كتاب Material Science and Metallurgy
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Material Science and Metallurgy

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Material Science and Metallurgy  Empty
مُساهمةموضوع: كتاب Material Science and Metallurgy    كتاب Material Science and Metallurgy  Emptyالسبت 04 مايو 2024, 3:03 am

أخواني في الله
أحضرت لكم كتاب
Material Science and Metallurgy
K. I. Parashivamurthy
Professor and Head Department of Mechanical Engineering
Government Engineering College
Chamarajanagara
Karnataka

كتاب Material Science and Metallurgy  M_s_a_30
و المحتوى كما يلي :


Brief Contents
Preface xvii
Acknowledgements xvii
About the Author xix
1. Atomic Structure 1
2. Crystal Structure 13
3. Crystal Imperfections 39
4. Atomic Diffusion 50
5. Mechanical Behaviour of Metals 63
6. Fracture 86
7. Creep 94
8. Fatigue 104
9. Solidification of Metals and Alloys 113
10. Solid Solutions 122
11. Phase Diagrams 127
12. Iron Carbon Equilibrium Diagram 147
13. Isothermal and Continuous Cooling Transformation Diagrams 158
14. Heat Treatment 167
15. Composite Materials 188
16. Properties of Ferrous and Non-ferrous Materials 213
17. Powder Metallurgy 227
18. Ceramic Materials 236
19. Corrosion of Metals and Alloys 245
Index 259
Contentsviii Contents
3. Crystal Imperfections 39
3.1 Classification of Imperfections (Based on Geometry) 39
3.1.1 Point Imperfections 40
3.1.2 Line Imperfections 43
3.1.3 Surface Imperfections 45
3.2 Volume Imperfections (Stacking Fault) 47
Exercises 47
Objective-type Questions 47
4. Atomic Diffusion 50
4.1 Diffusion Mechanisms 51
4.2 Types of Diffusion 52
4.3 Fick’s Laws of Diffusion 53
4.3.1 Fick’s First Law of Diffusion—Steady-state Diffusion 53
4.3.2 Fick’s Second Law—Unsteady-state Diffusion 54
4.4 Activation Energy for Diffusion (Arrhenius Equation) 56
4.5 Factors Affecting Diffusion 59
4.5.1 Temperature 59
4.5.2 Crystal Structure 59
4.5.3 Concentration Gradient 59
4.5.4 Crystal Imperfection 59
4.5.5 Grain Size 59
4.6 Applications of Diffusion 59
Exercises 60
Objective-type Questions 60
5. Mechanical Behaviour of Metals 63
5.1 Stress and Strain 63
5.1.1 Stress 63
5.1.2 Strain 63
5.2 True Stress–Strain Curves 64
5.2.1 True Stress 64
5.2.2 True Strain 64
5.3 Deformation of Metals 65
5.3.1 Types of Metal Deformation 65
Exercises 82
Objective-type Questions 84
6. Fracture 86
6.1 Ductile Fracture 86
6.2 Brittle Fracture (Cleavage Fracture) 88
6.3 Theoretical Cohesive Strength of Materials 89Contents ix
6.4 Griffith’s Theory of Brittle Fracture 90
Exercises 92
Objective-type Questions 92
7. Creep 94
7.1 Creep Curve 94
7.1.1 Primary Creep 95
7.1.2 Secondary or Steady-state Creep 95
7.1.3 Tertiary or Viscous Creep 95
7.2 Effect of Temperature on Creep Deformation (Low Temperature and High
Temperature Creep) 95
7.3 Transient Creep 96
7.4 Viscous Creep 96
7.5 Mechanism of Creep 97
7.5.1 Dislocation Climb 97
7.5.2 Sliding of Grain Boundary 97
7.5.3 Diffusion of Vacancy 98
7.6 Creep Properties 98
7.7 Creep Fracture 98
7.8 Elastic After-effect (an Elastic Behaviour or Delayed Elastic) 99
7.8.1 Stress Relaxation 99
7.9 Creep Testing 100
7.10 Factors Affecting Creep 101
Exercises 101
Objective-type Questions 102
8. Fatigue 104
8.1 Types of Fatigue Loading 105
8.1.1 Completely Reversed Loading 105
8.1.2 Repeated Loading 105
8.1.3 Irregular Loading 106
8.2 Mechanism of Fatigue Failure 106
8.2.1 Orowan’s Theory 107
8.2.2 Wood’s Theory 107
8.2.3 Cottrel and Hull Theory 107
8.3 Fatigue Properties 108
8.4 S–N Diagram 108
8.5 Factors Affecting Fatigue 108
8.6 Fatigue Test 109
8.7 Fatigue Fracture 110
Exercises 110
Objective-type Questions 111x Contents
9. Solidification of Metals and Alloys 113
9.1 Mechanism of Solidification of Metals 113
