Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Vibration Fundamentals and Practice السبت 03 مارس 2012, 11:57 am | |
|
أخوانى فى الله أحضرت لكم كتاب
Vibration Fundamentals and Practice
ويتناول الموضوعات الأتية :
Chapter 1 Vibration Engineering 1.1 Study of Vibration 1.2 Application Areas 1.3 History of Vibration 1.4 Organization of the Book Problems References and Further Reading Author’s Work Other Useful Publications Chapter 2 Time Response 2.1 Undamped Oscillator 2.1.1 Energy Storage Elements Inertia Spring Gravitational Potential Energy 2.1.2 Conservation of Energy System 1 (Translatory) System 2 (Rotatory) System 3 (Flexural) System 4 (Swinging) System 5 (Liquid Slosh) System 6 (Electrical) Capacitor Inductor 2.1.3 Free Response Example 2.1 Solution 2.2 Heavy Springs 2.2.1 Kinetic Energy Equivalence Example 2.2 Solution 2.3 Oscillations in Fluid Systems Example 2.3 Solution 2.4 Damped Simple Oscillator 2.4.1 Case 1: Underdamped Motion Initial Conditions 2.4.2 Logarithmic Decrement Method 2.4.3 Case 2: Overdamped Motion 2.4.4 Case 3: Critically Damped Motion 2.4.5 Justification for the Trial Solution First-Order System Second-Order System Repeated Roots 2.4.6 Stability and Speed of Response Example 2.4 Solution 2.5 Forced Response 2.5.1 Impulse Response Function 2.5.2 Forced Response 2.5.3 Response to a Support Motion Impulse Response The Riddle of Zero Initial Conditions Step Response Liebnitz’s Rule Problems Chapter 3 Frequency Response 3.1 Response to Harmonic Excitations 3.1.1 Response Characteristics Case 1 Case 2 Case 3 Particular Solution (Method 1) Particular Solution (Method 2): Complex Function Method Resonance 3.1.2 Measurement of Damping Ratio (Q-Factor Method) Example 3.1 Solution 3.2 Transform Techniques 3.2.1 Transfer Function 3.2.2 Frequency-Response Function (Frequency-Transfer Function) Impulse Response Case 1 ( ζ < 1) Case 2 ( ζ > 1) Case 3 ( ζ = 1) Step Response 3.2.3 Transfer Function Matrix Example 3.2 Example 3.3 Example 3.4 Solution 3.3 Mechanical Impedance Approach Mass Element Spring Element Damper Element 3.3.1 Interconnection Laws Example 3.5 Example 3.6 3.4 Transmissibility Functions 3.4.1 Force Transmissibility 3.4.2 Motion Transmissibility System Suspended on a Rigid Base (Force Transmissibility) System with Support Motion (Motion Transmissibility) 3.4.3 General Case Example 3.7 3.4.4 Peak Values of Frequency-Response Functions 3.5 Receptance Method 3.5.1 Application of Receptance Undamped Simple Oscillator Dynamic Absorber Problems Chapter 4 Vibration Signal Analysis 4.1 Frequency Spectrum 4.1.1 Frequency 4.1.2 Amplitude Spectrum 4.1.3 Phase Angle 4.1.4 Phasor Representation of Harmonic Signals 4.1.5 RMS Amplitude Spectrum 4.1.6 One-Sided and Two-Sided Spectra 4.1.7 Complex Spectrum 4.2 Signal Types 4.3 Fourier Analysis 4.3.1 Fourier Integral Transform (FIT) 4.3.2 Fourier Series Expansion (FSE) 4.3.3 Discrete Fourier Transform (DFT) 4.3.4 Aliasing Distortion Sampling Theorem Aliasing Distortion in the Time Domain Anti-Aliasing Filter Example 4.1 4.3.5 Another Illustration of Aliasing Example 4.2 4.4 Analysis of Random Signals 4.4.1 Ergodic Random Signals 4.4.2 Correlation and Spectral Density 4.4.3 Frequency Response Using Digital Fourier Transform 4.4.4 Leakage (Truncation Error) 4.4.5 Coherence 4.4.6 Parseval’s Theorem 4.4.7 Window Functions 4.4.8 Spectral Approach to Process Monitoring 4.4.9 Cepstrum 4.5 Other Topics of Signal Analysis 4.5.1 Bandwidth 4.5.2 Transmission Level of a Bandpass Filter 4.5.3 Effective Noise