Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advances in Gear Theory and Gear Cutting Tool Design الخميس 11 يناير 2024, 12:35 am | |
|
أخواني في الله أحضرت لكم كتاب Advances in Gear Theory and Gear Cutting Tool Design Stephen P. Radzevich • Michael Storchak Editors
و المحتوى كما يلي :
Contents Part I Accomplishments in the Theory of Gearing 1 Fundamental Laws of Gearing 3 Stephen P. Radzevich 2 Gearing Theory Development: Geometry-Kinematic Concepts . 39 Dmitry T. Babichev, Sergey Yu. Lebeded, and Michael Storchak 3 The Key Mistake in Generation of Conjugate Curves and Surfaces 79 Stephen P. Radzevich 4 Meshing Limit Line of the Archimedes Worm Drive 127 Yaping Zhao and Tianfeng Wang Part II Gear Manufacturing Methods 5 Gear Cutting with Disk-Shaped Milling Cutters . 151 Sergii Pasternak, Yurii M. Danylchenko, Michael Storchak, and Oleksandr A. Okhrimenko 6 A Novel Design of Cutting Tool for Efficient Finishing of G-Rotors . 181 Olexandr I. Skibinskyi and Andriy O. Hnatiuk 7 Interactive Control of the Teeth Gear Shaping in the Cutting Tools Design . 205 Borys S. Vorontsov, Vitalii A. Pasichnyk, and Yuliia V. Lashyna 8 Sinusoidal Gears and Alternative Method of Tooth Generation 233 Ihor E. Hrytsay xv9 Design of Technological Systems for Gear Finishing 255 Michael Storchak Part III Gear Transmissions 10 Calculation of Gear Trains in Transmission Systems of Vehicles 283 Vladimir B. Algin 11 Multispeed Planetary-Layshaft Transmissions with Multipower Flow . 321 Konstantin B. Salamandra 12 Multiparameter Gears and Gear-Type Variators 361 Mykola E. Terniuk, Anatolii V. Kryvosheia, Oleksandr V. Ustynenko, Oleksandr M. Krasnoshtan, and Pavlo M. Tkach 13 Generalizing Structural Unified Model of the Synthesis of Links of Flat-Toothed Gearing Systems 445 Yurii M. Danylchenko, Anatolii V. Kryvosheia, Volodymyr Y. Melnyk, and Pavlo M. Tkach 14 Evolution, State of the Art, and Trends to Improve Gear Tooth Strength 485 Eduard K. Posviatenko, Boris A. Lyashenko, Nataliia I. Posviatenko, and Yaroslava O. Mozghova Part IV In Memoriam of Professor Dmitry T. Babichev 15 Carefully, Scrupulously, Responsibly: In Memoriam of Professor Dmitry T. Babichev . 509 V. E. Starzhinsky Appendices . 519 Index . 621 xvi Contents Index A Accepted calculation system, 452 Advanced generalized methods, 446 Antiquity Archimedes, 486 Approximate gear pairs, 32 Archimedes helicoid equation of, 129 load-carrying capacity and surface durability, 127 trajectory surface method, 128 unit normal vector of, 130 Archimedes worm conical worm drive, 128 equation and unit normal vector, 131 formation principle for, 129, 130 meshing function of, 132, 133 meshing limit function, 134–137 worm gear tooth surface, 133 Archimedes worm gearing, 127 Architectonics, 285, 292, 293, 315 Asymmetric original contour, 217 Asymmetric tooth gears, 235 B Base geometrical primitives, 511 BDT, 509–511, 515, 517 Bending stress, 238, 240 Bezier curve, 218 gear geometry, 215 generating surface, 209, 212 Biconvex-concave (BCC) teeth, 400 Break points, 476 C CAD system, 194 Calculator module, 299, 300 CALS technologies, 448 Camus-Euler-Savary theorem (CES theorem), 99 Cartesian coordinates, 558 Chain variators, 400 Charcoal, 494 Chemical and thermal processing (CTP), 500 Chip parameters, 241 Circular arc, 476 Closest distance of approach, 615–619 Coating, 498 Combined machining, 258, 269, 273 Complex geometric objects, 465 Complex mechanical gears and joints, 445 Complex original profiles, 469 Complex OShPs, 461 Complex-profile cylindrical gears, 446 Computer-aided design (CAD) systems, 377 Computer simulation, 253 Conjugate contours, 455 Conjugate gears, 454 Consequent coordinate system