9.2 Nucleation 114
9.2.1 Homogenous or Self-nucleation 114
9.2.2 Heterogeneous Nucleation 116
9.3 Crystal Growth 117
9.4 Dendrite Growth 117
9.4.1 Volume Shrinkage 118
9.5 Effect of Super-cooling or Under-cooling on Critical Radius of a Nucleus 118
9.6 Casting Metal Structure 119
Exercises 119
Objective-type Questions 119
10. Solid Solutions 122
10.1 Solid Solutions 122
10.2 Substitutional Solid Solution 123
10.2.1 Disordered Substitutional Solid Solution 123
10.2.2 Ordered Substitutional Solid Solution 123
10.2.3 Hume Rothery’s Rule 124
10.3 Interstitial Solid Solution 124
10.3.1 Metallic Compounds (Intermediate Phases) 125
Exercises 125
Objective-type Questions 125
11. Phase Diagrams 127
11.1 Cooling Curves 127
11.1.1 Cooling Curve for Pure Metals or Solidification of Pure Metals 128
11.1.2 Cooling Curve for Binary Alloy 128
11.2 Construction of Phase Diagram 129
11.3 Interpretation of Phase Diagram 130
11.3.1 Prediction of Phase 130
11.3.2 Prediction of Chemical Composition of Different Phases for a Given
Temperature 131
11.3.3 Prediction of Amount of Phase (Lever-arm Rule) 131
11.4 Gibbs Phase Rule 132
11.5 Classification of Phase Diagrams 134
11.5.1 According to Number of Components in the System 134
11.5.2 According to Solubility of Components 134
11.6 Liquid and Solid-state Transformation 140
11.6.1 Eutectic Reaction (Transformation) 140Contents xi
11.6.2 Peritectic Reaction 140
11.6.3 Eutectoid Reaction 141
11.6.4 Peritectoid Reaction 142
11.7 Complex Alloy Systems 142
11.8 Ternary Phase Diagram 143
Exercises 143
Objective-type Questions 145
12. Iron Carbon Equilibrium Diagram 147
12.1 Solidification of Pure Iron
(Constitution of Iron or Allotropy Modification of Iron) 147
12.2 Iron Carbon Phase Diagram 148
12.3 Phases of Iron Carbide, Phase Diagram 149
12.3.1 -Ferrite 149
12.3.2 Austenite 150
12.3.3 Ferrite 150
12.3.4 Cementite 150
12.3.5 Pearlite 150
12.3.6 Ledeburite 150
12.3.7 Solubility of Carbon in Iron 150
12.4 Reaction of Iron Carbon System 151
12.4.1 Peritectic Reaction 151
12.4.2 Eutectoid Reaction 151
12.4.3 Eutectic Reaction 151
12.5 Steels 151
12.5.1 Solidification and Transformation of Hypoeutectoid Steel
(0.4% Carbon Steel) 151
12.5.2 Solidification and Transformation of Eutectoid Steel
(0.8% Carbon Steel) 152
12.5.3 Solidification and Transformation of Hypereutectoid Steel
(1.5% Carbon Steel) 152
12.6 Cast Iron 153
12.6.1 Solidification and Transformation of Hypoeutectic Cast Iron
(4% Carbon Cast Iron) 153
12.6.2 Solidification and Transformation of Eutectic Cast Iron
(4.33% Carbon Cast Iron) 154
12.6.3 Solidification and Transformation of Hypereutectic Cast Iron
(6.23% Carbon Cast Iron) 154
12.7 Critical Temperature of the Iron and Iron Carbon Diagram 154
Exercises 155
Objective-type Questions 156xii Contents
13. Isothermal and Continuous Cooling Transformation Diagrams 158
13.1 Construction of TTT Diagram 158
13.2 Effect of Cooling Rate on TTT Diagram 161
13.2.1 Definitions 162
13.3 Continuous Cooling Transformation (CCT) Curve 162
13.4 Effect of Carbon Content and Alloying Elements 163
Exercises 164
Objective-type Questions 165
14. Heat Treatment 167
14.1 Heat Treatment Purposes 167
14.1.1 Temperature up to which the Metal or Alloy is Heated 168
14.1.2 Length of Time the Metal or Alloy is Held at this Temperature
(Holding Time) 168
14.1.3 Rate of Cooling 168
14.1.4 Quenching Media 168
14.2 Heat Treatment of Steel 168
14.2.1 Treatments that Produce Equilibrium Condition 169
14.2.2 Treatments that Produce Nonequilibrium Condition 173
14.3 Martempering (Interrupted Quenching) 175
14.4 Austempering (Isothermal Transformation) 176
14.5 Hardenability 177
14.5.1 Jominy End-quench Tests 177
14.6 Surface Hardening 178