Bandwidth 4.5.4 Half-Power (or 3 dB) Bandwidth 4.5.5 Fourier Analysis Bandwidth 4.6 Resolution in Digital Fourier Results 4.7 Overlapped Processing Example 4.3 4.7.1 Order Analysis Speed Spectral Map Time Spectral Map Order Tracking Problems Chapter 5 Modal Analysis 5.1 Degrees of Freedom and Independent Coordinates 5.1.1 Nonholonomic Constraints Example 5.1 Example 5.2 5.2 System Representation 5.2.1 Stiffness and Flexibility Matrices 5.2.2 Inertia Matrix 5.2.3 Direct Approach for Equations of Motion 5.3 Modal Vibrations Example 5.3 5.4 Orthogonality of Natural Modes 5.4.1 Modal Mass and Normalized Modal Vectors 5.5 Static Modes and Rigid Body Modes 5.5.1 Static Modes 5.5.2 Linear Independence of Modal Vectors 5.5.3 Modal Stiffness and Normalized Modal Vectors 5.5.4 Rigid Body Modes Example 5.4 Equation of Heave Motion Equation of Pitch Motion Example 5.5 First Mode (Rigid Body Mode) Second Mode 5.5.5 Modal Matrix 5.5.6 Configuration Space and State Space State Vector 5.6 Other Modal Formulations 5.6.1 Non-Symmetric Modal Formulation 5.6.2 Transformed Symmetric Modal Formulation Example 5.6 Approach 2 Approach 3 5.7 Forced Vibration Example 5.7 First Mode (Rigid Body Mode) Second Mode (Oscillatory Mode) 5.8 Damped Systems 5.8.1 Proportional Damping Example 5.8 5.9 State-Space Approach 5.9.1 Modal Analysis 5.9.2 Mode Shapes of Nonoscillatory Systems 5.9.3 Mode Shapes of Oscillatory Systems Example 5.9 Problems Chapter 6 Distributed-Parameter Systems 6.1 Transverse Vibration of Cables 6.1.1 Wave Equation 6.1.2 General (Modal) Solution 6.1.3 Cable with Fixed Ends 6.1.4 Orthogonality of Natural Modes Example 6.1 Solution 6.1.5 Application of Initial Conditions Example 6.2 Solution 6.2 Longitudinal Vibration of Rods 6.2.1 Equation of Motion 6.2.2 Boundary Conditions Example 6.3 Solution 6.3 Torsional Vibration of Shafts 6.3.1 Shaft with Circular Cross Section 6.3.2 Torsional Vibration of Noncircular Shafts Example 6.4 Solution Example 6.5 Solution 6.4 Flexural Vibration of Beams 6.4.1 Governing Equation for Thin Beams Moment-Deflection Relation Rotatory Dynamics (Equilibrium) Transverse Dynamics 6.4.2 Modal Analysis 6.4.3 Boundary Conditions 6.4.4 Free Vibration of a Simply Supported Beam Normalization of Mode Shape Functions Initial Conditions 6.4.5 Orthogonality of Mode Shapes Case of Variable Cross Section 6.4.6 Forced Bending Vibration Example 6.6 Solution Example 6.7 Solution 6.4.7 Bending Vibration of Beams with Axial Loads 6.4.8 Bending Vibration of Thick Beams 6.4.9 Use of the Energy Approach 6.4.10 Orthogonality with Inertial Boundary Conditions Rotatory Inertia 6.5 Damped Continuous Systems 6.5.1 Modal Analysis of Damped Beams Example 6.8 Solution 6.6 Vibration of Membranes and Plates 6.6.1 Transverse Vibration of Membranes 6.6.2 Rectangular Membrane with Fixed Edges 6.6.3 Transverse Vibration of Thin Plates 6.6.4 Rectangular Plate with Simply Supported Edges Problems Chapter 7 Damping 7.1 Types of Damping 7.1.1 Material (Internal) Damping Viscoelastic Damping Hysteretic Damping Example 7.1 Solution 7.1.2 Structural Damping 7.1.3 Fluid Damping Example 7.2 Solution 7.2 Representation of Damping in Vibration Analysis 7.2.1 Equivalent Viscous Damping 7.2.2 Complex Stiffness Example 7.3 Solution 7.2.3 Loss Factor 7.3 Measurement of Damping 7.3.1 Logarithmic Decrement Method 7.3.2 Step-Response Method 7.3.3 Hysteresis Loop Method Example 7.4 Solution 7.3.4 Magnification-Factor Method 7.3.5 Bandwidth Method 7.3.6 General Remarks 7.4 Interface Damping Example 