 Direction cosines, 34, 385 Normal, 290 Cycloidal motion, 202, 216-217 Disk cam, 198 Total, 290 Derivatives of, 213-214, 216-217 Displacement, 70-75 Transverse, 290 Cylinder wall force, 614-616 Absolute, 75 Rolling, 98-99, 111, 168 Cylindric Angular, 80-81, 83 Control systems, mechanical, 687-698 Cam, 198 Apparent, 74-75 Conversion of units Coordinates, 34 Definition, 70-71 SI to U.S. customary, 713 Pair, 8,9 Diagram, 200-203 U.S. customary to SI, 713 Difference, 71-72, 83 Coordinate systems, 38-39, 74-75, DADS (Dynamic Analysis and Design Virtual, 461 93-94, 155-163 System), 398 Volume, 605 Coordinates, complex, 55-57 D' Alembert's principle, 479 Disturbance, 559 Coplanar motion, 10 Damping Division, by complex number, 58 Coriolis component of acceleration, 158 Coefficient, 623 Dobbs, H. H., 327, 328 Correction planes, 628-636, 641-643 Critical, 563, 623 Double-crank linkage. Coulomb friction, 446-448 Factor, 542 See drag-link mechanism Counterweight, 658-660 Phase angle, 567 Double-helical gear, 292 Couple, 430 Ratio, 564, 623 Double-rocker mechanism, 27,77 Characteristics of, 430 Dead-Center Position, 77 Drag-link mechanism, 21, 27 Coupler, 54 Dedendum, 253, 254 Driver, 6 Coupler curve, 23-24, 68-70, 344-348 Circle, 260 Dual number, 373 Coupling, 21-22 Deformable body, 427, 543 Dunkerley's Method, 587-588 Crane, floating, 466 Degrees of freedom, 11-14,369 Dwell mechanism, 360-361 Crankpin force, 614-616 Of Lower Pairs, 9 Dwell motion, 200 Crank-rocker mechanism, 17,27, deJonge, A. E. R., 178n Dynamic equilibrium, 435 54-55,334-335 Denavit, J., 8n, 14n, 132n, 178n, 189n, Dynamic force analysis Advantages of, 334 348, 365n, 372n, 373n, 387n, Planar, 470-514 Limit position, 77, 334 387-389,407 Spatial, 515-541728 INDEX Dynamics Euler's equations of motion, 523-527 Forcing, 551-553, 571-579 of Cam systems, 665-676 Euler's theorem, 72 Form cutter, 263 Definition,4 Exhaust, 599 Forward kinematics, 407--411 of Reciprocating engine, 598-620 Expansion, 599 Foucault, L., 699 Extreme positions of crank-rocker Four-bar linkage, 17,41 Eccentric cam, 666-670 linkage, 334 Analysis of, 50-51, 105-108,304-305 Eccentricity in Cam system, 229, 231 Extreme values of velocity, 130 Angular velocity relations, 305 Edge mill, 707-710 Inversions of, 27-29 Eighth-order polynomial cam Face cam, 198, 199 Spatial, 375-384 motion, 214-215, 216-217 Face gear, 302-303 Spherical,370 Derivatives of, 214-215, 216-217 Face width, 253 Four-circle method, 178 Elastic-body analysis, 427, 543, 665 of Cam follower, 228 Four-force member, 443--445 Ellipse, equation of, 288 of Helical gears, 290 Four-stroke engine cycle, 599 Elliptical gear, 134 Fagerstrom, W. B., 640n, 643 Frame, 7, 26 End effecter, 404 Feedback control system, 687-688 Free-body, 432--433 Engine Ferguson's paradox, 321 Freedom Bearing loads in single-cylinder, Fillet, 261 Degrees of, II, 369 613-616 Fine adjustment, 14 Idle, 372 Crank arrangement, 600 Firing order, 599 Free vector, 432 Cycle, 598-599 First-order kinematic coefficients, 115 Frequency, 543 Firing order, 599 Fisher, FE., 517n Freudenstein, F, 129n, 332n, 365n, 373n Five-cylinder, 599-600 Five-cylinder engine, 599-600 Freudenstein's equation, 352-353 Four-cylinder, 648 Fixed centrode, 133 Freudenstein's theorem, 129-130 In line, 599 Flat pair, 9 Friction Opposed piston, 599 Flat-face follower. 