transformations auxiliary orthogonal local coordinate system, 607 Cartesian coordinate system, 608 closed loop, 605 homogenous matrix, 606 implementation, 605, 610 inverse coordinate system transformation, 606 linear transformation, 604 Consequent coordinate system transformations (cont.) local coordinate system, 604 local reference systems, 605 semi-orthogonal coordinate systems, 605 surface, 611 transition, 604 Contact geometry actual value of angle, 555 converse indicatrix of conformity, 577, 578 degree of conformity, 563, 565 disk-type shaving cutter, 574 Dupin indicatrices, 556–559, 565–567, 572, 574–576 elements of gearing, 549 Euler equation, 568 Euler formula, 577 gear tooth flank, 573, 576, 577 higher-order analysis, 561 indicatrix of conformity, 567–569, 572, 573, 576, 578 kinematics, 549 line contact, 552 local reference system, 566 local relative orientation, 550, 552, 568 mating pinion tooth flank, 576, 577 matrix representation, 559, 560 operator of rotation, 555 point of contact, 565 quadratic equation, 554 quantitative evaluation, 562 quantitative measure, 550 radii of principal curvature, 568 relative orientation, 551 roots of equation, 573 smooth regular surfaces, 549, 550, 561 surface of relative curvature, 575 surfaces, 549 tangent directions, 553 tangent plane, 562 unit tangent vectors, 552 unit vectors, 553 violation of physical condition, 571 Continuity of action, 26 Continuous and discrete TiN coatings, 504 Contours of gear racks (CGR), 460 Convexity/concavity, 468 Coordinate system, 224 Coordinate system transformation arbitrary axis, 587–589 Cartesian reference system, 589 conventional approach, 585, 586 conversion, 601, 602 dimension 4 4, 580, 581 Eulerian transformation, 586, 587 homogeneous coordinate vectors, 580 homogenous matrix, 603 inverse resultant, 590 linear, 590 linear transformation coupled, 597–600 non-orthogonal reference system, 600 rolling, 592–597 screw motion, 591, 592 rotation, 583–585, 603 RPY-transformation, 602 translations, 581–583 unit vector, 603 Copying, 495 Cutting tool, 241 Cycloidal, 446 Cylindrical gearings, 446 Cylindrical gears contours, 452 coupled toothed contours, 451 drawings, 454 external engagement, 453 non-contacting segments, 452 non-rollable profiles, 455 second design feature, 451 structural diagram, 454 theoretical and technological synthesis, 447, 451, 452, 456 theoretical shaping, 452, 454 D Darboux frame, 541, 559 Deform 2DV11 cutting process rheological modeling system, 246 Deform 3D system, 236, 244 Designing technological systems, 257, 277, 278 Diamond burnishing, 268 Diamond dresser gear, 277, 278 Diamond elastic gear hones, 261–263, 273, 276, 277 Differential-geometric method, 89, 90 Differentials, 322, 323, 326, 358 Digital computer models, 289 Digitalization, 283, 291 Digital stream, 291 Digital thread, 291 Digital twin (DT), 283–285, 290 Direction vector, 521 Disc-type gear milling cutter, 250 Disk gear contours, 471 622 IndexDisk-type milling cutters, 242 Domestic industry, 448 Domesticity, 517 Draftsman module, 299 Dressing tools, 277 DT of gear measuring center (DTGMC), 283, 284 Dual clutch layshaft transmissions controls, 325 cost, 325 kinematic diagram, 325 power flow structure, 323 ratio, 325 structural diagram, 324 structure, 324 Dynamics, 286, 287, 291, 301–303 Dynamics models, 290 E Eight-speed ID transmission, 338–340 Electrophysical methods, 277 Engagement zone, 56, 58, 63 Envelope curve, 95 Envelope surface, 79, 81, 89, 90, 106, 123, 124 Equivalent pulley-and-belt transmission, 12 conjugate action law, 92 features, 91 line of action, 93, 94 linear velocity, 91 principal features, kinematics, 95, 97, 98 rotation, 90 Equivalent stress, 238, 239 