7.5 Solution 7.4.1 Friction In Rotational Interfaces 7.4.2 Instability Problems Chapter 8 Vibration Instrumentation 8.1 Vibration Exciters 8.1.1 Shaker Selection Force Rating Power Rating Stroke Rating Example 8.1 Solution Hydraulic Shakers Inertial Shakers Electromagnetic Shakers 8.1.2 Dynamics of Electromagnetic Shakers Transient Exciters 8.2 Control System 8.2.1 Components of a Shaker Controller Compressor Equalizer (Spectrum Shaper) Tracking Filter Excitation Controller (Amplitude Servo-Monitor) 8.2.2 Signal-Generating Equipment Oscillators Random Signal Generators Tape Players Data Processing 8.3 Performance Specification 8.3.1 Parameters for Performance Specification Time-Domain Specifications Frequency-Domain Specifications 8.3.2 Linearity 8.3.3 Instrument Ratings Rating Parameters 8.3.4 Accuracy and Precision 8.4 Motion Sensors and Transducers 8.4.1 Potentiometer Potentiometer Resolution Optical Potentiometer 8.4.2 Variable-Inductance Transducers Mutual-Induction Transducers Linear-Variable Differential Transformer (LVDT) Signal Conditioning Example 8.2 Solution 8.4.3 Mutual-Induction Proximity Sensor 8.4.4 Self-Induction Transducers 8.4.5 Permanent-Magnet Transducers 8.4.6 AC Permanent-Magnet Tachometer 8.4.7 AC Induction Tachometer 8.4.8 Eddy Current Transducers 8.4.9 Variable-Capacitance Transducers Capacitive Displacement Sensors Capacitive Angular Velocity Sensor Capacitance Bridge Circuit 8.4.10 Piezoelectric Transducers Sensitivity Example 8.3 Solution Piezoelectric Accelerometer Charge Amplifier 8.5 Torque, Force, and Other Sensors 8.5.1 Strain-Gage Sensors Equations for Strain-Gage Measurements Bridge Sensitivity The Bridge Constant Example 8.4 Solution The Calibration Constant Example 8.5 Solution Data Acquisition Accuracy Considerations Semiconductor Strain Gages Force and Torque Sensors Strain-Gage Torque Sensors Deflection Torque Sensors Variable-Reluctance Torque Sensor Reaction Torque Sensors 8.5.2 Miscellaneous Sensors Stroboscope Fiber-Optic Sensors and Lasers Fiber-Optic Gyroscope Laser Doppler Interferometer Ultrasonic Sensors Gyroscopic Sensors 8.6 Component Interconnection 8.6.1 Impedance Characteristics Cascade Connection of Devices Impedance-Matching Amplifiers Operational Amplifiers Voltage Followers Charge Amplifiers 8.6.2 Instrumentation Amplifier Ground Loop Noise Problems Chapter 9 Signal Conditioning and Modification 9.1 Amplifiers 9.1.1 Operational Amplifier Example 9.1 Solution 9.1.2 Use of Feedback in Op-amps 9.1.3 Voltage, Current, and Power Amplifiers 9.1.4 Instrumentation Amplifiers Differential Amplifier Common Mode Amplifier Performance Ratings Example 9.2 Solution Common-Mode Rejection Ratio (CMRR) AC-Coupled Amplifiers 9.2 Analog Filters 9.2.1 Passive Filters and Active Filters Number of Poles 9.2.2 Low-Pass Filters Example 9.3 Solution Low-Pass Butterworth Filter Example 9.4 Solution 9.2.3 High-Pass Filters 9.2.4 Bandpass Filters Resonance-Type Bandpass Filters Example 9.5 Solution 9.2.5 Band-Reject Filters 9.3 Modulators and Demodulators 9.3.1 Amplitude Modulation Modulation Theorem Side Frequencies and Side Bands 9.3.2 Application of Amplitude Modulation Fault Detection and Diagnosis 9.3.3 Demodulation 9.4 Analog/Digital Conversion 9.4.1 Digital-to-Analog Conversion (DAC) Weighted-Resistor DAC Ladder DAC DAC Error Sources 9.4.2 Analog-to-Digital Conversion (ADC) Successive-Approximation ADC Dual-Slope ADC Counter ADC 9.4.3 ADC Performance Characteristics Resolution and Quantization Error Monotonicity, Nonlinearity, and