198-200 Angle, 447 Radial, 600 Flip-flop mechanism, 15 Coefficient of, 447 Shaking force, 616-617 Float in cam systems, 667 Coulomb, 446--448, 670 Single cylinder, 613-616 Flyball governor, 541 Force models, 445--448 Six cylinder, 650 Flywheels, 678-683 Force, 446 Three-cylinder, 599, 649 Follower, 6, 17-18 Sliding, 447, 670 V-type, 599-600 Motion, derivatives of, 207, 211-225 Static, 446--447 Various types, 598-603, 650-651 Force,426 Viscous, 446, 448 Epicyclic gear, 315 Applied, 429, 432 Full depth, 258 Epicyclic gear train types, 316 Characteristics of, 426, 430 Full-rise cam motion, 215 Equation of motion, 427, 502-510, Constraint, 429 Full-return cam motion, 215 523-527,542-546,622-624 Definition, 426 Function generation, 333 Equilibrium External, 432 Function generator, 26 Dynamic, 435 Friction, 446 Static, 433 Indeterminate, 373 Ganter, M. A., 235-239 Equivalent gear, 288, 301 Inertia, 610-613 Gantry robot, 406 Equivalent mass, 609-610 Internal, 432 Gas force, 606-609 Erdman, A. G., 356, 365n, 399n Polygon, 438 Gas law, 604 Error, 341-343 Transmitted, 452 Gear, 252 Graphical, 341 Unit of, 428 Graphical layout, 259-262 Mechanical, 341 Vector, 430 Manufacture, 262-265 Structural, 341 Force analysis Tooth action, 259-262 Escapement, 15-16 Analytic, 438--439 Train, 311-328 Graham's, 15-16 of Bevel gears, 457--460 Compound, 313 Euler, L., 4, 4n, 699 graphical, 436--438 Planetary, 315 Euler equation, 57 of Helical gears, 451--456 Reverted,313 Euler-Savary equation, 178-183 of Robot actuator, 418--420 Series connected, 311-315 Eulerian angles, 384-387 Forced precession, 704-710 Epicyclic, 315INDEX 729 Analysis by formula, 317-319 Gravity, 429 Horsepower equation, 604 Bevel gear, 317 Gravity, standard, 429 Hrones, J. A., 23n Differentials, 323-327 Grodzinsky, P., 365n Hrones-Nelson atlas, 23, 23n, TORSEN, 326 Griibler's criterion, 13 360--361,364 Worm gear, 326 Gustavson, R. E., 365n Humpage's reduction gear, 317 Tabular analysis, 319-323 Gyration, radius of, 476 Hunt, K. H., 365n, 415n Type of Gyroscope, 699-710 Hypoid gears, 304-305 Annular, 262 Definition of, 699 Bevel, 297-305 Motion of, 700--701 Idle freedom, 372 Angular, 297 Gyroscopic torque, 704-710 Idler, 312 Spiral, 303-304 Images, properties of, 91,153 Straight-tooth, 297-301 Hain, K., 178n, 188n, 332n, 365n Imaginary coordinates, 55-57 Crossed-axis helical, 292-294 Half earn motions, 2I7-221 Imaginary mass method of Crown, 302-303 Half-cycloidal earn motion, 219-221 balancing, 644-651 Double-helical, 292 Equations, 219-221 IMP (Integrated Mechanisms Elliptical, 134 Half-harmonic earn motion, 217-219 Program), 398 Epicyclic, 315 Equations, 217-219 Impulse, 527-528 Face, 302-303 Hall, A. S., Jr., 130n, 178n, 189n, 365n Indexing mechanism, 16-17,44 Helical, 286-295 Hand and thrust relations of helical Indeterminate force, 373 Herringbone, 292 gears, 293 Indicator, 603 Hypoid,304-305 Harmonic forcing, 574-579 Diagram, 602, 603-606, 617-619 Internal, 262 Harmonic motion, 213, 215-216 Engine, 603 Miter, 297, 298 Harmonics, 646 Inertia Planet, 315 Harrisberger, L., 369, 369n, 370, Axes, principal, 475 Ring, 324-325 372,372n Axes, transformation of, 519-523 Spiral, 292 Hartenberg, R. S., 8n, 14n, 178n, 189n, Definition, 426 Spur, 252 348, 365n, 372n, 373n, 387n, Force, 