Euler-Savary equation, 21–26, 76 Euler-Savary theorem, 24 F Finishing gear teeth, 495 First fundamental law of gearing, 102 Flat contours of gear wheels (FСGW), 460 Flat contours, matrix equation, 471 Flat gearing systems, 447, 459, 468, 471 Flat kinematic lines, 464, 467, 468 Flat original shaping profiles, 481 Flat shaping-producing technical system, 447 Floating point numbers, 521 Foreign scientists and programmers, 449 Form-generating technical system, 459, 481 Form-milling method, 495 Form-producing technical system, 449 Free rolling, 256, 261, 268 accuracy of machining gears, 266 method, 265 Free surfaces, 497 Friction force, 237, 246, 250, 253 Fundamental scientific studies, 449 G Gauss’ characteristic equation, 542 Gaussian coordinates, 530, 531 Gear cutting, 152, 154, 155 Gear-cutting machine tools, 253 Gear finishing design of technological systems, 256 design process, 256 Gear geometry, 212, 214, 216 Gear grinding, 258, 259, 497 and burnishing, 269 synthesized TS, 259 worm globe wheel, 277 zero method, 260 Gear load capacity, 504 Gear machining processes advantages and disadvantages, 153, 154 disc-shaped milling tools, 155, 157, 158 with profile-dependent tools, 152 with profile-independent tools, 152 Gear manufacturing, 155 Gear Measuring Center (GMC), 283 Gear meshing theory, 509 Gear processing, 450 Gear ratio, 3 Gear teeth grinding, 497 Gear teeth honing, 496 Gear tooth flank hardening process coatings, 504 CTP, 501 electron-beam unit, 501 IN, 501 IPTN, 502, 503 key issues, 500 local laser coating, 501 low-temperature carbonitriding, 500, 501 PVD, 503 shock-cyclic contact loading, 500 SPD, 502 standard technology, 500 surface hardening, 501 transition, 500 undulating wear, 500 Gear trains, 485–487 advancement, 488 architectonics, 292, 293, 315 DT (see Digital twin (DT)) GMC, 283 Index 623Gear trains (cont.) reliability calculations, 284 strength calculation results, 284 Gear variators structure and design auxiliary and control functions, 392 control mechanisms, 392 freewheel mechanism, 392 impulse type, 395–400 kinematically accurate variator, 394 meshing wheels, 393 pulse-type variators, 395 transmissions and drives, 391 Gear wheels, 485 cutting tools, 495 mechanical engineering, 504 metals, 494 surface engineering, 499 Gearing Camus-Euler-Savary theorem, 100 characteristic line, 81 common perpendiculars, 81 condition, 4 conjugacy, 79 conjugate action law, 11 conjugate tooth profiles, 15 contact point, 119 cycloidal gearing, 112, 114, 115, 117 design parameters, 6, 32 designing, 4 differential-geometric method, 83 driven shaft, 3 efficiency, 80 envelope surface of the second kind, 106 equation of conjugacy, 106 equivalent pulley-and-belt transmission, 13 features, 3 first fundamental law, 8, 10 first fundamental law of gearing, 105 fundamental law, 30, 31 gear tooth profile, 17 helical gearing, 117 helix angles, 4 instantaneous relative motions, 9 kinematic method, 83, 123 line of action, 83, 123 linear velocity, 7, 8, 17 mating pinion, 6, 7 method of common perpendiculars, 81, 83, 109 non-equivalency of deviations, 121, 122 parallel-axes gearing, 100–103 pitch circle, 82 pitch point, 118 power density, 81 requirements, 4 reversibly-enveloping surfaces, 107–108 rolling motion, 79 second fundamental law, 11, 106, 118 Shishkov equation of contact, 105, 123 spline-shaft, 110 surfaces feature, 9 tooth profile, 81, 111 transition, 110 transverse contact ratio, 5 Wildhaber-Novikov gearing, 120 Willis theorem, 100, 123 Gearing theory development acceleration, 68 band and scale surfaces, 48 computer-aided design, 39 curvature variability, 47 geometric images, 39 kinematic methods cutting edge, 66 kinematic methods parameters