Offset Error ADC Conversion Rate 9.4.4 Sample-and-Hold (S/H) Circuitry 9.4.5 Multiplexers (MUX) Analog Multiplexers Digital Multiplexers 9.4.6 Digital Filters 9.5 Bridge Circuits 9.5.1 Wheatstone Bridge 9.5.2 Constant-Current Bridge 9.5.3 Bridge Amplifiers Half-Bridge Circuits 9.5.4 Impedance Bridges Owen Bridge Wien-Bridge Oscillator 9.6 Linearizing Devices 9.6.1 Linearization by Software 9.6.2 Linearization by Hardware Logic 9.6.3 Analog Linearizing Circuitry 9.6.4 Offsetting Circuitry 9.6.5 Proportional-Output Circuitry Curve-Shaping Circuitry 9.7 Miscellaneous Signal-Modification Circuitry 9.7.1 Phase Shifter 9.7.2 Voltage-to-Frequency Converter (VFC) 9.7.3 Frequency-to-Voltage Converter (FVC) 9.7.4 Voltage-to-Current Converter (VCC) 9.7.5 Peak-Hold Circuit 9.8 Signal Analyzers and Display Devices 9.8.1 Signal Analyzers 9.8.2 Oscilloscopes Triggering Lissajous Patterns Digital Oscilloscopes Problems Chapter 10 Vibration Testing 10.1 Representation of a Vibration Environment 10.1.1 Test Signals Stochastic versus Deterministic Signals 10.1.2 Deterministic Signal Representation Single-Frequency Signals Sine Sweep Sine Dwell Decaying Sine Sine Beat Sine Beat with Pauses Multifrequency Signals Actual Excitation Records Simulated Excitation Signals 10.1.3 Stochastic Signal Representation Ergodic Random Signals Stationary Random Signals Independent and Uncorrelated Signals Transmission of Random Excitations 10.1.4 Frequency-Domain Representations Fourier Spectrum Method Power Spectral Density Method 10.1.5 Response Spectrum Displacement, Velocity, and Acceleration Spectra Response-Spectra Plotting Paper Zero-Period Acceleration Uses of Response Spectra 10.1.6 Comparison of Various Representations 10.2 Pretest Procedures 10.2.1 Purpose of Testing 10.2.2 Service Functions Active Equipment Passive Equipment Functional Testing 10.2.3 Information Acquisition Interface Details Effect of Neglecting Interface Dynamics Effects of Damping Effects of Inertia Effect of Natural Frequency Effect of Excitation Frequency Other Effects of Interface 10.2.4 Test-Program Planning Testing of Cabinet-Mounted Equipment 10.2.5 Pretest Inspection 10.3 Testing Procedures 10.3.1 Resonance Search 10.3.2 Methods of Determining Frequency-Response Functions Fourier Transform Method Spectral Density Method Harmonic Excitation Method 10.3.3 Resonance-Search Test Methods Hammer (Bump) Test and Drop Test Pluck Test Shaker Tests 10.3.4 Mechanical Aging Equivalence for Mechanical Aging Excitation-Intensity Equivalence Dynamic-Excitation Equivalence Cumulative Damage Theory 10.3.5 TRS Generation 10.3.6 Instrument Calibration 10.3.7 Test-Object Mounting 10.3.8 Test-Input Considerations Test Nomenclature Testing with Uncorrelated Excitations Symmetrical Rectilinear Testing Geometry versus Dynamics Some Limitations Testing of Black Boxes Phasing of Excitations Testing a Gray or White Box Overtesting in Multitest Sequences 10.4 Product Qualification Testing 10.4.1 Distribution Qualification Drive-Signal Generation Distribution Spectra Test Procedures 10.4.2 Seismic Qualification Stages of Seismic Qualification 10.4.3 Test Preliminaries Single-Frequency Testing Multifrequency Testing 10.4.4 Generation of RRS Specifications Problems Chapter 11 Experimental Modal Analysis 11.1 Frequency-Domain Formulation 11.1.1 Transfer Function Matrix 11.1.2 Principle of Reciprocity Example 11.1 11.2 Experimental Model Development 11.2.1 Extraction of the Time-Domain Model 11.3 Curve-Fitting of Transfer Functions 