14.6.1 Method in which Whole Component is Heated 178
14.6.2 Method in which only Surface of Component is Heated 180
14.7 Heat Treatment of Nonferrous Metals 182
14.7.1 Precipitation Hardening (Age Hardening) 182
14.7.2 Annealing 184
Exercises 184
Objective-type Questions 185
15. Composite Materials 188
15.1 Particulate Reinforced Composites 189
15.2 Fibre Reinforced Composites 189
15.3 Laminated Composite Material 190
15.4 Polymer Matrix Composites 190
15.5 Metal Matrix Composite 191
15.6 Ceramic Matrix Composites 191
15.7 Agglomerated Composite Material 192Contents xiii
15.8 Manufacturing Methods for Composite Materials 192
15.9 Manufacturing Method for Particulate Reinforced Composites 192
15.9.1 Liquid-state Methods 192
15.9.2 Solid-state Methods 195
15.10 Manufacturing of Fibre-reinforced Polymer Matrix Composites 197
15.10.1 Open Mould Process 197
15.10.2 Closed Mould Process 200
15.11 Manufacture of Laminated Composite 201
15.11.1 Solid-state Bonding of Composite 201
15.12 Mechanical Behaviours of a Composite Material 202
15.12.1 Determination of E
1 (Longitudinal Direction or Iso-strain Condition) 203
15.12.2 Determination of Young’s Modulus in the Direction of E2
(Transverse Direction or Iso-stress Condition) 204
15.12.3 Determination of Poisson’s Ratio V
12 206
15.12.4 Determination of G
12 (Shear Modulus) 206
15.13 Properties of Composite Materials 207
15.14 Advantages of Composites 207
15.15 Limitations of Composites 208
15.16 Applications 208
Exercises 209
Objective-type Questions 210
16. Properties of Ferrous and Non-ferrous Materials 213
16.1 Ferrous metals 213
16.1.1 Steels 213
16.1.2 Pig Iron 217
16.1.3 Wrought Iron 218
16.1.4 Cast Iron 218
16.2 Non-ferrous Metals and Alloys 220
16.2.1 Copper and Copper-based Alloys 220
16.2.2 Aluminum and Its Alloys 223
Exercises 224
Objective-type Questions 225
17. Powder Metallurgy 227
17.1 Method of Producing Powders 228
17.1.1 Atomization of Molten Metal 228
17.1.2 Electrodeposition 228
17.1.3 Reduction of a Compound 229
17.1.4 Crushing and Milling 229
17.2 Blending of Powder 229
17.3 Compaction (Cold and Hot) 229xiv Contents
17.4 Pre-sintering and Sintering 230
17.5 Finishing Operations 230
17.6 Heat Treatment 230
17.7 Characteristics of Powder and Its Parts 231
17.8 Applications of Some Powder Metallurgy Parts 231
17.9 Advantages of Powder Metallurgy Components 232
17.10 Disadvantages of Powder Metallurgy 232
Exercises 233
Objective-type Questions 233
18. Ceramic Materials 236
18.1 Classification of Ceramics 236
18.1.1 Based on Fusing or Melting Temperature 236
18.1.2 Based on Nature of Reaction 237
18.1.3 On the Basis of Chemical Composition of the Refractories 237
18.1.4 Based on the Nature of Materials 237
18.2 Characteristics of Refractories 239
18.3 Properties of Ceramic Materials 239
18.4 Application of Ceramics 239
18.4.1 Traditional Ceramics 239
18.4.2 Industrial Ceramics 240
18.4.3 Automotive Ceramics 240
18.4.4 Tribological Ceramics 241
18.4.5 Conductive Ceramics 241
18.4.6 Nuclear Ceramics 242
18.4.7 Optical Ceramics 242
18.4.8 Pigments 242
Exercises 242
Objective-type Questions 243
19. Corrosion of Metals and Alloys 245
19.1 Electrochemical Theory of Corrosion 245
19.2 Galvanic Cell 246
19.3 Electrode Potential 247
19.3.1 Primary Reference Electrode 248
19.3.2 Secondary Reference Electrode 249
19.4 Standard Electrode Potential and Electrochemical Series 250
19.5 Types of Corrosion 251
19.5.1 Uniform Corrosion 251
19.5.2 Galvanic Corrosion 251
19.5.3 Pitting Corrosion 251
19.5.4 Stress Corrosion 25219.6 Prevention and Control of Corrosion 252
19.6.1 Proper Design and Selection of Metals 253
19.6.2 Change of Environment 253
19.6.3 Change of Metal Potential 253