field, 66 material layers, 66 shaping process, 68 kinematic profiling method, 70, 72–74 mathematical models, 46 maximum load capacity analysis of properties, 59 conjugate profiles, 59 curvature and contact stresses, 56, 63 curvature fields, 58 Euler-Savary equation, 56 Hertz equation, 56 kinetic characteristics, 57 kinetic quality parameters, 61 local geometric and kinematic indices, 55 quality characteristics, 56 quality functions, 61 surfaces, 54 transmission ratio, 57 value of criterion, 54 multi-parameter, 44–46 penetration speed, 68 polylines, 47 quality characteristics, 49–51, 54 shaping alternative theory, 41–43 shaping processes, 48 software algorithms, 46 surface curvature study, 74–76 surface shaping processes, 39 unified geometric parameters, 47 624 IndexGears finishing synthesized technological systems (see Synthesized technological systems) Generalized geometric-kinematic diagram, 457, 474, 481 Generalized geometric-kinematic shaping scheme, 471 Generalized kinematic diagram, 473 Generalized mathematical model, 455 Generalized OShP, 462 Generalized structural diagram cylindrical gear wheel, 458 flat gearing, 459 OGC, 458 OShC, 458 straight and reverse links, 458 technological synthesis, 456 technological system, 459 theoretical shaping, 455 theoretical synthesis, 458 Generalized structural unified mathematical model, 473 Generalized symmetrical original sharing profile, 462 Generalized three-link mechanism complexity, 322 degrees of freedom, 321 differentials, 322 German engineering practice, 322 modified designation, 322 torques, 322 Generalized unified mathematical description, 462 Generalized unified matrix equation, 462 Generalized (universal) unified mathematical models classification feature, 450 flat gearing, 451 quality characteristics, 451 shape gearing, 450 structural diagram, 450 Generating enveloping process, 19 Generating surface, 206, 209–211 Generative machining processes, 246 Geometrical-kinematic conditions, 459 Geometrical-kinematic schemes, 457 Geometric-kinematic diagrams, 473 Geometric-kinematic shaping schemes, 473 Geometric-kinematic synthesis theory, 449 Grinding machining center, 202 Grinding wheels, 497 G-rotor hydraulic motors, 181 G-rotors parameters, 182 properties and design of, 181 satellite machining technology, 192–194 spur wheels, 195, 197, 199, 200 working profiles in, 183, 185–187, 190, 191 H Hardening deformations, 500 Heron of Alexandria’s “Toy Theatre” automata, 486 High-precision mechanical spur gears, 445 Hobbing processes, 153, 239–241, 243, 244, 246, 247 Hydrogen-free nitriding, 498 Hydrogen-saturated parts, 501 I IDDO transmission with single transition shifts, 353–357 controls, 351 four dependent gear-shifting sequences, 350 functions, 352 kinematic diagram, 350 minimization of criterion, 350 restrictions, 349 switched-on transmission controls, 350 synthesized transmission, 350 three single transition shift sequences, 351, 353 IFToMM Workshop, 511 Igor Tsitovich School (ITS), 289, 290 Individualization, 291 Industrial revolution, 491 Information model, gear transmission, 285 diagnostics, 312–313 dynamics, 301–306 evaluation, kinematic diagrams (KDs), 296–298 kinematic and quasi-static calculations, 298–301 lifetime expense and PHM, 313–314 reliability calculation, 308–310 special reliability calculation method, 310–312 synthesis of kinematic diagrams, 292–296 Information technologies, 448 Initial tool surfaces (ITS), 48 Insufficient lubrication, 503 Interconnected systems, 446 Internal combustion engines, 321 Index 625International Conference “KOD-2018”, 513 Involute gears advantages, 233 breakage, 234 disadvantages, 233 in mechanical engineering, 233 model of strain, 234 