478--480 Sun, 315 387-389 in Engines, 610--613 Worm, 306-309 Hartmann construction, 179-180 Primary, 612, 644 Zerol, 303-304 Haug, E. J., 398, 398n Secondary, 612, 644 General constraint, 372 Helical gears, 286-295 Governors, 687 Generating cutter, 263 Crossed-axis, 292-295 Mass moment of, 475 Generating line, 256 Hand and thrust relations, 293 Mass product of, 475 Generators Tooth proportions, 294 Measurement of, 515-519 Curve, 23, 68-70 Forces on, 452--453 Tensor, 475 Function, 26 Parallel-axis, 286-292 Torque, 612-613 Straight-line, 24 Tooth proportions, 289 Inflection circle, 181 Geneva wheel, 16-17,44,361-364 Helical motion, 35 Inflection pole, 181 Gleasman, V., 326 Helical pair, 8, 9 Influence coefficients, 586 Globular pair, 8, 9 Helix angle, 287 In-line engine, 599 Goldberg mechanism, 372 Herringbone gears, 292 Instant center Goodman, T. P., 178n, 332n Hesitation motion, 22 of Acceleration, 177-178 Governors, 685-698 Higher pair, 8-9 Definition, 118 Centrifugal, 686 Hinkle, R. T., 348 Number of, 119 Electronic, 685 Hirschhorn, J., 365n Use of, 123-126 Flyball,541 Hob, 264, 265 of Velocity, 117-119 Flywheels, 678-683 Hobbing, 264, 265 Instantaneous Inertia, 687 Hodges, H., 328 Acceleration, 141 Graham's escapement, 15-16 Holowenko, A. R., 19 Velocity,79 Graphical error, 341 Holzer tabular method, 593 Integration by Simpson's rule, 680-681 Grashof's law, 18, 27-29 Hooke universal joint, 22, 370, 388-389 Interference, 266-267 Gravitational system of units, 428 Horsepower characteristics, 452 Reduction of, 267-268730 INDEX Internal gear, 262 Kinetics, definition, 5 Goldberg, 372 International System (SI of units), KINSYN (KINematic Maltese cross, 44 428-429,713 SYNthesis), 399 Oscillating-slider, 402 Inverse Kloomak, M., 215n, 241n Pantagraph,25 Acceleration analysis, 416-417 Knife-edge follower, 198, 199 Parallelogram, 137 Cam, 198 Kota, S., 356, 365n Peaucillier inversor, 25 Position analysis, 411-414 Krause, R., 129n RGGR,375-384 Velocity analysis, 414-416 Kuenzel, H., 332n, 365n Reuleaux coupling, 22 Inversion Kutzbach mobility criterion, 12-14,369 Roberts', 24-25 Kinematic, 26 Scotch-yoke, 17, 19, 139 for Synthesis, 338 Law of gearing, 255-256 Scott-Russell, 25 Involute Lead, 308 Six-bar, 17, 19, 22-23 Curve. 255-257 Lead angle, 309 Slider-crank, 51-54, 333 Function, 272, 716-717 Levai epicyclic gear train types, 316 Isosceles, 333 Generation of, 256 Levai, Z. L., 315 Offset, 333 Helicoid, 286-287 Lever, 14 Sliding-block, 60-64 Isolation, 580-583 Lichty, L. C, 644n Spherical, 10 Lift, 15, 200 Wanzer needle-bar, 19 Jacobian, 171n, 397 Limit position, 77, 78 Watt's, 24-25 Jamming, 30 Limited slip differential, 326 Whitworth, 18-20 Jerk, 210 LINCAGES,399 Wobble plate, 370 Johnston, E. R., Jr., 447n Line Location of a point, 33-36 Joint, types of, 8-9 of Action, 256, 259 Locational device, 14 Balanced, 440 of Centers, 124-126, 259 Locus, 33-35 Cardan, 22, 388~389 Coordinates, 415 Logarithmic decrement, 565-566 Hooke's, 22, 388-389 Linear actuator, 14 Long-and-short-addendum Turning, 8 Linear system, 105,485 system, 281-282 Universal, 22 Linearity, 105,485 Loop-closure Wrapping, 9 Link Equation, 41-44, 373 See also, Pair, types of, lower Binary, 6 Cases of, 374 Jump, in cam systems, 667 Definition of, 6 Lowen, G. G., 656n Jump speed, 667 Function of, 6 