19.6.4 Protective Coatings 254
19.6.5 Passivation 254
19.7 Metallic Coatings 255
19.7.1 Nickel Plating 255
19.7.2 Chromium Plating 255
19.7.3 Silver Plating 255
19.7.4 Cadmium Plating 256
19.7.5 Gold Plating 256
19.8 Organic Protective Coatings 256
19.9 Disadvantages of Corrosion 256
Exercises 257
Objective-type Questions 257
Index 259
Index
A
acidic refractories, 237
activation energy, 56
age hardening, 183
ageing treatment, 183
aircraft engines, 180
allotropic modification, 147
alloy steels, 216
alpha iron, 147–148
alumina, 240
aluminous refractories, 237
aluminum bronzes, 222
aluminum–silicon alloys, 224
aluminum–zinc alloys, 224
amorphous, 13
angle of contact, 116
Angstrom, 15
angular momentum quantum number, 5
anisotropic, 189
annealing, 101, 161, 169
annealing twin, 47, 73
antimony–bismuth, 133
argon, 6
array of atoms, 14
Arrhenius equation, 56
artificial ageing, 183
atomic mass number, 2
atomic number, 2
atomic radius, 17
atomic weight, 2
atoms, 13, 122
attractive force, 89
austenite, 150, 158, 160
structure, 169
austenitic stainless steels, 217
autoclave process, 199
automobile bodies, 147
automotive ceramics, 240
azimuthal quantum number, 5
B
bainite, 160, 162
bakelite, 13
basic refractories, 237
Bauschinger effect, 80
bearing alloys, 139
bell metal, 222
beryllium, 6
beryllium bronzes, 222
binary alloy, 142
binary diagram, 133
body-centred cubic, 17
Bohr’s theory, 4
Boltzmann constant, 56
boron, 125, 190
brass, 123
Bravais lattices, 15
brick, 240
brittle fracture, 88, 90–91
brittle material, 91
bronzes, 222
Burgers vector, 43
C
cadmium plating, 256
calcium, 6
camshafts, 59
carbon, 3, 52, 178
carbon nanotube, 189
carbon steel, 52
carburization, 52
case hardening, 178
cast iron, 147, 153, 218
caustic embrittlement, 252
cellulouse, 13
cementite, 150
ceramic, 13
matrix of, 191
ceramic materials, 237260 Index
cermets, 240
chemical affinity factor, 124
chemical bond, 7
chemical vessels, 240
chinaware, 240
chlorine, 3
chromium plating, 255
chromium steels, 216
civil structures, 147
coarse-grained steels, 101
coefficient of diffusion, 54
cohesive forces, 89
coining, 230
cold working effects, 170
columnar crystal, 119
composite melt slurry, 193
concentration gradient, 50, 53
conductive ceramics, 241
conventional strain, 63
conveyers chain, 219
coordination number, 17
copper, 123, 220
alloys of, 170
copper-based alloys, 220
corrosion, 245
prevention and control of, 252–253
corrosive environment, 109
Cottrel and Hull theory, 107
covalent bonds, 7
crack nucleation, 88
crack propagation, 88
crake propagation, 91
crank shafts, 182
creep curve, 94
creep fracture, 98
creep limit, 98
creep rupture strength, 98
creep strength, 101
critical cooling rate, 174
critical radius, 118
critical resolved shear stress, 71
critical shear stress, 71
crushing and milling, 229
crystal growth, 47
crystal imperfections, 39
crystal lattice, 14
crystal structure factor, 124
crystal systems, 15
crystalline solids, 13
crystallization, 78
crystallographer, 25
crystallography, 13
crystals, 114
Curi temperature, 148
cyaniding, 180
D
Daniel cell, 246
Debye–Scherrer method, 33
defects, 39
deformation, 63
delta iron, 147
dendrite growth, 118
density packing factor, 17
die casting, 193
differential aeration, 245
diffusion annealing, 171
diffusivity, 55
dislocation density, 78
ductility, 77
dyes, 8
E
edge defect, 39
edge dislocation, 72
elastic action, 63
elastic deformation, 65
elastic limit, 67, 88
elastic strain energy, 91
elastic strength, 68
electrochemical theory, 245
electrode potential, 247–250
electrolytic deposition, 228
electromagnetic radiation, 4
electromotive force, 246
electron configuration, 3
electronic defects, 42
electrostatic attraction, 7
embryo, 114Index 261
endurance limit (EL), 108
