Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب A First Course in Dynamics - with a Panorama of Recent Developments الخميس 10 أكتوبر 2024, 6:26 pm | |
|
أخواني في الله أحضرت لكم كتاب A First Course in Dynamics - with a Panorama of Recent Developments Boris Hasselblatt Tufts University Anatole Katok The Pennsylvania State University
و المحتوى كما يلي :
Contents Preface page ix 1 Introduction 1 1.1 Dynamics 1 1.2 Dynamics in Nature 4 1.3 Dynamics in Mathematics 19 PART 1. A COURSE IN DYNAMICS: FROM SIMPLE TO COMPLICATED BEHAVIOR 29 2 Systems with Stable Asymptotic Behavior 31 2.1 Linear Maps and Linearization 31 2.2 Contractions in Euclidean Space 32 2.3 Nondecreasing Maps of an Interval and Bifurcations 45 2.4 Differential Equations 49 2.5 Quadratic Maps 57 2.6 Metric Spaces 61 2.7 Fractals 69 3 Linear Maps and Linear Differential Equations 73 3.1 Linear Maps in the Plane 73 3.2 Linear Differential Equations in the Plane 86 3.3 Linear Maps and Differential Equations in Higher Dimension 90 4 Recurrence and Equidistribution on the Circle 96 4.1 Rotations of the Circle 96 4.2 Some Applications of Density and Uniform Distribution 109 4.3 Invertible Circle Maps 123 4.4 Cantor Phenomena 135 5 Recurrence and Equidistribution in Higher Dimension 143 5.1 Translations and Linear Flows on the Torus 143 5.2 Applications of Translations and Linear Flows 152 vvi Contents 6 Conservative Systems 155 6.1 Preservation of Phase Volume and Recurrence 155 6.2 Newtonian Systems of Classical Mechanics 162 6.3 Billiards: Definition and Examples 177 6.4 Convex Billiards 186 7 Simple Systems with Complicated Orbit Structure 196 7.1 Growth of Periodic Points 196 7.2 Topological Transitivity and Chaos 205 7.3 Coding 211 7.4 More Examples of Coding 221 7.5 Uniform Distribution 229 7.6 Independence, Entropy, Mixing 235 8 Entropy and Chaos 242 8.1 Dimension of a Compact Space 242 8.2 Topological Entropy 245 8.3 Applications and Extensions 251 PART 2. PANORAMA OF DYNAMICAL SYSTEMS 257 9 Simple Dynamics as a Tool 259 9.1 Introduction 259 9.2 Implicit- and Inverse-Function Theorems in Euclidean Space 260 9.3 Persistence of Transverse Fixed Points 265 9.4 Solutions of Differential Equations 267 9.5 Hyperbolicity 273 10 Hyperbolic Dynamics 279 10.1 Hyperbolic Sets 279 10.2 Orbit Structure and Orbit Growth 284 10.3 Coding and Mixing 291 10.4 Statistical Properties 294 10.5 Nonuniformly Hyperbolic Dynamical Systems 298 11 Quadratic Maps 299 11.1 Preliminaries 299 11.2 Development of Simple Behavior Beyond the First Bifurcation 303 11.3 Onset of Complexity 307 11.4 Hyperbolic and Stochastic Behavior 314 12 Homoclinic Tangles 318 12.1 Nonlinear Horseshoes 318 12.2 Homoclinic Points 320 12.3 The Appearance of Horseshoes 322 12.4 The Importance of Horseshoes 324 12.5 Detecting Homoclinic Tangles: The Poincare´–Melnikov Method 327 12.6 Homoclinic Tangencies 328Contents vii 13 Strange Attractors 331 13.1 Familiar Attractors 331 13.2 The Solenoid 333 13.3 The Lorenz Attractor 335 14 Variational Methods, Twist Maps, and Closed Geodesics 342 14.1 The Variational Method and Birkhoff Periodic Orbits for Billiards 342 14.2 Birkhoff Periodic Orbits and Aubry–Mather Theory for Twist Maps 346 14.3 Invariant Circles and Regions of Instability 357 14.4 Periodic Points for Maps of the Cylinder 360 14.5 Geodesics on the Sphere 362 15 Dynamics, Number Theory, and Diophantine Approximation 365 15.1 Uniform Distribution of the Fractional Parts of Polynomials 365 15.2 Continued