11.3.1 Problem Identification 11.3.2 Single-Degree-of-Freedom and Multi-Degree-of-Freedom Techniques 11.3.3 Single-Degree-of-Freedom Parameter Extraction in the Frequency Domain Circle-Fit Method Peak Picking Method 11.3.4 Multi-Degree-of-Freedom Curve Fitting Formulation of the Method 11.3.5 A Comment on Static Modes and Rigid Body Modes 11.3.6 Residue Extraction 11.4 Laboratory Experiments 11.4.1 Lumped-Parameter System Frequency-Domain Test Time-Domain Test 11.4.2 Distributed-Parameter System 11.5 Commercial EMA Systems 11.5.1 System Configuration FFT Analysis Options Modal Analysis Components Problems Chapter 12 Vibration Design and Control Shock and Vibration 12.1 Specification of Vibration Limits 12.1.1 Peak Level Specification 12.1.2 RMS Value Specification 12.1.3 Frequency-Domain Specification 12.2 Vibration Isolation Example 12.1 Solution 12.2.1 Design Considerations Example 12.2 Solution 12.2.2 Vibration Isolation of Flexible Systems 12.3 Balancing of Rotating Machinery 12.3.1 Static Balancing Balancing Approach 12.3.2 Complex Number/Vector Approach Example 12.3 Solution 12.3.3 Dynamic (Two-Plane) Balancing Example 12.4 Solution 12.3.4 Experimental Procedure of Balancing 12.4 Balancing of Reciprocating Machines 12.4.1 Single-Cylinder Engine 12.4.2 Balancing the Inertia Load of the Piston 12.4.3 Multicylinder Engines Two-Cylinder Engine Six-Cylinder Engine Example 12.5 Solution 12.4.4 Combustion/Pressure Load 12.5 Whirling of Shafts 12.5.1 Equations of Motion 12.5.2 Steady-State Whirling Example 12.6 Solution 12.5.3 Self-Excited Vibrations 12.6 Design Through Modal Testing 12.6.1 Component Modification Example 12.7 Solution 12.6.2 Substructuring 12.7 Passive Control of Vibration 12.7.1 Undamped Vibration Absorber Example 12.8 Solution 12.7.2 Damped Vibration Absorber Optimal Absorber Design Example 12.9 Solution 12.7.3 Vibration Dampers 12.8 Active Control of Vibration 12.8.1 Active Control System 12.8.2 Control Techniques State-Space Models Example 12.10 Solution Position and Velocity Feedback Linear Quadratic Regulator (LQR) Control Modal Control 12.8.3 Active Control of Saw Blade Vibration 12.9 Control of Beam Vibrations 12.9.1 State-Space Model of Beam Dynamics 12.9.2 Control Problem 12.9.3 Use of Linear Dampers Design Example Problems Appendix A Dynamic Models and Analogies A.1 Model Development A.2 Analogies A.3 Mechanical Elements A.3.1 Mass (Inertia) Element A.3.2 Spring (Stiffness) Element A.4 Electrical Elements A.4.1 Capacitor Element A.4.2 Inductor Element A.5 Thermal Elements A.5.1 Thermal Capacitor A.5.2 Thermal Resistance A.6 Fluid Elements A.6.1 Fluid Capacitor A.6.2 Fluid Inertor A.6.3 Fluid Resistance A.6.4 Natural Oscillations A.7 State-Space Models A.7.1 Linearization A.7.2 Time Response A.7.3 Some Formal Definitions A.7.4 Illustrative Example A.7.5 Causality and Physical Realizability Appendix B Newtonian and Lagrangian Mechanics B.1 Vector Kinematics B.1.1 Euler’s Theorem Important Corollary Proof B.1.2 Angular Velocity and Velocity at a Point of a Rigid Body Theorem Proof B.1.3 Rates of Unit Vectors Along Axes of Rotating Frames General Result Cartesian Coordinates Polar Coordinates (2-D) Spherical Polar Coordinates Tangential-Normal (Intrinsive) Coordinates (2-D) B.1.4 Acceleration Expressed in Rotating Frames Spherical Polar Coordinates Tangential-Normal Coordinates (2-D) B.2 Newtonian (Vector) Mechanics B.2.1 Frames of Reference Rotating at Angular Velocity w B.2.2 Newton’s Second Law for a Particle of Mass m B.2.3 Second Law for a System of Particles — Rigidly or Flexibly Connected B.2.4 Rigid Body Dynamics — Inertia Matrix and Angular Momentum B.2.5 Manipulation of Inertia Matrix Parallel Axis Theorem— Translational Transformation of [I] Rotational Transformation of [I] Principal Directions (Eigenvalue Problem) Mohr’s Circle B.2.6 Euler’s Equations (for a Rigid Body Rotating at w) B.2.7 Euler’s Angles B.3 Lagrangian Mechanics B.3.1 Kinetic Energy and Kinetic Coenergy B.3.2 Work and Potential Energy Examples B.3.3 Holonomic Systems, Generalized Coordinates, and Degrees of Freedom B.3.4 Hamilton’s Principle B.3.5 Lagrange’s Equations Example Generalized Coordinates Generalized Nonconservative Forces Lagrangian Lagrange’s Equations Appendix C Review of Linear Algebra C.1 Vectors and Matrices C.2 Vector-Matrix Algebra C.2.1 Matrix Addition and Subtraction C.2.2 Null Matrix C.2.3 Matrix Multiplication C.2.4 Identity Matrix C.3 Matrix Inverse C.3.1 Matrix Transpose C.3.2 Trace of a Matrix C.3.3 Determinant of a Matrix C.3.4 Adjoint of a Matrix C.3.5 Inverse of a Matrix C.4 Vector Spaces C.4.1 Field ( ) C.4.2 Vector Space ( ) Properties Special Case C.4.3 Subspace of
C.4.4 Linear Dependence C.4.5 Basis and Dimension of a Vector Space C.4.6 Inner Product C.4.7 Norm Properties C.4.8 Gram-Schmidt Orthogonalization C.4.9 Modified Gram-Schmidt Procedure C.5 Determinants C.5.1 Properties of Determinant of a Matrix C.5.2 Rank of a Matrix C.6 System of Linear Equations References Appendix D Digital Fourier Analysis and FFT D.1 Unification of the Three Fourier Transform Types D.1.1 Relationship Between DFT and FIT D.1.2 Relationship Between DFT and FSE D.2 Fast Fourier Transform (FFT) D.2.1 Development of the Radix-Two FFT Algorithm D.2.2 The Radix-Two FFT Procedure D.2.3 Illustrative Example D.3 Discrete Correlation and Convolution D.3.1 Discrete Correlation Discrete Correlation Theorem Discrete Convolution Theorem D.4 Digital Fourier Analysis Procedures D.4.1 Fourier Transform Using DFT D.4.2 Inverse DFT Using DFT D.4.3 Simultaneous DFT of Two Real Data Records D.4.4 Reduction of Computation Time for a Real Data Record D.4.5 Convolution of Finite Duration Signals Using DFT Wraparound Error Data-Record Sectioning in Convolution Appendix E Reliability Considerations for Multicomponent Units E.1 Failure Analysis E.1.1 Reliability E.1.2 Unreliability E.1.3 Inclusion–Exclusion Formula Example E.2 Bayes’ Theorem E.2.1 Product Rule for Independent Events E.2.2 Failure Rate E.2.3 Product Rule for Reliability Answers to Numerical Problems
أتمنى أن تستفيدوا منه وأن ينال إعجابكم
عدل سابقا من قبل أحمد دعبس في الجمعة 02 نوفمبر 2012, 10:23 pm عدل 3 مرات |
|
حمادجي مهندس تحت الاختبار
عدد المساهمات : 1 التقييم : 1 تاريخ التسجيل : 19/03/2012 العمر : 37 الدولة : المملكة العربية السعودية العمل : Student الجامعة : KAU
| موضوع: رد: كتاب Vibration Fundamentals and Practice الإثنين 19 مارس 2012, 7:22 am | |
|
أخي الكريم خطأ في رابط التحميل |
|
Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Vibration Fundamentals and Practice السبت 24 مارس 2012, 1:26 am | |
|
- حمادجي كتب:
- أخي الكريم خطأ في رابط التحميل
تم تعديل الرابط
|
|
Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Vibration Fundamentals and Practice الجمعة 02 نوفمبر 2012, 10:25 pm | |
| |
|
أحمد علي الحارثي مهندس فعال
عدد المساهمات : 238 التقييم : 414 تاريخ التسجيل : 02/10/2012 العمر : 35 الدولة : مصر العمل : مهندس إنتاج وتصميم ميكانيكي الجامعة : المنيا
| موضوع: رد: كتاب Vibration Fundamentals and Practice الجمعة 02 نوفمبر 2012, 10:35 pm | |
| |
|