energy barrier, 56
epoxies, 197
epoxy composite, 189, 190
equiaxed grain, 117, 119
equilibrium diagram, 135
eutecic mixture, 136, 154
eutectic reaction, 139, 151
eutectoid reaction, 151
eutectoid transformation, 150
F
face-centred cubic, 17
fatigue behaviour, 105
fatigue fracture, 104
fatigue life, 108
fatigue strength, 108
ferrite, 149, 150
ferritic stainless steels, 217
fibre-reinforced composites, 189
filament-winding method, 199
fine pearlite, 160
flame hardening, 181
flywheels, 220
fracture strength, 76
Frenkel defect, 42
full annealing, 171
G
galvanic cell, 245
galvanic corrosion, 246, 251
gas carburizing, 179
gaseous nitrogen, 180
gating system, 193
Gaussian error function, 55
gear, 59
gold plating, 256
grain boundaries, 101
grain boundary diffusion, 52–53
grain boundary imperfection, 45
grain growth, 117
granular coal, 178
graphite, 10, 153, 240
gray cast iron, 153
Guinier-Preston zones, 183
gun metal, 222
H
half-cell reactions, 247
hand lay-up process, 197
hard creep, 95
hardenability, 177
hardening stress, 175
helium, 6
heterogeneous nucleation, 114, 116
hexagonal close-packed, 17
hexagonal lattice, 28
hexagonal planes, 22
high alloys steels, 216
high carbon steels, 151, 251
high-speed steels, 217
high-performance ceramics, 238
homogenization, 50
Hook’s law, 65
hot creep, 96
Hume theory, 124
hydrogen scale, 250
hypereutectic cast iron, 153
hypoeutectic cast iron, 148, 153–154
hypoeutectoid steel, 151
I
ideal crystals, 39
imperfections, 39
impurity defect, 40
induction hardening process, 181
industrial ceramics, 240
inert gas stream, 194
infiltration, 230
injection moulding process, 200
inoculants, 117
insulating refractories, 237
insulators, 237
interatomic attractions, 7
interface energy, 116
interfacial angles, 14262 Index
intermediate phases, 125
internal combustion engine, 220
internal stress, 167
interplanar spacing, 34
interstitial defect, 39, 41
interstitial diffusion mechanism, 52
interstitial solid solution, 123–124
ion vacancy, 42
ionic bond, 7
iron, 125
iron–carbon diagram, 168
irregular loading, 106
isothermal curve, 158
isothermal heat treatment, 158
isothermal transformation, 151
isotones, 3
isotope, 3
L
laminated composite, 190
lattice constants, 14
lattice parameters, 14
law alloy steel, 216
leaded yellow brass, 221
ledeburite, 150, 154
lithium chloride, 8
low carbon steel, 170
lower yield point, 74
low-temperature refractory, 236
M
machinability, 167
machining, 230
magnesia, 240
magnesium, 6
magnetic iron, 147
malleability, 77
malleable cast iron, 219
manganese steel, 216
manhole covers, 218
martensite, 159, 162
martensitic stainless steels, 217
Maxwell–Boltzmann distribution law, 56
mechanical twin, 47
medium carbon steels, 151
metal matrix composites, 196
metal powder, 196
metallic bond, 9
metallic coatings, 255–256
metallurgy, 125
methane, 10
microconstituents, 167, 188
mild steel, 170, 214
Miller indices, 25
modulus of elasticity, 65
modulus of resilience, 68
molecular weight, 2
Muntz metal, 221
N
natural ageing, 183
natural refractories, 237
naval brass, 221
neck formation, 87
negligible deformation, 88
neutron, 1
nickel plating, 255
nickel steels, 216
nitriding, 180
nitrogen, 125, 178
nodular cast iron, 220
non-linear elastic properties, 69
nonoxide refractories, 237–238
normalizing, 101
notch sensitivity, 81
nuclear ceramics, 242
nucleating agents, 119
nucleation, 114, 128
nuclei crystallizes, 114
O
offset method, 75
oil-hardening steels, 174
open mould, 197
optical ceramics, 242
optical extensometer, 101
organic protective coatings, 256
oxidation potential, 247Index 263
oxide refractories, 238
oxy-acetylene flame, 181
P
packing factor, 17
paint, 8
paraffin, 10
partial annealing, 171
particulates, 191