Fractions and Rational Approximation 369 15.3 The Gauß Map 374 15.4 Homogeneous Dynamics, Geometry, and Number Theory 377 15.5 Quadratic Forms in Three Variables 383 Reading 386 APPENDIX 389 A.1 Metric Spaces 389 A.2 Differentiability 400 A.3 Riemann Integration in Metric Spaces 401 Hints and Answers 408 Solutions 414 Index 419 Index absolute continuity, 295–296 accumulation point, 390 action functional, 175, 176, 343 adapted inner product, 95 metric, 67 norm, 95 adding machine, 109, 312 admissible, 217 Alaoglu, Leonidas, 296 Alekseev, Vladimir Mihkailovich, 326 almost everywhere, 233 alphabet, 214, 216 Angenent, Sigurd B., 358 angular momentum, 174 annulus, 38 Anosov Closing Lemma, 285 Arnold tongues, 142 astroid, 195 asymptotic distribution, 109–110 Atela, Pau, 8 attracting, 300 attracting fixed point, 41, 331 attractor, 296, 331, 332 Aubry, Serge J., 342 Aubry–Mather set, 352–354, 357, 358 autonomous differential equation, 271 Baire Category, 392 ball, 62 Bangert, Victor, 364 Barton, Reid, 310 basic set, 280 basin of attraction, 301, 305 Bernoulli measure, 238, 239 Bernoulli scheme, 236 bifurcation, 48, 305 period doubling, 305 saddle-node, 48 bijection, 62 billiard flow, 116, 179 billiard map, 179 binary search, 20 Birkhoff average, 103, 104, 230, 233 Birkhoff Ergodic Theorem, 234, 295 Birkhoff periodic orbit, 343, 344, 349–351, 358, 359 Birkhoff, George David, 103, 178, 195, 322, 324, 343, 360, 364 Birkhoff–Smale Theorem, 322 Borel Density Theorem, 383 boundary, 390 bounded, 389 bounded variation, 138 Bowen, Rufus, 297 box dimension, 243, 244 Burns, Keith, 310 butterfly, 12, 51, 209 C 1-topology, 400 Cr -topology, 400 Cantor function, 136, 142 Cantor set, 69–70, 132, 135, 138, 213–214, 216, 225, 243, 312, 342, 390, 398, 399 capacity, 242, 246 capture, 326 Cartwright, Mary Lucy, 324 Cassels, J. W. S., 383 Cauchy sequence, 35, 62, 391 caustic, 181, 183, 190, 192 cellular automata, 26 center, 88 central force, 171, 174 chain recurrence, 285 chaos, 205, 310, 342 chaotic, 205, 208, 209, 217, 219 characteristic function, 103 characters, 150 419420 Index Chebyshev, Pafnuty Lvovich, 316 Chuba, Sharon, 299 circle, 62, 96, 123 circle map, 123 classification, 223 climate, 316 closed, 390 closed geodesics, 23, 326, 363 closure, 390 cobweb picture, 46 coding, 211, 212, 214, 216, 223–224, 226, 252, 288, 291, 293 coin tossing, 235 Collet, 317 compact, 393, 399 complete integrability, 122 completeness, 62, 391 cone, 281 configuration space, 163 confocal ellipse, 183 confocal hyperbola, 184 conjugacy, 134, 135, 216–217, 223, 246 connected, 390 conservative, 165 constant of motion, 171 continued fraction, 100, 371, 373, 376, 378 continuity, 62, 392 continuous functions, space of, 391, 396 contracting subspace, 94 contraction, 33–40, 62, 392 Contraction Principle, 35–36, 66, 259–263, 265, 268, 276, 284 convergence, 62, 390 convergents, 370 convex, 38, 45, 186, 189 caustic, 192–195 strictly differentiably, 186 Coxeter, Harold Scott Macdonald, 7 Cremona map, 321 curvature, 191 cylinder, 65, 167, 179, 180, 215 Dani, Shrikrishna Gopatrao, 384 decreasing, 45 degree, 124, 200 Denjoy example, 137 Denjoy Theorem, 354 dense, 390 derivative, 400 determinant, 157 Devaney, Robert, 205, 386 devil’s staircase, 71, 135, 140 diagonalization, 75 diameter, 182, 189 diffeomorphism, 401 differential, 37 digits of polynomials, 25–26 Diophantine, 374 Dirichlet, Johann Peter Gustav Lejeune, 365 distance function, 61, 389; see also metric distribution function, 