Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Textbook of Mechanical Vibrations الأربعاء 07 فبراير 2024, 11:41 am | |
|
أخواني في الله أحضرت لكم كتاب Textbook of Mechanical Vibrations Mahesh Chandra Luintel
و المحتوى كما يلي :
Contents 1 Basic Concepts of Vibration . 1 1.1 Introduction 1 1.1.1 Causes of Vibration 2 1.1.2 Effects of Vibration 3 1.2 Simple Harmonic Motion . 3 1.3 Vibration Analysis Procedure . 5 1.3.1 Mathematical Modeling . 5 1.3.2 Mathematical Solution 5 1.3.3 Physical Interpretation of Mathematical Solution . 6 1.4 Generalized Coordinates . 6 1.5 Degrees of Freedom . 7 1.6 Discrete and Continuous System . 8 1.7 Classification of Vibration 9 1.8 Review of Dynamics . 10 1.8.1 Kinematics . 10 1.8.2 Kinetics 13 1.8.3 Principle of Work and Energy . 15 1.8.4 Principle of Impulse and Momentum . 17 2 Modeling of Components of a Vibrating System . 53 2.1 Components of a Vibrating System 53 2.2 Inertia Elements and Kinetic Energy . 53 2.2.1 Kinetic Energy of a Discrete System Consisting of Particles 54 2.2.2 Kinetic Energy of a Discrete System Consisting of a Rigid Body . 54 2.2.3 Kinetic Energy of a Continuous System . 55 2.3 Stiffness Elements and Potential Energy 59 2.3.1 Potential Energy Stored by a Spring 59 2.3.2 Potential Energy or Strain Energy Stored by a Continuous System 60 ixx Contents 2.3.3 Equivalent System and Equivalent Stiffness for Different Combinations of Springs 63 2.3.4 Equivalent System and Equivalent Stiffness for Continuous System with Negligible Weight . 65 2.4 Damper and Energy Dissipation . 69 2.4.1 Types of Damping . 69 2.4.2 Energy Dissipation Due to Damping 71 2.5 External Excitation 71 3 Derivation of Equation of Motion of a Vibrating System . 109 3.1 Classical Methods for Derivation of Equation of Motion 109 3.1.1 Newton’s Second Law of Motion . 109 3.1.2 Equivalent System Parameters Method 111 3.1.3 Principle of Conservation of Energy 113 3.2 Variational Formulation of Dynamic System 115 3.2.1 Independent Variable, Function and Functional . 115 3.2.2 Differentiation and Variation 116 3.2.3 Fundamental Lemma of Variational Calculus 119 3.3 Euler–Lagrange Equation . 120 3.4 Hamilton’s Principle . 122 3.5 Lagrange’s Equations for Conservative Discrete Systems 126 3.6 Lagrange’s Equations for Non-Conservative Discrete Systems 126 4 Response of a Single Degree of Freedom System . 177 4.1 Un-damped Free Response of a SDOF System . 177 4.2 Damped Free Response of a SDOF System . 180 4.2.1 Response of an Over-Damped System 183 4.2.2 Response of a Critically Damped System 185 4.2.3 Response of an Under-Damped System . 186 4.3 Forced Harmonic Response of a SDOF System 190 4.4 Rotating Unbalance 198 4.5 Vibration Isolation and Transmissibility 201 4.6 Response of a System to an External Motion 205 4.7 Vibration Measuring Instruments 208 4.7.1 Seismometer 209 4.7.2 Accelerometer . 211 4.8 Response to Multi-Frequency and General Periodic Excitations . 211 4.8.1 Response to Multi-Frequency Excitation 211 4.8.2 Response to a General Periodic Excitation . 212 4.9 Response to Transient Input Forces 213 4.9.1 Response Due to a Unit Impulse . 214 4.9.2 Response Due to a General Excitation 217 4.10 Solution Using the Method of Laplace Transform 219 4.11 Energy Dissipated in Viscous Damper 221Contents xi 4.12 Response of a System with Coulomb Damping 222 4.12.1 Free Response for a System with Coulomb Damping 222 4.12.2 Forced Response for a System with Coulomb Damping . 225 4.13 Response of a System with Hysteretic Damping . 227 4.13.1 Free Response for a System with Hysteretic Damping . 227 4.13.2 Forced Response for a System with Hysteretic Damping . 229 5 Response of a Two Degree of Freedom System 339 5.1 Introduction 339 5.2 Free Response of an Undamped Two Degree of Freedom System . 340 5.3 Free Response of a Damped Two Degree of Freedom System 343 5.4 Forced Harmonic Response of a Two Degree of Freedom System . 345 5.4.1 Forced Harmonic Response of an Un-damped Two Degree of Freedom System 345 5.4.2 Forced Harmonic Response of a Damped Two Degree of Freedom System 347 5.5 Transfer Functions . 349 5.6 Vibration Absorber 350 5.7 Semi-definite System 355 5.8 Coordinate Coupling and Principal Coordinates 357 5.8.1 Equation of Motion Using x1 and x2 as Generalized Coordinates . 358 5.8.2 Equation of Motion Using x and θ as Generalized Coordinates . 359 6 Response of a Multi-Degree of Freedom System . 445 6.1 Introduction 445 6.2 Formulation of Equation of Motion in Matrix Form 445 6.3 Flexibility and Stiffness Matrices 447 6.3.1 Flexibility Influence Coefficients and Flexibility Matrix . 447 6.3.2 Stiffness Influence Coefficients and Stiffness Matrix 448 6.3.3 Relationship Between Flexibility and Stiffness Matrix . 449 6.3.4 Reciprocity Theorem . 449 6.4 Natural Frequencies and Mode Shapes of a MDOF System 451 6.5 Orthogonal Properties of the Eigen-Vectors . 452 6.6 Modal Analysis . 453 6.6.1 Modal Analysis for Un-damped Free Response of a MDOF System 454xii Contents 6.6.2 Modal Analysis for Damped Free Response of a MDOF System 456 6.6.3 Modal Analysis for Forced Response of a MDOF System . 459 6.7 Review Questions . 517 7 Modeling and Response of Continuous System 559 7.1 Introduction 559 7.2 Lateral Vibration of a String 561 7.2.1 Derivation of Equation of Motion Using Newton’s Second Law of Motion . 561 7.2.2 Derivation of Equation of Motion Using Hamilton’s Principle 562 7.2.3 Free Response for Lateral Vibration of a String . 564 7.2.4 Forced Harmonic Response for Lateral Vibration of a String 568 7.3 Longitudinal Vibration of a Bar . 570 7.3.1 Derivation of Equation of Motion Using Newton’s Second Law of Motion . 570 7.3.2 Derivation of Equation of Motion Using Hamilton’s Principle 571 7.4 Torsional Vibration of a Shaft . 573 7.4.1 Derivation of Equation of Motion Using Newton’s Second Law of Motion . 573 7.4.2 Derivation of Equation of Motion Using Hamilton’s Principle 574 7.5 Transverse Vibration of a Beam . 576 7.5.1 Derivation of Equation of Motion Using Newton’s Second Law of Motion . 576 7.5.2 Derivation of Equation of Motion Using Hamilton’s Principle 578 7.5.3 Free Response for Transverse Vibration of a Beam 580 7.5.4 Forced Harmonic Response for Lateral Vibration of a Beam 584 7.6 Modal Analysis for a Continuous System . 587 7.6.1 Modal Analysis of a Continuous System Governed by Wave Equation 587 7.6.2 Modal Analysis for Vibration Analysis of a Beam 590 8 Approximate Methods 667 8.1 Introduction 667 8.2 Rayleigh Method 668 8.2.1 Rayleigh Method for a Single Degree of Freedom System . 668 8.2.2 Rayleigh Method for a Discrete Multi Degree of Freedom System 669Contents xiii 8.2.3 Rayleigh Method for a Shaft or a Beam Carrying a Number of Lumped Inertia Elements 672 8.2.4 Rayleigh Method for a Continuous System 673 8.3 Dunkerley’s Method . 677 8.4 Matrix Iteration Method 678 8.4.1 Matrix Iteration Using Flexibility Matrix 679 8.4.2 Determination of Higher Order Modes 679 8.4.3 Matrix Iteration Using Dynamic Matrix . 681 8.5 Stodola’s Method 682 8.6 Holzer’s Method 683 8.6.1 Holzer’s Method for a System Without a Branch . 683 8.6.2 Holzer’s Method for a Branched System 687 8.7 Myklestad-Prohl Method for Transverse Bending Vibration . 689 8.8 Rayleigh–Ritz Method . 694 8.9 Assumed Mode Method 696 8.10 Weighted Residual Method . 697
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Textbook of Mechanical Vibrations رابط مباشر لتنزيل كتاب Textbook of Mechanical Vibrations
|
|