passiviation, 254
Pauli’s exclusion principle, 6
pearlite, 150–154
percent elongation, 77
peritectic reaction, 140, 151
peritectic temperature, 140
peritectoid reaction, 141
phosphar bronze, 222
pig iron, 217
pigments, 242
piston pins, 59
piston rings, 218
pitting corrosion, 251–252
plain carbon steel, 214
Plank’s constant, 4
plastic deformation, 43, 63
plywood, 190
point imperfections, 40
Poisson’s ratio, 64
polycrystalline, 33
polycrystals, 98
polymer matrix composite, 190
polymers, 109
porcelain, 240
positive free energy, 115
pottery, 240
precipitation hardening, 182
pre-sintering, 230
pressure bag, 198
primary reference electrode, 248–249
principle quantum number, 4
Q
quantum numbers, 3
quenching media, 168
R
real crystals, 39
recrystallization, 124, 169
red brass, 221
red metal, 221
reinforcement, 188
repulsive force, 89
resilience, 68, 70
rotating crystal method, 33
rubber, 69
rusting of iron, 246
S
Schottky defect, 42
screw dislocation, 43, 45
secondary quantum number, 5
secondary reference electrode, 249–250
self-diffusion, 52
self-nucleation, 114
silica bricks, 237
silica gel, 253
siliceous refractories, 237
silicon bronzes, 222
silver, 20
silver plating, 255
solid solubility, 125
solid solution, 122, 136
solidification, 193
solute, 122
sorbite, 174
space lattice, 14
special refractories, 237
speculum metal, 222
spheroid graphite iron, 220
spheroidal annealing, 170
spin quantum number, 4, 5
spray deposition, 194–195
squeeze casting, 193
stable nucleus, 117
stacking fault, 47
stainless steels, 217
standard electrode potential, 250
steady loads, 104
steady-state condition, 54
steam turbines, 180264 Index
steel, 147, 151, 168
steel shaft, 182
stiffness, 66
stir casting, 192
strain energy, 68
strain hardening, 95
stress corrosion, 252
stress relaxation, 100
stress-relieving, 169
sub-critical annealing, 171–172
substitutional impurity, 41
substitutional solid solution, 123
supersaturated solid solution, 183
surface distortion, 45
T
technical ceramics, 238
tempering, 174
tensile axis, 74
ternary phase diagram, 142
theoretical density, 19
theoretical shear stress, 72
thermal hysterias, 155
thermosets moulding, 201
tin, 72
traditional ceramic, 240
transient creep, 95–96
treatment of steel, 168
triaxiality, 81
tribiological ceramics, 241
true stress, 64
tungsten high speed steel, 217
twin boundaries, 45
twin boundary imperfection, 46
twin region, 73
twining, 70
twinning deformation, 73
twinning plane, 73
U
ultimate tensile strength, 66–67, 76
unary diagram, 133
under-cools, 114
uniform corrosion, 251
unit cell, 14
unsteady state, 54
V
vacancy defect, 40
vacant lattice, 51
vacuum bag process, 198
valency electrons, 9
van der Waals forces, 9
vectors, 14
vertex, 192
vibration energy, 51
viscous creep, 95–96
volume diffusion, 52
volume imperfections, 47
W
water-hardening steels, 174
wave mechanics, 4
wear resistance, 123
wear-resistant, 180
white brass, 221
white cast iron, 153, 219
whiteware, 240
Wood’s theory, 107
work hardening, 110
wrought iron, 218
X
X-ray, 9, 30
Y
y-alloy, 224
yellow brass, 221
yield point phenomenon, 74
yield strength, 66, 75–76
yielding, 74–81
Young’s modulus, 65
Z
zero-dimensional imperfections, 40
zinc, 109, 123
zinc oxide, 42
zirconia, 240


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Material Science and Metallurgy
رابط مباشر لتنزيل كتاب Material Science and Metallurgy
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Material Science and Metallurgy
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Material Science and Metallurgy
» طلب كتاب عن strength of material
» كتاب Die Casting Metallurgy
» كتاب Fundamentals of Metallurgy
» كتاب Welding Metallurgy

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: