Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Signals and Systems with MATLAB الأحد 17 مارس 2024, 4:03 am | |
|
أخواني في الله أحضرت لكم كتاب Signals and Systems with MATLAB Won Y. Yang · Tae G. Chang · Ik H. Song · Yong S. Cho · Jun Heo · Won G. Jeon · Jeong W. Lee · Jae K. Kim
و المحتوى كما يلي :
Contents 1 Signals and Systems . 1 1.1 Signals . 2 1.1.1 Various Types of Signal 2 1.1.2 Continuous/Discrete-Time Signals . 2 1.1.3 Analog Frequency and Digital Frequency 6 1.1.4 Properties of the Unit Impulse Function and Unit Sample Sequence . 8 1.1.5 Several Models for the Unit Impulse Function 11 1.2 Systems 12 1.2.1 Linear System and Superposition Principle 13 1.2.2 Time/Shift-Invariant System . 14 1.2.3 Input-Output Relationship of Linear Time-Invariant (LTI) System 15 1.2.4 Impulse Response and System (Transfer) Function 17 1.2.5 Step Response, Pulse Response, and Impulse Response 18 1.2.6 Sinusoidal Steady-State Response and Frequency Response . 19 1.2.7 Continuous/Discrete-Time Convolution . 22 1.2.8 Bounded-Input Bounded-Output (BIBO) Stability 29 1.2.9 Causality . 30 1.2.10 Invertibility . 30 1.3 Systems Described by Differential/Difference Equations . 31 1.3.1 Differential/Difference Equation and System Function . 31 1.3.2 Block Diagrams and Signal Flow Graphs 32 1.3.3 General Gain Formula – Mason’s Formula . 34 1.3.4 State Diagrams 35 1.4 Deconvolution and Correlation . 38 1.4.1 Discrete-Time Deconvolution 38 1.4.2 Continuous/Discrete-Time Correlation 39 1.5 Summary . 45 Problems . 45 ixx Contents 2 Continuous-Time Fourier Analysis . 61 2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals 62 2.1.1 Definition and Convergence Conditions of CTFS Representation . 62 2.1.2 Examples of CTFS Representation . 65 2.1.3 Physical Meaning of CTFS Coefficients – Spectrum . 70 2.2 Continuous-Time Fourier Transform of Aperiodic Signals 73 2.3 (Generalized) Fourier Transform of Periodic Signals . 77 2.4 Examples of the Continuous-Time Fourier Transform 78 2.5 Properties of the Continuous-Time Fourier Transform 86 2.5.1 Linearity . 86 2.5.2 (Conjugate) Symmetry . 86 2.5.3 Time/Frequency Shifting (Real/Complex Translation) . 88 2.5.4 Duality 88 2.5.5 Real Convolution 89 2.5.6 Complex Convolution (Modulation/Windowing) 90 2.5.7 Time Differential/Integration – Frequency Multiplication/Division 94 2.5.8 Frequency Differentiation – Time Multiplication 95 2.5.9 Time and Frequency Scaling 95 2.5.10 Parseval’s Relation (Rayleigh Theorem) . 96 2.6 Polar Representation and Graphical Plot of CTFT . 96 2.6.1 Linear Phase 97 2.6.2 Bode Plot 97 2.7 Summary . 98 Problems . 99 3 Discrete-Time Fourier Analysis . 129 3.1 Discrete-Time Fourier Transform (DTFT) 130 3.1.1 Definition and Convergence Conditions of DTFT Representation . 130 3.1.2 Examples of DTFT Analysis 132 3.1.3 DTFT of Periodic Sequences 136 3.2 Properties of the Discrete-Time Fourier Transform 138 3.2.1 Periodicity . 138 3.2.2 Linearity . 138 3.2.3 (Conjugate) Symmetry . 138 3.2.4 Time/Frequency Shifting (Real/Complex Translation) . 139 3.2.5 Real Convolution 139 3.2.6 Complex Convolution (Modulation/Windowing) 139 3.2.7 Differencing and Summation in Time . 143 3.2.8 Frequency Differentiation . 143 3.2.9 Time and Frequency Scaling 143 3.2.10 Parseval’s Relation (Rayleigh Theorem) . 144Contents xi 3.3 Polar Representation and Graphical Plot of DTFT . 144 3.4 Discrete Fourier Transform (DFT) 147 3.4.1 Properties of the DFT 149 3.4.2 Linear Convolution with DFT . 152 3.4.3 DFT for Noncausal or Infinite-Duration Sequence 155 3.5 Relationship Among CTFS, CTFT, DTFT, and DFT . 160 3.5.1 Relationship Between CTFS and DFT/DFS 160 3.5.2 Relationship Between CTFT and DTFT . 161 3.5.3 Relationship Among CTFS, CTFT, DTFT, and DFT/DFS 162 3.6 Fast Fourier Transform (FFT) 164 3.6.1 Decimation-in-Time (DIT) FFT 165 3.6.2 Decimation-in-Frequency (DIF) FFT . 168 3.6.3 Computation of IDFT Using FFT Algorithm . 169 3.7 Interpretation of DFT Results 170 3.8 Effects of Signal Operations on DFT Spectrum . 178 3.9 Short-Time Fourier Transform – Spectrogram 180 3.10 Summary . 182 Problems . 182 4 The z-Transform 207 4.1 Definition of the z-Transform 208 4.2 Properties of the z-Transform 213 4.2.1 Linearity . 213 4.2.2 Time Shifting – Real Translation . 