overloads, 233 performance, measures, 235 Involute spur gears, 454 Ion nitriding (IN), 501, 504 Ion-plasma thermo-cyclic nitriding (IPTN), 502, 503 K Kinematic analysis, 511 Kinematic method, 34 analytical expressions, 85 geometry, 84, 85 linear velocity vector, 86, 88 matrix form, 84 motion, 84 Shishkov equation of contact, 84, 88, 90 traditional method, 90 unit normal vector, 86, 88 velocity, 84 Kinematic scheme, 489 Kinematic surfaces, 459 L Layshaft transmissions, 323 two speeds, 324 Leibniz arithmometer, 488 Life-strength curves (LSCs), 307, 309 Lifetime expense, 291, 313–315 Lifetime forecasting, 313 Lifetime mechanics of machines (LMM), 289–291 Lincoln-type milling machines, 493 Linear diagrams, 455 Linear displacement, 169 Linear velocity vector, 17 Local laser coating, 501 Low-temperature carbonitriding, 501 LP-search method, 256, 257, 278 M Machine parts properties, 497 Machining gear wheels, 495 Main lateral surface (MLS), 462 Mainardi-Codazzi relations of compatibility, 542 Mathcad environment, 465, 468 Mathematical model form-shaping process, 159, 161, 162, 164–166, 168, 171, 174, 177 generalized form-shaping kinematics, 159 Mathematical models, 450, 456 Matrix equations, 467 Maudsley’s caliper, 493 Mechanical engineering, 448, 486 Meshing limit line Archimedes worm, 134–136, 138 computing method of, 139, 140 gear drives, 128 in worm axial section, 145 Metal-cutting machines, 493 Microhardness distribution, 499 Microroughness, 249 Middle Ages, 486 Mobile machines, 286, 289, 291, 302 Modern mathematical methods, 445, 461 Modern planetary transmissions, 321 Modern universal milling machine, 493 Modified Simpson mechanism, 294, 295 Multiparameter gears addendum modification coefficient, 411 application, 361 attributes, 375 auxiliary and control devices, 364 axial torques of resistance, 420 biconvex and biconvex shapes, 414 boundary values, 400 BСС-teeth, 402, 403 center of gravity, 417, 418 circular tooth, 422 classifications, 373 cogwheels, 423 complex geometry, 423 complex kinematic shaping schemes, 426 complex structural-parametric optimization, 363 complex systems development, 361 components, 363 concretizing structures, 368 control dimensions, 408 control function, 367 coordinate axes, 403 cylindrical gear parameters, 401 cylindrical generating wheel, 438 cylindrical surface, 432 deforming and cutting tools, 439 electromechanical systems, 372 626 Indexelemental structure, 367 functionality, 373 gas turbine engines, 362 gear variators, 369 general functional three-stage approach, 363 generalized unified mathematical model, 425 generating surface, 405 generatrix, 435 geometric 3D model, 433 geometric properties, 424 geometry, 405 implementation, 424 industrial market demand, 374 kinematic theoretical shaping, 430 machine and working gearing, 423 machine gearing, 407, 408 manufacture of wheels, 439 manufacturing method, 400 matrices, 434 matrix classification, 374 maximum angle, 413 maximum bending stresses, 415 mechanical engineering technology, 423 mechanisms, 361, 372 motion conversion scheme, 375 nonspecific product functions, 366 normal vector, 404 optimization, 424 parameters, 372, 434 partially specified elemental structure, product, 367 physical effects, 372 point-type contact, 400 power gear variators, 362 power-to-weight ratio, 362 product functioning, 365 ratio control range, 375 secondary auxiliary function, 366 shaping process, 426 shaping surfaces, 428 solid model, 438 speed and power characteristics, 376 structure and design auxiliary functions, 381 complex system theory, 377 cylinders, 387 element, 380 elementary mechanisms, 378 factors, 386 geometrical and kinematic features, 378 linear displacement, 