110, 238, 403 divergence, 158 Dragt, Alex J., 321, 325 Drake, Sir Francis, 17 dyadic integers, 109, 399 Eckmann, Jean-Pierre, 317 eigenfunction, 150 eigenspace, 74 generalized, 92 eigenvalue, 74, 150 eigenvector, 74 ellipsoid, 326 elliptic integrals, 168 islands, 359, 360 linear map, 78 embedding, 401 entropy, 237, 246, 299, 314, 318, 326, 327, 358 envelope, 190–191 equidistribution, 102, 296 of squares, 368 see also uniform distribution equilibrium, 49 equivalent metrics, 393 ergodicity, 234, 295 Euler–Lagrange equation, 175 eventually contracting, 67, 79, 93–94 expanding map, 196–198, 200–203, 207–208, 211–213, 221, 223, 230, 232, 234, 251–252, 291, 294 expanding subspace, 94 expansivity, 283–284, 286, 288 exponential convergence, 37 factor, 134, 216, 221 map, 216 Feigenbaum, Mitchell J., 307–308, 311–312 Fermat’s principle, 182 Fibonacci, 6, 8, 35, 44, 84, 85, 204 Finn, John M., 325 fireflies, 17, 141 first integral, 171 fixed point, 34 attracting, 41 repelling, 48 flow, 53–54, 272 box, 170 equivalence, 254 flux, 195 focus, 81, 88 focussing, 181 forced oscillator, 348 fractals, 244 Franks, John, 361, 362, 364 free particle motion, 153, 165 frequency, 100, 103, 112, 145 locking, 141Index 421 Fuchsian group, 379 fundamental domain, 118, 121, 143 Furstenberg, Hillel, 366, 384 Galilei, Galileo, 1 game of life, 26 Gauß map, 375, 382 Gelfreich, Vasily G., 328 general relativity, 173 generalized eigenspace, 92–93 generating function, 182, 186–189, 347, 348 geodesic flow, 153, 165, 177, 326, 378, 382 geodesics, 23 geometric optics, 191 Gibbs, Josiah Willard, 296 Gibbs measure, 296 Gole, Christophe, 8 ´ Graczyk, Jacek, 315 graphical computing, 46 group, 107, 143 Haar measure, 379 Hakluyt, Richard, 17 Handel, Michael, 362 harmonic oscillator, 115, 141, 164, 168, 174 Hartman–Grobman Theorem, 277–278 Hausdorff metric, 394–395 Heine–Borel Theorem, 393, 399 Herman, Michael , 354 Heron of Alexandria, 19 heteroclinic, 47, 211, 321, 325, 359 Hilbert cube, 397 Hofmeister rules, 8 homeomorphism, 62, 392 homoclinic, 47, 159, 166–167, 169, 320, 322, 325, 358 tangency, 328 tangles, 326 homogeneous action, 378 homogeneous space, 377 homothety, 76 horocycle, 380 flow, 380 horseshoe, 213, 224, 244, 280, 290, 318, 322, 324–327, 329, 334, 358, 359 Hotton, Scott, 8 hyperbolic attractor, 335 dynamical systems, 289 fixed point, 273 linear map, 76 metric, 378 quadratic map, 302, 315 repeller, 280 set, 279–280, 283–288, 290–294 locally maximal, 280 Hyperbolic Fixed-Point Theorem, 277, 284 hyperbolicity, 380 Implicit-Function Theorem, 264 incompressibility, 155, 157 increasing, 45 induced metric, 389 integrable, 402 twist, 153 integral, 171 interior, 389 Intermediate-Value Theorem, 45, 47 invariant circle, 185, 192, 357, 358 density, 295 measure, 295–296, 300 invariants, 246 inverse limit, 203–204, 335 Inverse-Function Theorem, 263 irrational rotation, 99 isometry, 62, 155, 207, 392 itinerary, 211 Jacobi, Carl Gustav Jacob, 365 Jacobian, 157 Jakobson, Michael V., 303, 317 Jordan Curve Theorem, 60 Jordan normal form, 92 Kampfer, Engelbert, 17 ¨ Kepler problem, 121 Kepler’s Second Law, 173 Kepler, Johannes, 6–7, 163 Khinchine, Alexander Ya., 374 kinetic energy, 164 Klingenberg, Wilhelm, 364 kneading theory, 300, 307 Knieper, Gerhard, 326 Koch snowflake, 71, 244 Kronecker, Leopold, 365 Kronecker–Weyl method, 107, 150, 366 Lagrange, 175 Lagrange equation, 175 Lanford, Oscar III, 308 Laplace, Pierre Simon de, 1, 2 lattice, 381, 384 law of large numbers, 