214 4.2.3 Frequency Shifting – Complex Translation 215 4.2.4 Time Reversal 215 4.2.5 Real Convolution 215 4.2.6 Complex Convolution 216 4.2.7 Complex Differentiation 216 4.2.8 Partial Differentiation 217 4.2.9 Initial Value Theorem 217 4.2.10 Final Value Theorem . 218 4.3 The Inverse z-Transform 218 4.3.1 Inverse z-Transform by Partial Fraction Expansion 219 4.3.2 Inverse z-Transform by Long Division 223 4.4 Analysis of LTI Systems Using the z-Transform . 224 4.5 Geometric Evaluation of the z-Transform 231 4.6 The z-Transform of Symmetric Sequences . 236 4.6.1 Symmetric Sequences 236 4.6.2 Anti-Symmetric Sequences . 237 4.7 Summary . 240 Problems . 240xii Contents 5 Sampling and Reconstruction 249 5.1 Digital-to-Analog (DA) Conversion[J-1] . 250 5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2] 251 5.2.1 Counter (Stair-Step) Ramp ADC . 251 5.2.2 Tracking ADC 252 5.2.3 Successive Approximation ADC . 253 5.2.4 Dual-Ramp ADC 254 5.2.5 Parallel (Flash) ADC . 256 5.3 Sampling . 257 5.3.1 Sampling Theorem 257 5.3.2 Anti-Aliasing and Anti-Imaging Filters . 262 5.4 Reconstruction and Interpolation . 263 5.4.1 Shannon Reconstruction 263 5.4.2 DFS Reconstruction . 265 5.4.3 Practical Reconstruction 267 5.4.4 Discrete-Time Interpolation . 269 5.5 Sample-and-Hold (S/H) Operation 272 5.6 Summary . 272 Problems . 273 6 Continuous-Time Systems and Discrete-Time Systems 277 6.1 Concept of Discrete-Time Equivalent 277 6.2 Input-Invariant Transformation . 280 6.2.1 Impulse-Invariant Transformation 281 6.2.2 Step-Invariant Transformation . 282 6.3 Various Discretization Methods [P-1] 284 6.3.1 Backward Difference Rule on Numerical Differentiation . 284 6.3.2 Forward Difference Rule on Numerical Differentiation 286 6.3.3 Left-Side (Rectangular) Rule on Numerical Integration 287 6.3.4 Right-Side (Rectangular) Rule on Numerical Integration . 288 6.3.5 Bilinear Transformation (BLT) – Trapezoidal Rule on Numerical Integration . 288 6.3.6 Pole-Zero Mapping – Matched z-Transform [F-1] . 292 6.3.7 Transport Delay – Dead Time . 293 6.4 Time and Frequency Responses of Discrete-Time Equivalents . 293 6.5 Relationship Between s-Plane Poles and z-Plane Poles . 295 6.6 The Starred Transform and Pulse Transfer Function 297 6.6.1 The Starred Transform . 297 6.6.2 The Pulse Transfer Function . 298 6.6.3 Transfer Function of Cascaded Sampled-Data System . 299 6.6.4 Transfer Function of System in A/D-G[z]-D/A Structure . 300 Problems . 301Contents xiii 7 Analog and Digital Filters . 307 7.1 Analog Filter Design . 307 7.2 Digital Filter Design 320 7.2.1 IIR Filter Design 321 7.2.2 FIR Filter Design 331 7.2.3 Filter Structure and System Model Available in MATLAB . 345 7.2.4 Importing/Exporting a Filter Design 348 7.3 How to Use SPTool 350 Problems . 357 8 State Space Analysis of LTI Systems 361 8.1 State Space Description – State and Output Equations 362 8.2 Solution of LTI State Equation . 364 8.2.1 State Transition Matrix . 364 8.2.2 Transformed Solution 365 8.2.3 Recursive Solution . 368 8.3 Transfer Function and Characteristic Equation 368 8.3.1 Transfer Function 368 8.3.2 Characteristic Equation and Roots 369 8.4 Discretization of Continuous-Time State Equation . 370 8.4.1 State Equation Without Time Delay 370 8.4.2 State Equation with Time Delay . 374 8.5 Various State Space Description – Similarity Transformation 376 8.6 Summary . 379 Problems . 379 A The Laplace Transform . 385 A.1 Definition of the Laplace Transform . 385 A.2 Examples of the Laplace Transform . 385 A.2.1 Laplace Transform of the Unit Step Function . 385 A.2.2 Laplace Transform of the Unit Impulse Function . 386 A.2.3 Laplace Transform of the Ramp Function 387 A.2.4 Laplace Transform of the Exponential Function 387 A.2.5 Laplace Transform of the Complex Exponential Function 387 A.3 Properties of the Laplace Transform . 387 A.3.1 Linearity . 388 A.3.2 Time Differentiation . 388 A.3.3 Time Integration 388 A.3.4 Time Shifting – Real Translation . 389 A.3.5 Frequency Shifting – Complex Translation 389 A.3.6 Real Convolution 389 A.3.7 Partial Differentiation 390 A.3.8 Complex Differentiation 390 A.3.9 Initial Value Theorem 391xiv Contents A.3.10 Final Value Theorem . 391 A.4 Inverse Laplace Transform . 392 A.5 Using the Laplace Transform to Solve Differential Equations 394 B Tables of Various Transforms 399 C Operations on Complex Numbers, Vectors, and Matrices 409 C.1 Complex Addition . 