389, 390 Newton’s method, 391 pair of gears, 378 parameters, 377 pitch surface, 386 rotation transmission, 389 screw-nut system, 382 surface approximation, 391 toroidal dividing surface, 384 toroidal surface, 388 torque transmission, 390 transmission of rotation, 381 transmission-guiding mechanism, 387 transmissions, 377, 380 two-parameter gearing, 380 two-parameter transmission, 379 vehicle transmissions, 386 supersystem attributes, 364 sweeping and shaping movements, 437 symmetry operator, 433 technical design, 365 traditional and innovative multifunctional variable, 363 transfer of torque, 372 transformations, 409 transformer technologies, 363 transition matrices, 405, 406 transmissions, 361, 366, 374 types of variators, 375 uniform rotational and translational movements, 428 variable quantity, 409 X nYnZn coordinate system, 403 Multiparameter mapping, 481 Multipower flow transmission operation modes, 333 Multispeed transmissions, 325 N Nartov caliper, 490 Newton-Raphson method, 620 Nominal, 451 Non-invariant characteristics, 467 Normal vector, 209 Novikov-Wildhaber profile, 452 Novokramatorsk Machine-Building Plant, 400 O Operation conditions (OC), 307, 308, 315 Optimal, 455 Optimization problems, 255, 256 Original contours (OC), 460 Original generating contours (OGC), 458, 460 Index 627Original shaping contours (OShC), 458, 460 Original shaping profiles, 452, 454 Oscillating motion, 251 OShP coordinate system, 465 OShP elements, 459 OShP mathematical description, 465 P Parallel-axes gearing, 14, 30 Parametric synthesis technique differentials, 336 formulation solutions, features, 336 gear ratio values, 338 sequential stages, 336, 337 series of gear ratio, 335 speed ratio series, 337 Periodic reciprocating rectilinear motion, 252 Physical deposition from the gas phase (PVD), 503 Plane gearing systems, 459 Plane kinematic lines, 467 Planetary gearset, 322 Planetary-layshaft transmissions advantages, 326 basic structural diagrams, 326, 327 closed multipower flow structures, 358 controls, 326 controls switching, 358 design, 325 designations, 326 differentials, 328 gearsets, 326 kinematic diagrams conditions and restrictions, 334, 335 parametric synthesis (see Parametric synthesis technique) sequential stages, 334 multipower flow, 326 operating modes, 326, 328 total speed estimation, 331–333 transmission speed, 326 Polygonal, 446 Position vector, 521 Power density, 122 Power train gears, requirements, 494 Power transmission, 486 Pressure angle, 207 Private geometrical-kinematic schemes, 476 Probabilistic calculations, 287–289 Profiling gears, 491 Prognostics and Heath Management (PHM), 292, 313 Pulse-type variators, 395 R Radial-circular method (RCM), 241, 244, 253 and hobbing, 243, 247 method of gearing, 249 originality, 251 up-cut hobbing process, 248 versatility, 252 Reciprocating motion, 251 Reduced curvature, teeth surface, 229, 230 Regular mechanical system (RMS), 302, 303, 306 Reishauer machines, 497 Relative durations of operation conditions (RDOC), 309 Relative sliding velocity, 220, 221 Relative velocity, 475 Reliability indexes, 284 Reliability theory, 289 Renaissance, 486 Responsibly, 510 Restriction formulation, 334 Reuleaux method, 83 REXS (Reusable Engineering EXchange Standard), 284 Rigid cutter attachment, 489 Roll grinding, 497 Rolling, 455, 495 Rotating coordinate system, 131 Round Table meetings, 510 S Scientific seminar, 511 Second fundamental law of gearing, 102 Second-order lever scheme, 489 Selective tracking, 258, 275–277 Self-propelled caliper, 489 Shaping gear contour, 475 Shaping kinematic diagram, 472 Shaping-producing system, 450 Shaving cutter, 495 Shishkov equation, 9, 34, 102 Simulation-based