234, 316 Lazutkin parameter, 194 Lazutkin, Vladimir F., 194 Le Calvez, Patrice, 362 lemmings, 44 Levinson, Norman , 324 Li, Tien-Yien, 310 lift, 124, 346 limit cycle, 11, 55, 332 linear approximation, 32 flow, 145 on the torus, 112, 121 twist, 156 linearization, 114, 168422 Index Liouville measure, 379 Liouvillian phenomena, 373 Lipschitz, 33, 50, 62, 138, 268, 271, 353, 357, 392, 398 Lissajous figures, 115 Littlewood, John Edensor, 324 lobsters, 7 local entropy, 255 localization, 276 locally compact, 395 logistic differential equation, 51–53 logistic equation, 14–17, 57–60, 86; see also quadratic family Lorenz attractor, 280, 338–341 Lorenz, Edward Norton, 12, 209, 316, 331, 335, 338 Lotka–Volterra equation, 10 Lyapunov function, 336 metric, 67 norm, 94 Lyusternik, Lazar A., 363, 364 Lyusternik–Shnirelman category, 363 Mahler criterion, 381–382 Margulis, Gregory A., 383–385 Markov graph, 217–218, 309 partition, 291, 293, 300 mathematical pendulum, 122, 159, 169 Mather, John, 342, 355 matrix exponential, 89 May, Robert M., 13, 310 Man˜e, Ricardo, 290 ´ Mean Value Theorem, 400 measurable, 404 partition, 405 measure, 404 Melnikov, V. K., 327, 328 Menger curve, 71 Mercury, 173 metric, 61, 97, 214, 389 adapted, 67 Lyapunov, 67 metric space, 389 minimal, 99, 108, 113 minimality, 99, 108, 113–114, 144, 146, 148, 153 minimax orbit, 344, 351, 359 mirror equation, 191 Misiurewicz, Michal, 312, 317, 327 mixing, 238–240 modular surface, 379, 382 momentum, 164 mountain pass, 344 Myrberg, Pekka Juhana, 300 Mobius transformation, 378 ¨ neighborhood, 389 Newhouse Phenomenon, 329 Newhouse, Sheldon, 327 Newton method, 21, 42, 261 Newton’s Law, 163 Newton, Sir Isaac, 1, 163 Nguyen, An, 307 node, 80, 87 degenerate, 81, 87 nondecreasing, 45 nondimensionalizing, 166 nonincreasing, 45 nonwandering, 294 norm, 78, 92, 395 of a matrix, 37, 45, 91 normal form, 341 nowhere dense, 390 null set, 233, 296, 302, 402 open, 389 open map, 392 Oppenheim conjecture, 365 orbit, 34 ordered states, 349 ordering, 123, 128, 138 orientation-preserving, 125 outer billiard, 348 parabolic linear map, 77 parameter exclusion method, 317 Peano curve, 72 perfect, 132, 390, 399 perihelion angle, 173 period, 34 period doubling, 299, 304–305 periodic, 97, 116, 144 coefficients, 89 orbit, 196–198 orbits, 217, 314 point, 34, 300 attracting, 300 points, 196–201, 205, 217, 219, 226, 234, 254, 284–285, 288, 310–311, 314, 360, 361 phase portrait, 51 space, 163, 180 volume, 155, 158, 164 phyllotaxis, 7–9 Picard, Charles Emile, 268 Picard iteration, 267 piecewise monotone, 110 Poincare Classi ´ fication, 133 Poincare´’s Last Geometric Theorem, 360, 364 Poincare, Jules Henri, 2, 324, 341, 360 ´ Poincare´–Bendixson Theorem, 60 Poincare´–Melnikov method, 327 Poincare Recurrence Theorem, 159 ´ potential energy, 164, 174 powers of 2, 23, 111 precession, 173Index 423 prime period, 34 product metric, 396–397 pseudo-orbit, 285 pseudosphere, 379 pullback, 391 quadratic family, 57–60, 198–200, 223, 299–317; see also logistic equation quadratic form, 381, 383–384 quasiperiodic, 96 rabbits, and Leonardo of Pisa, 5, 35 rabbits, and predators, 10 rabbits, antipodal, 4 radioactive decay, 9 Raghunathan, Madabusi S., 383–384 randomness, 235 rational independence, 144, 151 Ratner, Marina, 384–385 rectangle, 291–292 recurrence, 96, 137, 155 recurrent, 159 recursion, 84, 85 reduction to first order, 84, 164, 166 region of instability, 358 renormalization, 305, 376–377 repelling fixed point, 48 rescaling