409 C.2 Complex Multiplication . 409 C.3 Complex Division 409 C.4 Conversion Between Rectangular Form and Polar/Exponential Form409 C.5 Operations on Complex Numbers Using MATLAB 410 C.6 Matrix Addition and Subtraction[Y-1] . 410 C.7 Matrix Multiplication . 411 C.8 Determinant . 411 C.9 Eigenvalues and Eigenvectors of a Matrix1 . 412 C.10 Inverse Matrix . 412 C.11 Symmetric/Hermitian Matrix 413 C.12 Orthogonal/Unitary Matrix 413 C.13 Permutation Matrix . 414 C.14 Rank . 414 C.15 Row Space and Null Space 414 C.16 Row Echelon Form . 414 C.17 Positive Definiteness 415 C.18 Scalar(Dot) Product and Vector(Cross) Product . 416 C.19 Matrix Inversion Lemma 416 C.20 Differentiation w.r.t. a Vector 416 D Useful Formulas 419 E MATLAB 421 E.1 Convolution and Deconvolution 423 E.2 Correlation 424 E.3 CTFS (Continuous-Time Fourier Series) . 425 E.4 DTFT (Discrete-Time Fourier Transform) 425 E.5 DFS/DFT (Discrete Fourier Series/Transform) 425 E.6 FFT (Fast Fourier Transform) 426 E.7 Windowing . 427 E.8 Spectrogram (FFT with Sliding Window) 427 E.9 Power Spectrum . 429 E.10 Impulse and Step Responses . 430 E.11 Frequency Response 433 E.12 Filtering 434 E.13 Filter Design 436Contents xv E.13.1 Analog Filter Design . 436 E.13.2 Digital Filter Design – IIR (Infinite-duration Impulse Response) Filter 437 E.13.3 Digital Filter Design – FIR (Finite-duration Impulse Response) Filter 438 E.14 Filter Discretization 441 E.15 Construction of Filters in Various Structures Using dfilt() . 443 E.16 System Identification from Impulse/Frequency Response . 447 E.17 Partial Fraction Expansion and (Inverse) Laplace/z-Transform . 449 E.18 Decimation, Interpolation, and Resampling . 450 E.19 Waveform Generation 452 E.20 Input/Output through File . 452 F SimulinkR . 453 Index . 461 Index for MATLAB routines . 467 Index for Examples . 471 Index for Remarks . 473 Index A ADC (Analog-to-Digital conversion), 251–256 A/D-G[z]-D/A structure, 259, 275, 283 Additivity, 13 Aliasing, 8 AM (amplitude modulation), 91, 113 Analog filter design, 307–320 Analog frequency, 6, 7 Analog signal, 2 Analytic signal, 109, 110 Anti-aliasing, 262–263 Anti-causal sequence, 208 Anticipatory, 30 Anti-imaging, 262–263 Anti-symmetric, 145, 232, 237–240 ASK (amplitude-shift keying), 115 B Backward difference rule, 284 Bandpass filter (BPF), 309 Bandstop filter (BSF), 309 Bandwidth, 76 BIBO (bounded-input bounded-output), 29 BIBO stability condition, 29, 46 Bilateral (two-sided) z-transform, 208 Bilinear transformation, 288–292, 301, 302 Bit reversed order, 166 Block diagram, 32 Bode plot, 97 BPF realization, 123, 184 Butterfly computation, 167, 168 Butterworth filter, 313, 314, 329 C Cascade form, 309 Causal, 30, 85, 208 Causality, 30, 225 Causal sequence, 208 Characteristic equation, 369 Characteristic root, 369 Chebyshev I filter, 311, 314, 324 Chebyshev II filter, 312, 314, 326 Circulant matrix, 382 Circular convolution, 90, 142, 151, 152, 403 Circular shift, 150 Complex convolution, 90, 139, 151, 184, 216 Complex envelope, 112 Complex exponential function, 4 Complex exponential sequence, 4 Complex number operation, 409 Complex sinusoidal function, 5 Complex sinusoidal sequence, 5 Complex translation, 88, 139, 150, 215, 389 Conjugate symmetry, 86, 138 Continuous-amplitude signal, 2 Continuous-time convolution, 7, 13, 19, 20 Continuous-time Fourier series, see CTFS Continuous-time Fourier transform, see CTFT Continuous-time frequency, 7 Continuous-time signal, 1 Continuous-time state equation, 50, 370 Continuous-time system, 13 Continuous-value signal, 2 Controllable canonical form, 36, 363 Convolution, 9–10, 16, 17, 183 Convolution property, 90, 109 Correlation, 38–39, 58, 60, 116, 424 Correlation coefficient, 43 CTFS, 62–73, 399, 401 CTFS and DFT/DFS, 160–164 CTFS coefficient, 70 CTFS of an impulse train, 70 CTFS of a rectangular wave, 65 CTFS of a triangular wave, 65 CTFS spectrum, 67 CTFT, 78–96, 400, 401 CTFT and DTFT, 161–162 CTFT of a cosine function, 85 461462 Index CTFT of an impulse train, 85 CTFT of a periodic signal, 77 CTFT of a polygonal signal, 117 CTFT of a rectangular pulse, 75 CTFT of a sine function, 85 CTFT of a triangular pulse, 76 CTFT of the unit impulse function, 81 CTFT of the unit step function, 83 D DAC (Digital-to-Analog conversion), 250–251 Dead time, 293 Decimation-in-frequency (DIF) FFT, 168 Decimation-in-time (DIT) FFT, 165 Deconvolution, 38, 54, 423 Demodulation, 92 DFS, 151–152, 405–406 DFS reconstruction, 265 DFT, 147–164, 178–180, 403–404 DFT for an infinite-duration sequence, 155–160 DFT for a noncausal sequence, 156–157, 159, 187 DFT of a triangular sequence, 175 DFT size, 149, 164 Difference equation, 31, 207, 208, 213, 225, 226 Differential equation, 33 Differentiation w.r.t. a vector, 388 Differentiator, 184, 338 Digital filter design, 320–350 Digital frequency, 6–8, 147 Digital fundamental frequency, 147 Digital resolution frequency, 147 Digital signal, 2 Dirac delta function, 8 Direct form, 36, 323, 325 Dirichlet condition, 63 Discrete-amplitude signal, 2 Discrete Fourier series (DFS), 147 Discrete Fourier transform, see DFT Discrete-time convolution, 8, 17, 22, 24 Discrete-time equivalence criterion, 278, 279 Discrete-time equivalent, 277–280, 293 Discrete-time Fourier series (DTFS), 149 Discrete-time Fourier transform, see DTFT Discrete-time frequency, 6 Discrete-time interpolation, 269–271, 275 Discrete-time sampling, 189 Discrete-time signal, 2 Discrete-time state equation, 54 Discrete-time system, 13 Discrete-value signal, 2 Discretization, 284–293, 370–376 Discretization of continuous-time state equation, 370–376, 381 DTFT, 130–138, 160–164, 402 DTFT of a cosine sequence, 137 DTFT of a discrete-time impulse train, 189 DTFT of a periodic sequence, 136, 188 DTFT of a rectangular pulse, 132 DTFT of a sine sequence, 137 DTFT of asymmetric sequences, 145 DTFT of symmetric sequences, 145 DTFT of the unit impulse sequence, 135 DTFT of the unit step sequence, 137 DTFT spectrum, 141, 186 Duality, 88 Dual-tone multi-frequency (DTMF), 202 E Eigenfunction, 116 Eigenvalue, 369, 378, 412 Elliptic filter, 313, 315, 328 Envelope detector, 112 Exponential function, 4 Exponential sequence, 4, 208 Export (a filter), 348 F Fast Fourier transform (FFT), 164 FDATool, 348, 350, 352, 354 FDM (frequency-division multiplexing), 124 Filter structure, 345–348 Final value theorem, 218, 391 Finite-duration impulse response, see FIR Finite pulsewidth sampler, 92 FIR, 32 FIR filter design, 331–344 FIR lowpass filter (LPF), 140 Folding frequency, 262 Formulas, 419 Forward difference, 286 Forward substitution, 39 Fourier, 61 Fourier reconstruction, 69 Fourier series, see CTFS Fourier series and Fourier ransform, 76 Fourier transform, see CTFT Fourier transform and Laplace transform, 74 Frequency, 6–8 Frequency aliasing, 257, 258, 260 Frequency resolution, 178 Frequency response, 19–22, 74, 225, 226, 228, 237 Frequency shifting, 88, 139, 150, 215, 389 Frequency transformation, 282, 289–291Index 463 FSK (frequency-shift keying), 115 Fundamental frequency, 64, 161 Fundamental matrix, 364–365 Fundamental period, 62 G General gain formula, 34 Generalized Fourier transform, 77 Gibbs phenomenon, 69 Goertzel algorithm, 246 Group delay, 332 H Half-power frequency, 79 Half-size DFT computation, 196 Harmonic, 72 Highpass filter (HPF), 307 Hilbert transformer, 109–113, 184, 338–339 Homogeneity, 13 I Ideal BPF (bandpass filter), 119 Ideal LPF frequency response, 74–75, 120 Ideal LPF impulse response, 74–75 Ideal sampler, 92 IDFT (inverse discrete Fourier transform), 148, 169 IIR, 32 IIR filter design, 321–331 Import (a filter), 348 Impulse-invariant transformation, 281–282 Impulse response, 15, 16, 17, 216, 368 Impulse signal, 81 Incrementally linear, 14 Infinite-duration impulse response, see IIR Initial value theorem, 217, 391 In-place computation, 167 Interpolation, 263 Inverse discrete Fourier series (IDFS), 151 Inverse discrete Fourier transform (IDFT), 148 Inverse Laplace transform, 392 Inverse system, 48 Inverse z-transform, 218–223, 226, 230–231 Invertible, 30 J Jordan canonical form, 378–379 K Kronecker delta sequence, 10 L Ladder, 345 Laplace transform, 384–397, 406, 407 Lattice, 345 Least squares error (LSE), 126 Left-sided sequence, 208 Left-side (rectangular) rule, 287 Linear, 13 Linear convolution, 152–155, 423 Linear convolution with DFT, 152–155, 192 Linear phase, 97, 133, 238 Linear system, 13 Linear time-invariant (LTI) system, 15 Long division, 223 Lowpass equivalent, 112 Lowpass filter (LPF), 270 M Mason’s formula, 34 Matched filter, 40, 41, 42, 55 Matched z-transform, 292 MATLAB, 395 Matrix operation, 409–417 Modal matrix, 378–379, 382 Modulation property, 91, 108, 