model, 283 Single standard original contour, 454 Sinusoidal, 446 Sinusoidal asymmetric tooth gears, 252 Sinusoidal bevel gear, 252 Sinusoidal gears advantages, 235 contact tension area, 240 design, 235 frictional forces, 237 mating gears, 235 RCM, 239–241 628 Indexresearch methods, 236 stress reduction, 238 SKOSIR software module, 301 Software interface, 218 SolidWorks software, 236, 237, 244 Spatial form-generating technical system, 481 Specific sliding coefficients, 227 Specific tractive forces (STF), 287 Stationary clock regulator, 488 Steel grades, 495 Straight and reverse shaping, 476 Stress relaxation, 504 Structural diagrams, 325 Subsystem’s limitations, 454 Surface engineering, 498 Surface hardening, 501 Surface layer modification, 499 Surface plastic deformation (SPD), 268, 502 Surfaces Bonnet theorem, 540 Cartesian reference system, 529, 543 curvatures, 541 derived vectors, 544, 545 Euler formula, 547 first fundamental form, 534–536 formulae transformations, 546 Gauss characteristic equation, 540 gear-cutting tool design, 529 gear tooth flank, 530, 531, 540, 541, 544–546 geometry, 547 local frame, 533 Mainardi-Codazzi relations, 540 natural kind, 543 second fundamental form, 536–539 tangent plane, unit normal vector, 531–533 tangent vectors, 544, 545 Symmetrical initial contour, 217 Synthesized kinematic diagram, 338 Synthesized technological systems combined machining methods, 268–273 multi-tool setup systems, 273–274 selective tracking systems, 275–277 shaping systems for gear tools, 277 systems with free rolling, 261–268 systems with rigid kinematic connection, 258–261 System elements, 459 System theory, 289 T Task and theoretical shaping (design), 446 Technical systems, 449 Technically complicated item (TCI), 289, 313, 314 Technological systems (TS) design, 255, 256 finishing gear wheels, 256 optimization problems, 255 parametric optimization algorithm, 257 principles, 256 structural selection and gears finishing, 257 technological systems and gears finishing, 258 Teeth grinding, 497 Teeth surfaces, of cut gears, 216, 217 Teeth working surfaces, 228 Theoretical geometric-kinematic synthesis, 449 Theoretical shaping, 450 Theory and practice of gearing, 509 Theory of meshing and surface forming, 510 Theory of transport and traction machines, 286 Three-dimensional half-space, 498 Three-link planetary gearset, 321 Toothed tool shaping systems, 277 Traditional vacuum nitriding, 502 Transformation matrices, 464 Transmission dynamics, 301 Transmissions synthesis with three power flows 11-speed transmission, 344, 346, 348 14-speed transmission, 342, 343 Transmissions synthesis with three power flows and single transition shifts IDD transmission (see IDD transmission with single transition shift) IDDO transmission with single transition shifts, 353–357 neighbor speeds, 349 pair of controls, 349 parametric synthesis technique, 349 Transmissions synthesis with two power flows eight-speed transmission, 338–340 12-speed transmission, 340 Triple scalar product, 20 Truncated epicycloids, 191 Two-speed layshaft transmission, 323 U Undeformed chips, 236, 243–245 V V-belt variators, 399 Vectors components, 523 fundamental properties, 522 Index 629Vectors (cont.) lagrange equation, 526 matrices, 527 product, 525 scalar product, 524 surface generation, 521 triple scalar product, 525, 526 types, 521 Visual Statics package, 301 W Water wheels, 486 Western European, 488 Working diamond elements, 262 Worm gear grinding, 259 Worm wheel grinding technology, 195
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advances in Gear Theory and Gear Cutting Tool Design رابط مباشر لتنزيل كتاب Advances in Gear Theory and Gear Cutting Tool Design
|
|