property, 70 resonance, 80 return map, 55, 113, 179 Riemann integral, 407 Riemann sum, 405 Riesz integral, 404 Robbin, Joel, 290 Robinson, R. Clark, 290 Rom-Kedar, Vered, 326 root space, 92–93 rotation number, 125, 128–129, 133, 138–139, 246, 352–354, 356, 361 rotation of a circle, 96–109, 161 rotation set, 135 Ruelle, David, 297, 316 saddle, 82, 88 Sanders, Jan A., 328 Scherer, Andrew, 299 Schwarzian derivative, 306 section map, 179 self-similarity, 70, 136 semiconjugacy, 216, 228 semistable, 49, 130 sensitive dependence, 209, 210, 217, 219, 255, 283 separable, 395 sequence space, 214, 398 shadowing, 286, 296 Shadowing Lemma, 286 Shadowing Theorem, 289 Sharkovsky, Olexandr Mikolaiovich, 300 Sharkovsky Theorem, 311 shear, 77 shift, 27, 215, 217, 240 Shnirelman, Lev Genrikhovich, 363, 364 Sierpinski carpet, 71, 243 Sierpinski sponge, 71 Sinai, Yakov, 297 Sinai–Ruelle–Bowen Measure, 297 sliding block codes, 27 Smale attractor, 333–335 Smale, Steven, 224, 307, 322, 324, 333 small oscillation, 168 smooth dependence on initial conditions, 270 sofic system, 288 solenoid, 203, 296, 333 space average, 105 space-filling curve, 72 specification, 287 property, 287, 288 Specification Theorem, 287, 296 spectral decomposition, 294 radius, 90, 218 spectrum, 90 sphere, 165 spherical pendulum, 114, 174 square root, 19 Stability Conjecture, 290 Stable Manifold Theorem, 275, 282, 320 state space, 163 statistical properties, 294 steady state, 32 Stirling formula, 231 stochasticity, 316 string construction, 194 structural stability, 277, 289–290, 300 Størmer problem, 325 subadditivity, 126, 147 subshift of finite type, 216 superattracting, 43 Swinnerton-Dyer, Sir Peter, 383 ´ Swi atek, Grzegorz, 303, 315 sword, 334 symbolic dynamics, 27 synchronization, 18, 141 syndetic, 160 taffy, 334 tangles, 321, 324, 325, 359 tent map, 315–316 Thurston, William, 362 tiling, 118 time average, 105 time change, 272 topological conjugacy, 128 entropy, 246–249, 251, 254, 288 group, 108 invariants, 217424 Index topological (cont.) Markov chain, 216–217, 228, 252, 288, 291, 293, 302 mixing, 207, 210, 217, 226, 239, 287, 293–294 transitivity, 99, 108, 133, 205, 212, 217, 285 torus, 65, 112, 118, 121, 143, 152, 165, 226 automorphism, 201–203, 208, 226, 240, 252, 280, 283, 291 total energy, 164, 166 totally bounded, 393 totally disconnected, 390, 399 transitive matrix, 219 transverse periodic point, 266 triangle inequality, 62, 389, 396 trigonometric polynomial, 107, 150 Tucker, Warwick, 339, 340 twist, 179 interval, 347, 360 map, 325, 346 Tychonoff, Andrey Nikolayevich, 397 Ulam, 316 unfolding, 117 uniform distribution, 26, 102, 107, 112, 116, 120, 145–147, 229, 234, 295, 316 of polynomials, 368 of squares, 368 see also equidistribution uniform recurrence, 160–161 uniformly equivalent, 62 unimodal, 199 unimodular, 381, 384 unipotence, 384 unique ergodicity, 106, 230, 234, 295, 313, 365, 367, 380, 384 universal repeller, 302 van der Mark, J., 11, 12 van der Pol, Balthasar, 11, 12, 324 von Neumann, John, 316 wandering, 137 Weierstraß, Karl Theodor Wilhelm, 107, 151, 366 Weiss, Howard, 326 Weyl, Hermann, 365, 366 width, 182, 189 Wiener, Norbert, 310 Wintner, Aurel, 310 Yomdin, Yosef, 327 Yorke, James A., 310 Zariski, Oscar, 383 ω-limit set, 132, 159
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب A First Course in Dynamics - with a Panorama of Recent Developments رابط مباشر لتنزيل كتاب A First Course in Dynamics - with a Panorama of Recent Developments
|
|