139 Multi-band FIR filter design, 240, 335–336 N Non-anticipatory, 30 Non-causal, 30 Nyquist frequency, 258 Nyquist rate, 258, 261 O Observable canonical form, 36, 363 Order, 32 Orthogonal, 127, 413 Output equation, 362 P Parallel computation of two DFTs, 194 Parallel form, 309 Parseval’s relation, 96, 116, 144 Partial fraction expansion, 219–223, 393 Passband edge frequency, 307–308 Passband ripple, 307–308 Period, 6, 7, 62 Periodic, 6, 62 Periodic convolution, 139 Periodic extension, 149 Phase delay, 332 Phase jump, 133 Physical realizability, 84 Picket fence effect, 172, 177 Plane impulse train, 106 Poisson sum formula, 123464 Index Pole, 29, 210, 224 Pole location, 295–296, 303, 305 Pole-zero mapping, 292 Pole-zero pattern, 210, 232 Power theorem, 116 Practical reconstruction, 267 Pre-envelope signal, 112 Prewarping, 290–291, 302 Pulse response, 18 Pulse transfer function, 297 PWM (pulse-width modulated), 382 Q Quadrature multiplexing, 124, 184 R Rayleigh theorem, 96, 144 Real convolution, 89, 139, 149, 215, 389 Real translation, 88, 139, 150, 214, 389 Reconstruction, 263–271, 274 Rectangular function, 5 Rectangular sequence, 5 Rectangular windowing, 140 Recursive, 32, 321 Recursive computation of DFT, 198 Region of convergence (ROC), 208, 209, 213, 223 Resolution frequency, 147 Right-sided sequence, 210 Right-side (rectangular) rule, 288 S Sample-and-hold (S/H), 272 Sampler, 92–93 Sampling, 92–93, 186, 249 Sampling interval, 178 Sampling period, 178, 259 Sampling property, 10, 11 Sampling theorem, 249, 257 Scaling, 95, 143, 189 Second-order active filter, 318–319 Shannon reconstruction, 263 Shift-invariant, 14 Short-time Fourier transform, 180, 200 Sifting property, 10, 11 Signal, 2 Signal bandwidth, 79 Signal flow graph, 32–34 Similarity transformation, 376–379 Simulink, 453 Sinc function, 11, 45, 76 Sinusoidal function, 5 Sinusoidal sequence, 5 Sinusoidal steady-state response, 19–20, 234 Spectral leakage, 140, 164, 171, 193 Spectrogram, 180, 201, 427 Spectrum, 64, 67, 70–73 Spectrum blurring, 176, 194 SPTool, 350–359 Stability, 29, 242 Stability condition, 29, 74, 397 Stability of discrete-time systems, 47, 225 Stable, 29 Starred transform, 268, 297 State, 362 State diagram, 32, 35, 37, 51, 53 State equation, 50, 53, 362–363, 364, 370–376 State space description, 362 State transition matrix, 364–365 State variable, 362 State vector, 362 Step-invariant transformation, 282–283 Step response, 18 Stopband attenuation, 307–308 Stopband edge frequency, 307–308 Stroboscopic effect, 8, 258 Superheterodyne receiver, 120 Superposition principle, 13, 15, 16 Symmetric sequence, 145, 146, 236, 238 System, 17 System bandwidth, 79 System function, 18, 31, 225 T Tapped delay lines, 26–28 TDM (Time-Division multiplexing), 124 Time-aliasing, 154, 262 Time constant, 78 Time-invariant, 14 Time resolution, 182 Time reversal, 215 Time sampling method, 279 Time shifting, 88, 139, 148, 214, 389 Transfer function, 17, 31, 368 Transmission matrix, 38 Transportation delay, 293 Transposed direct form, 37, 434 Trapezoidal rule, 288 Tustin’s method, 288–292 Two-dimensional DFT, 199 Two-dimensional Fourier transform, 106 U Uncertainty principle, 67, 155 Unilateral (one-sided) z-transform, 208 Unit impulse function, 3, 8, 10, 11, 45, 386 Unit impulse sequence, 3, 10, 11Index 465 Unit sample response, 16 Unit sample sequence, 4, 10, 11 Unit step function, 3, 362 Unit step sequence, 3, 362 W Wagon-wheel effect, 8, 258 White spectrum, 81 Whittaker’s cardinal interpolation, 264 Windowing, 193 Windowing method (for FIR filter design), 333 Windowing property, 90, 139, 185 Z Zero, 31, 212 Zero-insertion, 176 Zero-order-hold equivalent, 283, 301, 374 Zero-padding, 152, 156, 164, 174 z-transform, 208, 213, 406, 407, 408 z-transform and DTFT, 211Index for MATLAB routines MATLAB Page routine name Description number bilinear() bilinear transformation (optionally with prewarping) 442 butter() designs Butterworth filter with an order and cutoff frequency 310, 436 buttord() the order and cutoff frequency of Butterworth filter 310, 436 cfirpm() designs a (possibly complex) FIR filter 332, 344 cheby1() designs Chebyshev I filter with an order and cutoff frequency 311, 436 cheby1order() the order and cutoff frequency of Chebyshev I filter 311 cheby2() designs Chebyshev II filter with an order and cutoff