Lower pair, 8 Ternary, 6 KAM (Kinematic Analysis Method), 397 Linkage Machine, definition of, 5n, 5-6 Kaufman. R. E., 399 Definition Maleev, M. L., 644n Kennedy, A. B. W., 5n Planar Maltese cross, 44, 361 Kennedy theorem, 119-120, 135n Quick-return, 16-20 Manipulator, 403 Kinematic chain, kind, 6-7, 26 Synthesis of Mass Kinematic coefficients, 105-117, Types of Center of, 470-474 207-211 Bennett's, 371, 372 Definition, 426 First order, 105-117 Bricard,372 Moment of inertia, 715 Relationship to instant Chebychev,24-25 Unit of, 428-429 centers, 127-129 Cognate, 348-350 Matter, definition, 426 Second Order. 171-175 Crank-rocker, 17, 27-28, 54-55, Matthew, G. K., 212n Relationship to radius and center 77,334-338 Maxwell's reciprocity of curvature, 187-188 Crank-shaper, 17, 19-20 theorem, 586-587 Kinematic inversion, 26 Crossed-bar, 137 Mechanical Kinematic pair, 6 Differential screw, 15 Advantage, 29, 130-133 Kinematic synthesis, 332-365 Double-crank, 28 of Cam system Kinematics Double-rocker, 27-28, 77 Compensation balancing method, Definition, 5 Drag-link, 21, 27-28 639-640 Forward, 407-41 I Four-bar, 17,54-55,371-372 Efficiency, 605 Inverse, 41 ]-417 Geneva, 16-17, 44 Error, 341INDEX 731 Mechanics of Momentum, 528-538 Flat. See Planar Definition of, 4 Vector, 430-431 Globular. See Spheric Divisions of, 4-5 Momentum, 527-528 Helical, 8, 9 Mechanism Angular, 701, 703-704 Pin. See Revolute Analysis, computer, 397-399 Movability, definition, 11n Planar, 8, 9 Definition of, 5-7 Moving centrode, 133 Prismatic, 8, 9 Trains, 311 Moving point Revolute, 8, 9 Types of Acceleration of, 141-144 Screw. See Helical Bistable, 15 Displacement of, 70-71 Spheric, 8, 9 Carn,17-18 Locus of, 33-35 Variable, 8 Clamping, 14 Velocity of, 79 Pantagraph linkage, 25 Dwell, 360-361 MSC Working Model, 399 Parabolic motion, 201,208-210 Escapement, 15-16 Muffley, R. v., 215n, 241n Parallel-axis formula, 476 Fine adjustment, 14 Muller, 707-710 Parallelogram linkage, 137 Flip-flop, 15 Particle, definition, 35, 426 Indexing, 16-17,44 NASTRAN, 397 Particle motion, equation of, 471 Linear actuator, 14 Natural frequency, 542, 549, 623 Path, of a point, 35 Locational, 14 Damped, 564 Path generation, 333 Offset, 17, 19,78 Neale, M. J., 447n Pawl,15-16 Oscillator, 16 Nelson, G. L., 23n Peaucellier inversor, 25 Planar 10 Newton,!., 427 Pendulum Quick~return, 16,20,78 Newton (unit), 428-429 Equation of, 516 Ratchet, 15-16 Newton~Raphson method, 53 Mill,711 Reciprocating, 17, 19 Newton slaws, 427 Torsional,516-517 Reversing,21 Newton's.notation,544 Trifilar, 517-519 Rocking,16 Nodal-pomt balancmg method, 638-639 Percussion, center of, 491, 609 Snap-action, 14-15 Normal component of acceleratIOn, 143, Performance curve, 543 Spatial, 10-11,368-373 . 146-155,157-163,168 Period of vibration, 542 Spatial four-link, 371-372 NotatIOn, complex-rectangular, 55-56 Periodic forcing, 571-574 Stop,pause, hesitation, 22 Number synthesIs, 332 Phase angle, 550, 623 Straight-line, 24-25 Offset circle, 204 Phase, of motion, 7 Swinging, 16 Offset follower 198 199 204 Phase plane, 555 Toggle, 15 Offset mechani~m 17 19 78 333 Phase plane method, 553-559 See. also. Linkage, Types of Open kinematic chain: 7' , Phasor, 549 Mechamcalcontrol systems, Opposed-piston engine, 599 Phll~IPS,1., 373, 373n 687-698 Order defect 343 Pm Jomt, 8, 9 M'Ewan, E., 365n Orlandea N' 398 398n Pinion, 252 Meritindices, 130-133 Oscillati~g i~llow'er, 198-200 Piston acceleration, 607 Millingof gear teeth, 263 Oscillating-slider linkage, 402 Piston-pin force, 614-616 Mischke,C. R., 14n, 53n, 258n, 272n, Oscillator mechanism, 16 Pitch . 365n, 426n, 591n, 593n Osculating plane, 93 An~le, 297-299 Mitergears, 297, 298 Otto cycle, 598-599 AXlal,287-288 Mobility, l1n, 11-14,369 Overconstrained 373 Base, 261 Exceptions to criteria, 369-373 Overdrive unit 322-323 Circle, 252, 253 Model,44 Overlay meth;d, 343-344 Circular, 253-254 Module, 254 Normal, 287-288 Molian, S., 241n Pair, 6-9 Transverse, 287-288 Moment Definition of, 6 Curve, of cam, 203 of a Couple, 430-431 Types of Definitions, 252-255 of Impulse, 528-538 Higher, 8-9 Diametral, 252 of Inertia, 475 See Joint, types of Normal, 287-288 Area,714 Lower, 8-9 Transverse, 287-288 Mass, 715 Cylindric, 8,9 Point, 256732 INDEX Pitch (continued) Limit, 77, 78 Rayleigh-Ritz equation, 585 Radius, equivalent, 288-289 Vector, 36 Real coordinates, 55-57 Surface, of bevel gear, 297-299 Pound force, 428 Recess Pivoted-cradle method of balancing, Power equation, 502, 604 Arc of, 266, 268 636-638 Power stroke, 599 Angle, 266 Planar Power, units of, 452 Reciprocating Linkage, 10 Precession,701-71O Engine, dynamics of, 598-620 Mechanism, 10,45 Forced, 704-710 Follower, 198-200 Motion, 35 Regular, 701-704 Mechanism, 17, 19 Pair, 8-9 Steady, 701-704 Rectangular notation, 55 Rotation about fixed center, 489-491 Precision positions, 341-343 Rectilinear motion, 35,144 Vector equations, 46-47 Prefixes, standard SI, 712 Redundant constraint, 372 Plane of couple, 430 Preload on cam, 666 Reference system, 33 Planet Pressure angle, 231,258-259 Regular precession, 701-704 Carrier, 315 Equation of, 231 Relative motion, 26,99-100,167-168 Gear, 315 Maximum, 232 Resonance, 542, 573 Planetary train, 315 Normal, 287-288 Response curve, 543 Force analysis, 455-456 Transverse, 287-288 Return, motion of cam, 200 Plate cam, 198, 199 Pressure line, 259 Return stroke, 18-20 PlUcker coordinates, 415 Pressure, mean effective, 604, 605 Reuleaux, E, 5n Point Prime circle, 203 Reuleaux coupling, 22 Mathematical meaning, 35 Principal axes, 475 Reversing mechanism, 21 Moving Principia, Newton's, 427 Reverted gear train, 313 Displacement of, 70-71 Prismatic pair, 8, 9 Revolute, 8, 9 Locus of Products of inertia, 475 RGGR linkage, 375-384 Position, 36 Programs, computer, 397-399 Rigid body, 5, 426 Absolute, 39-40 Pro/MECHANICA Motion Simulation Rigidity, assumption of, 5, 426-427 Apparent, 38-39 Package, 399 Ring gear Difference, 37-38 Rise, motion of cam, 200 Pitch, 256 Quaternion, 373 rig ratio, 607 Point-position reduction, 339-340 Quick-return mechanism, 16, 18-20 Roberts, S., 365n Polar notation, 55 Roberts-Chebychev theorem, 348-350 Pole, 135n Rack, 261 Roberts' mechanism, 24-25 Polodes, 135n Rack cutter, 264 Robot, 26, 403 Polydyne cam, 215 Radcliffe, C. w., 365n • Robotics, 403-407 Polygon Radial engine, 600 Roll center, 140 Acceleration, 151-155 Radial follower, 198 Roller follower, 198-200 Force, 438 Radius Roller radius, 234-239 Velocity, 85-91 of Curvature, 143 Rolling contact, 98-99,164-167,168 Polynomial cam motion, 215 of Cam profile, 227-228, 233-234 Root-finding technique, 53 Polytropic exponent, 604 Equation, 233-234 Rosenauer, N., 129n, 178n Position Minimum, 235-239 Rotation Absolute, 39-40 of Gyration, 476 Definition, 72-73 Analysis, 60-64 Rapson's slide, 192 of Helical gears, 293 Algebraic, 51-55, 376-378 Ratchet, 15-16 Rothbart, H. A., 332n Graphic, 45-51,375-376 Rathbone, T. c., 641, 641n Roulettes, 135n of Spatial mechanisms, 373-378, Raven, F. H., 102, 134n 389-392 Raven's method Sandor, G. N., 332n, 356, 365n Techniques, 60-64, 373-374 for Acceleration, 169-171 Sankar, T. S., 593n Apparent, 38-39 for Position, 62-64 SCARA robot, 405 Difference, 37 for Velocity, 101-105 Schematic diagram, 6 Equation, 37 Rayleigh, Baron, 584, 584n Scotch-yoke mechanism, 17, 19, 101 Dead-center, 77 Rayleigh's method, 583-586 Scott-Russell mechanism, 25INDEX 733 Screw Spiral gears, 292 Three-force member, 435--443 Differential, 15 Spring Thrust, of helical gearing, 292-293 Axis, instantaneous, 117n Rate, 666 Time ratio, 20, 334 Pair, 8-9 Stiffness, 666 Toggle Shaking Surge, 675-676 Mechanism, 15 Forces, 492, 616-617 Spur gears, 252 Position, 30,131-132 Moments, 492 Forces on, 451--452 Tooth proportions Shaping, 263, 264 Standard gravity, 429 for Spur gears, 258 Sheth, P. N., 398, 398n Standard gear tooth for Bevel gears, 301-302 Shigley,J. E., 14n, 258n, 365n, 426n, proportions, 257-258 for Helical gears, 289, 294 591n,593n Starting transient, 572 Tooth sizes, 254 SI (System International) Static balancing machines, 624-626 Tooth thickness, 253, 273 Conversion to U.S. customary Static force analysis, 425--463 Top dead center (TDC), 646 units, 713 Static friction, 446--447 Torfason, L. E., 14n Prefixes, 712 Statically indeterminate force, 373 Torque characteristics of engines, 603 Units, 428--429,713 Statics, definition, 4 TORSEN differential, 326 for Gears, 254 Stationary curvature, 188 Torsional system, 592-593 Simple-closedchain, 7 Steady precession, 701-704 Trace point, 203 Simple gear train,311-312 Steady-state vibration, 542, 574 Train value, 312 Simple-harmonicmotion, 202, 215-216 Step-input function, 551-553 Transfer formula, 476 Derivativesof, 213, 216 Stevensen, E. N., Jr., 365n, 661, 644n Transformation matrix, 373, 389-391 Simpson's ruleintegration, 68~81 Stevensen's rule, 646 Transient disturbances, 559-562 Single cylinderengine, 613-616 Stiction,450--451 Transient vibration, 542, 576 Single planebalancers, 624 Stoddart, D. A., 215 Translation, 72-73 Six-bar linkage, 17, 19,22-23 Straight-line mechanism, 24-25 Curvilinear, 73 Skew curve,35 Straight-tooth bevel gears, 297-302 Definition of, 72-73 Slider-crankmechanism Forces on, 457--460 Rectilinear, 73 Analysisof, 48-50, 51-53,100, Structural error, 341 Transmissibility, 581-582 108-110 Structure Transmission, automotive, 313 Inversionsof, 26 Definition, 5 Transmission angle, 30, 55, 132 Limitpositions, 78 Statically indeterminate, 12 Definition, 30 Offset, 17, 19,78,108-110 Strutt, J. w., 584n Extremes of, 30,132 Synthesis of, 333-334 Stub tooth, 258 Optimum, 335-338 Slidingfriction, 446--447,670 Suh, C. H., 365n Transmitted force, 452 Slidingjoint, 8, 9 Sun gear, 315 Tredgold's approximation, 300 Slug, derived fps unit of mass, 428 Superposition, principle of, 485--489 Turning pair, 8, 9 Snap-action mechanism, 14-15 Synthesis Two-force member, 435--443 Soni,A. H., 365n, 372, 372n Coupler-curve, 344-348 Two-stroke engine cycle, 599 Spatial Definition, 4 Type synthesis, 332 Four-link mechanism, 371-372 Dimensional, 332 Graphical analysis, 375-384 of Linkages, 332-365 Uicker, J. J., Jr, 235-239, 373n, Mechanism, 368-369 Number, 332 398, 398n Motion, 35 Type, 332 Unbalance Seven-link, 369 Analysis of, 627-635 Speed fluctuation, coefficient of, 681 Tabular analysis of epicyclic gear Dynamic, 626-627 Speed ratio, 312 trains, 319-323 Forcing caused by, 579 Spherical Tangent cam, 211, 212 Static, 621-622 Coordinates, 34 Tangential component of acceleration, Units of, 635 Joint, 8, 9 143, 146-155, 158-163, 168 Undercutting, 265-268 Linkage, 370 Tao, D. c., 189n, 365n in Cam systems, 225-226, 233-234 Mechanism, 368 Tesar, D., 212n Elimination of, 226-227, 234-239, Spin axis, 700-702 Thearle, E. L., 641, 641n 267-268 Spiral angle, 303-304 Three cylinder engine, 599 in Gear systems, 267-268734 INDEX Uniform motion, 201 Unit,37 Free, 542 Unit vector, 37 Velocity, 80 Phase-plane representation, 555-571 Units Velocity difference, 84 Virtual displacement, 461 Basic, 428 Velocity Virtual rotor method of balancing, Conversion Absolute, 80 644-651 SI to U.S. customary, 713 Analysis, 79-134 Virtual work, 461-463 U.S. customary to SI, 713 of Four-bar linkage, 105-108 Viscous damping, 448 Derived, 428 Graphical, 85-91 Coefficient of, 544, 623 Systems of, 428-429 by Line of centers, 123-126 Free vibration with, 563-565 Universal joint, 22, 370, 388-389 of Offset slider-crank V-type engine, 599--600 linkage, 108-110 Vector of Spatial mechanisms, 378-383, Waldron, K. 1., 365n Addition, 45 392-396 Wanzer needle-bar mechanism, 19 Angular momentum, 701, 703-704 Angular, 82, 97, 126 Watt, unit of power, 452 Approach to rotor Apparent, 93 WATT Mechanism Design Tool, 399 balancing, 629-632 Equation, 93 Watt's linkage, 24 Cases, 46-49, 64-68, 374 Average, 79 Wedge cam, 198, 199 Graphical operations, 45 Condition for rolling contact, 98-99 Weight, meaning, 426 Subtraction,45 Difference, 84 Weight/mass controversy, 426 Tetrahedron equation, 373 Equation, 84 Wheel, 26, 252 Type of Vector, 84 Whitworth mechanism, 18-19 Absolute acceleration, 142 Extremes, 129-130 Whole depth, 255 Absolute displacement, 75 Image, 87-88, 91 Willis, A. B., 4n Absolute position, 39-40 Size of, 91 Willis, A. H., 178n Absolute velocity, 80 Instantaneous, 79 Windup, 676 Acceleration, 141 Instant centers, 117-119 Wobble-plate mechanism, 370 Acceleration difference, 144-151 Locating, 120-123 Wolford, J. c., 212n Apparent acceleration, 155-163 Using, 123-126 Worm, 306-309 Apparent displacement, 74-75 Poles, 117 Worm gear, 306-309 Apparent position, 38-39 Polygons, 85-91 Word gear differential, 326 Apparent velocity, 93-94 Ratio, 126 Working stroke, 18-20 Displacement, 70-71 Angular, 126 Worm wheel, 306-309 Displacement difference, 71-72 Relations of slider-crank Wrapping pair, 9 Force, 430 mechanism, 108-110 Wrist-pin force, 614-616 Free, 432 Vector method, 116-117 Moment, 430-431 Vibration, 542-597 Yang, A. T., 373n Position, 36-37 Definition, 542 Position difference, 37-38 Forced, 542 Zerol bevel gear, 303-304
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Theory of Machines and Mechanisms - Third Edition رابط مباشر لتنزيل كتاب Theory of Machines and Mechanisms - Third Edition
|
|