frequency 312, 438 cheby2order() the order and cutoff frequency of Chebyshev II filter 312 chirp() swept-frequency cosine generator 452 conv() (linear) convolution 154, 423 conv circular() circular convolution 424 cpsd() cross power spectral density 429 c2d() discretization (continuous-to-discrete conversion) 442 CTFS exponential() find the CTFS coefficients in exponential form 425 CTFT poly() CTFT of a polygonal signal 118 decimate() Reduces the sampling rate to produce a decimated sequence 450 deconv() deconvolution 424 dimpulse() impulse response of a discrete-time system 431 detrend() remove the best straight-line fit or the mean value 451 dfilt digital filter structure conversion 443 DFS discrete Fourier series 425 DFT discrete Fourier transform 425 dlsim() time response of a discrete-time system to a given input 432 dstep() step response of a discrete-time system 432 DTFT discrete-time Fourier transform 425 d2c() discrete-to-continuous conversion 442 dtmf decoder() DTMF (dual-tone multi-frequency) signal decoder 205 dtmf generator() DTMF (dual-tone multi-frequency) signal generator 202 ellip() designs elliptic filter with an order and cutoff frequency 437 fft() fast Fourier transform (FFT) 426 fftshift() swaps the first and second halves 427 467468 Index for MATLAB routines MATLAB Page routine name Description number filter() the output of a digital filter (with an initial state) to an input 434 filter cas() filtering in a cascade form 445 filter latc nr() filtering in a nonrecursive lattice form 447 filter latc r() filtering in a recursive lattice form 447 filter par() filtering in a parallel form 445 fir1(), fir2() designs a FIR filter using windowing 332, 439 fircls(), fircls1() designs a FIR filter using constrained least squares 332, 441 firls(), firpm() designs a FIR filter using equiripple or least squares 332, 440 firrcos() designs a FIR filter using raised cosine 332 Fourier analysis() CTFT analysis of an LTI system with a transfer function 105 freqs() frequency response of a continuous-time system 433 freqz() frequency response of a discrete-time system 433 hilbert() analytic signal with Hilbert transform on the imaginary part 111 ifft() inverse (fast) Fourier transform 426 ilaplace() inverse Laplace transform 394, 449 impinv() impulse-invariant discretiztion of a continuous-time system 441 impulse() impulse response of a continuous-time system 431 impz() impulse response of a discrete-time system B[z]/A[z] 431 interp() increase the sampling rate to produce an interpolated sequence 450-451 interpolation discrete() discrete-time interpolation (Sec. 5.4.4) 271 invfreqs() identifies continuous-time system from its frequency response 448 invfreqz identifies discrete-time system from its frequency response 448 iztrans() inverse z-transform 221, 449 jordan() Jordan canonical form of state equation 379 laplace() Laplace transform 449 latc2tf() lattice structure to transfer function 347 load load (read) a file 452 lsim() time response of a continuous-time system to a given input 432 music wave() melody generator 200 par2tf() parallel form to transfer function 347 prony() identifies a discrete-time system based on its impulse response 447 pulstran() generates a pulse train 452 rectpuls generates a rectangular pulse 452 resample() change the sampling rate 451 residue() partial fraction expansion of a Laplace transform expression 394, 449 residuez() partial fraction expansion of a z-transform expression 220, 449 save save (write) a file 452 sos2ss() second-order sections to state-space description 347 sos2tf() second-order sections to transfer function 347 sos2zp() second-order sections to zero-pole form 347 specgram() spectrogram (old version) 427 spectrogram() spectrogram 427Index for MATLAB routines 469 MATLAB Page routine name Description number ss2sos() state-space description to second-order sections 347 ss2tf() state-space description to transfer function 347 ss2zp() state-space description to zero-pole form 347 step() step response of a continuous-time system 432 stmcb() identifies a discrete-time system 448 tfe (discrete-time) transfer function estimation 448 tf2latc() transfer function to lattice form 347, 443 tf2latc my() transfer function to lattice form 446 tf2par s() transfer function (in Laplace transform) to parallel form 444 tf2par z() transfer function (in z-transform) to parallel form 347, 443 tf2sos() transfer function to second-order sections 347 tf2ss() transfer function to state-space description 347 tf2zp() transfer function to zero-pole form 347 tripuls() generates a triangular pulse 452 upfirdn() upsamples, applies a FIR filter, and downsamples 451 windowing() various windowing techniques 427 xcorr() correlation 42, 423 xcorr circular() circular correlation 425 zp2sos() zero-pole form to second-order sections 347 zp2ss() zero-pole form to state-space description 347 ztrans() z-transform 449Index for Examples Example no. Description Page number Example 1.1 Convolution of Two Rectangular Pulses 22 Example 1.2 Approximation of a Continuous-Time Convolution 25 Example 1.3 Tapped Delay Lines 26 Example 1.4a Differential Equation and Continuous-Time State Diagram 36 Example 1.4b Difference Equation and Discrete-Time State Diagram 36 Example 1.5 Correlation and Matched Filter 41 Example 1.6 Correlation for Periodic Signals with Random Noise 43 Example 2.1 Fourier Spectra of a Rectangular Wave and a Triangular Wave 65 Example 2.2 Fourier Spectrum of an Impulse Train 70 Example 2.3 CTFT Spectra of Rectangular Pulse and a Triangular Pulse 75 Example 2.4 Fourier Transform of an Exponential Function 78 Example 2.5 Fourier Transform of an Even-Symmetric Exponential Function 80 Example 2.6 Fourier Transform of the Unit Impulse Function 81 Example 2.7 Fourier Transform of a Constant Function 82 Example 2.8 Fourier Transform of the Unit Step Function 83 Example 2.9 Inverse Fourier Transform of an ideal LPF Frequency Response 84 Example 2.10 Fourier Transform of an Impulse Train 85 Example 2.11 Fourier Transform of Cosine/Sine Functions 85 Example 2.12 Sinusoidal Amplitude Modulation and Demodulation 91 Example 2.13 Ideal (Impulse or Instant) Sampler and Finite Pulsewidth Sampler 92 Example 3.1 DTFT of a Rectangular Pulse Sequence 132 Example 3.2 DTFT of an Exponential Sequence 133 Example 3.3 DTFT of a Symmetrical Exponential Sequence 134 Example 3.4 DTFT of the Unit Sample (Impulse) Sequence 135 Example 3.5 IDTFT of an Ideal Lowpass Filter Frequency Response 136 Example 3.6 DTFT of a Constant Sequence 137 Example 3.7 DTFT of Cosine/Sine Sequences 137 Example 3.8 DTFT of the Unit Step Sequence 137 Example 3.9 Effect of Rectangular Windowing on the DTFT of a Cosine Wave 140 Example 3.10 Impulse Response and Frequency Response of a FIR LPF 140 Example 3.11 DTFT of an Odd Sequence 145 Example 3.12 DTFT of an Anti-Symmetric Sequence 146 Example 3.13 Linear Convolution Using the DFT 152 Example 3.14 DFT of a Noncausal Pulse Sequence 156 Example 3.15 DFT of an Infinite-Duration Sequence 157 Example 3.16 DFT Spectrum of a Single-Tone Sinusoidal Wave 170 471472 Index for Examples Example no. Description Page number Example 3.17 DFT Spectrum of a Multi-Tone Sinusoidal Wave 173 Example 3.18 DFT Spectrum of a Triangular Wave 175 Example 4.1 The z-Transform of Exponential Sequences 208 Example 4.2 A Causal Sequence Having a Multiple-Pole z-Transform 210 Example 4.3 The z-Transform of a Complex Exponential Sequence 211 Example 4.4 The z-Transform of an Exponentially Decreasing Sinusoidal Sequence 212 Example 4.5 Applying Linearity and Time Shifting Properties of the z-Transform 214 Example 4.6 Complex Differentiation and Partial Differentiation 217 Example 4.7 The Inverse z-Transform by Partial Fraction Expansion 220 Example 4.8 The Inverse z-Transform by Partial Fraction Expansion 222 Example 4.9 Difference Equation, System Function, and Impulse Response 227 Example 4.10 Different Difference Equations Describing the Same System 229 Example 4.11 Pole-Zero Pattern and Frequency Response 233 Example 4.12 Pole-Zero Pattern of Symmetric or Anti-Symmetric Sequences 238 Example 5.1 Discrete-Time Interpolation 270 Example 6.1 Impulse-Invariant Transformation–Time-Sampling Method 282 Example 6.2 Step-Invariant Transformation (Zero-Order-Hole Equivalent) 283 Example 6.3 Backward Difference Rule 285 Example 6.4 Forward Difference Rule 286 Example 6.5 Bilinear Transformation 289 Example 6.6 Bilinear Transformation with Prewarping 291 Example 6.7 Pole-Zero Mapping 292 Example 7.1 Analog Filter Design Using the MATLAB Functions 309 Example 7.2 IIR Filter Design 321 Example 7.3 Standard Band FIR Filter Design 334 Example 7.4 Multi-Band FIR Filter Design 336 Example 7.5 Anti-Symmetric Filters–Hilbert Transformer and Differentiator 338 Example 7.6 Multi-Band CLS FIR Filter Design 340 Example 7.7 CLS (Constrained Least-Squares) FIR LPF/HPF Design 341 Example 7.8 Complex-Coefficient, Arbitrary Magnitude Response FIR Filter Design 343 Example 8.1 Solving a State Equation 366 Example 8.2 Transfer Function 369 Example 8.3 Discretization of a Continuous-Time State Equation 371 Example 8.4 Discretization of a Double Integrator 374 Example 8.5 Discretization of a Double Integrator with Time Delay 376 Example 8.6 Diagonal/Jordan Canonical Form of State Equation 378Index for Remarks Remark no. Description Page number Remark 1.1 Analog Frequency and Digital Frequency 7 Remark 1.2a Properties of the Unit Impulse Function 9 Remark 1.2b Properties of the Unit Impulse Sequence 10 Remark 1.3 Linearity and Incremental Linearity 14 Remark 1.4 Frequency Response and Sinusoidal Steady-State Response 21 Remark 1.5 Convolution of Two Rectangular Pulses 24 Remark 1.6 Stability of LTI systems with System Function G(s)/G[z] 29 Remark 1.7 Properties of Autocorrelation 40 Remark 1.8 Convolution vs. Correlation and Matched Filter 40 Remark 1.9 xcorr()–MATLAB function for Correlation 42 Remark 2.1 Convergence of Fourier Series Reconstruction 69 Remark 2.2 Physical Meaning of Complex Exponential Fourier Series Coefficients 71 Remark 2.3 Effects of Smoothness and Period on Spectrum 72 Remark 2.4 Physical Meaning of Fourier Transform 74 Remark 2.5 Frequency Response Existence Condition and Stability Condition 74 Remark 2.6 Fourier Transform and Laplace Transform 74 Remark 2.7 Fourier Series and Fourier Transform 74 Remark 2.8 Fourier Transform of a Periodic Signal 76 Remark 2.9 Signal Bandwidth and System Bandwidth–Uncertainty Principle 79 Remark 2.10 An Impulse Signal and Its (White/Flat) Spectrum 82 Remark 2.11 Physical Realizability and Causality Condition 84 Remark 3.1 Physical Meaning of DTFT 130 Remark 3.2 Frequency Response Existence Condition and Stability Condition 131 Remark 3.3 Phase Jumps in DTFT Phase Spectrum 144 Remark 3.4 The DTFT Magnitude/Phase Spectra of a Symmetric Sequence 144 Remark 3.5 How to Choose the DFT Size N in Connection with Zero Padding 155 Remark 3.6 The DFT got Noncausal/Infinite-Duration Sequences 159 Remark 3.7 Relationship among the CTFS, CTFT, DTFT, and DTFS (DFT/DFS) 162 Remark 3.8 Data Arrangement in Bit Reversed Order 166 Remark 3.9 Simplified Butterfly Computation 166 473474 Index for Remarks Remark no. Description Page number Remark 3.10 DFS/DFT (Discrete Fourier Series/Transform) and Spectral Leakage 177 Remark 3.11 The Effects of Sampling Interval T and DFT Size N on DFT 178 Remark 4.1 Region of Convergence (ROC) 209 Remark 4.2 z-Transform and DTFT (Discrete-Time Fourier Transform) 211 Remark 4.3 Poles and Zeros 212 Remark 4.4 System Function, Pole Location, ROC, Causality, and Stability 213 Remark 4.5 Simplified Butterfly Computation 225 Remark 4.6 Computational Method for Inverse z-Transform 228 Remark 4.7 Frequency Response and Pole-Zero Pattern 232 Remark 4.8 Pole-Zero Pattern, Linear Phase of (Anti-)Symmetric Sequences 238 Remark 5.1 z-Transform and DTFT (Discrete-Time Fourier Transform) 261 Remark 5.2 Poles and Zeros 262 Remark 5.3 Discrete-Time Interpolation, Zero Insertion, and Lowpass Filtering 270 Remark 6.1 Equivalence Criterion and Band-Limitedness Condition 279 Remark 6.2 Time-Sampling Method–Impulse-Invariant Transformation 280 Remark 6.3 Frequency Response Aspect of Impulse-Invariant Transformation 280 Remark 6.4 Mapping of Stability Region by Impulse-Invariant Transformation 281 Remark 6.5 Frequency Transformation by Impulse-Invariant Transformation 282 Remark 6.6 Mapping of Stability Region and Frequency Transformation 285 Remark 6.7 Mapping of Stability Region by Forward Difference Rule 287 Remark 6.8 Mapping of Stability Region and Frequency Transformation by BLT 289 Remark 6.9 Prewarping 291 Remark 6.10 DC Gain Adjustment 293 Remark 8.1 Discretized State Equation and Zero-Order-Hold Equivalent 374 Remark 8.2 Similarity Transformation–Equivalence Transformation 377 #ماتلاب,#متلاب,#Matlab,#مات_لاب,#مت_لاب,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Signals and Systems with MATLAB رابط مباشر لتنزيل كتاب Signals and Systems with MATLAB
|
|