Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Finite Volume Methods for Hyperbolic Problems الجمعة 20 أبريل 2012, 9:09 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Finite Volume Methods for Hyperbolic Problems RANDALL J. LEVEQUE University of Washington
ويتناول الموضوعات الأتية :
Contents Preface page xvii 1 Introduction 1 1.1 Conservation Laws 3 1.2 Finite Volume Methods 5 1.3 Multidimensional Problems 6 1.4 Linear Waves and Discontinuous Media 7 1.5 CLAWPACK Software 8 1.6 References 9 1.7 Notation 10 Part I Linear Equations 2 Conservation Laws and Differential Equations 15 2.1 The Advection Equation 17 2.2 Diffusion and the Advection–Diffusion Equation 20 2.3 The Heat Equation 21 2.4 Capacity Functions 22 2.5 Source Terms 22 2.6 Nonlinear Equations in Fluid Dynamics 23 2.7 Linear Acoustics 26 2.8 Sound Waves 29 2.9 Hyperbolicity of Linear Systems 31 2.10 Variable-Coefficient Hyperbolic Systems 33 2.11 Hyperbolicity of Quasilinear and Nonlinear Systems 34 2.12 Solid Mechanics and Elastic Waves 35 2.13 Lagrangian Gas Dynamics and the p-System 41 2.14 Electromagnetic Waves 43 Exercises 46 3 Characteristics and Riemann Problems for Linear Hyperbolic Equations 47 3.1 Solution to the Cauchy Problem 47 ixx Contents 3.2 Superposition of Waves and Characteristic Variables 48 3.3 Left Eigenvectors 49 3.4 Simple Waves 49 3.5 Acoustics 49 3.6 Domain of Dependence and Range of Influence 50 3.7 Discontinuous Solutions 52 3.8 The Riemann Problem for a Linear System 52 3.9 The Phase Plane for Systems of Two Equations 55 3.10 Coupled Acoustics and Advection 57 3.11 Initial–Boundary-Value Problems 59 Exercises 62 4 Finite Volume Methods 64 4.1 General Formulation for Conservation Laws 64 4.2 A Numerical Flux for the Diffusion Equation 66 4.3 Necessary Components for Convergence 67 4.4 The CFL Condition 68 4.5 An Unstable Flux 71 4.6 The Lax–Friedrichs Method 71 4.7 The Richtmyer Two-Step Lax–Wendroff Method 72 4.8 Upwind Methods 72 4.9 The Upwind Method for Advection 73 4.10 Godunov’s Method for Linear Systems 76 4.11 The Numerical Flux Function for Godunov’s Method 78 4.12 The Wave-Propagation Form of Godunov’s Method 78 4.13 Flux-Difference vs. Flux-Vector Splitting 83 4.14 Roe’s Method 84 Exercises 85 5 Introduction to the CLAWPACK Software 87 5.1 Basic Framework 87 5.2 Obtaining CLAWPACK 89 5.3 Getting Started 89 5.4 Using CLAWPACK – a Guide through example1 91 5.5 Other User-Supplied Routines and Files 98 5.6 Auxiliary Arrays and setaux.f 98 5.7 An Acoustics Example 99 Exercises 99 6 High-Resolution Methods 100 6.1 The Lax–Wendroff Method 100 6.2 The Beam–Warming Method 102 6.3 Preview of Limiters 103 6.4 The REA Algorithm with Piecewise Linear Reconstruction 106Contents xi 6.5 Choice of Slopes 107 6.6 Oscillations 108 6.7 Total Variation 109 6.8 TVD Methods Based on the REA Algorithm 110 6.9 Slope-Limiter Methods 111 6.10 Flux Formulation with Piecewise Linear Reconstruction 112 6.11 Flux Limiters 114 6.12 TVD Limiters 115 6.13 High-Resolution Methods for Systems 118 6.14 Implementation 120 6.15 Extension to Nonlinear Systems 121 6.16 Capacity-Form Differencing 122 6.17 Nonuniform Grids 123 Exercises 127 7 Boundary Conditions and Ghost Cells 129 7.1 Periodic Boundary Conditions 130 7.2 Advection 130 7.3 Acoustics 133 Exercises 138 8 Convergence, Accuracy, and Stability 139 8.1 Convergence 139 8.2 One-Step and Local Truncation Errors 141 8.3 Stability Theory 143 8.4 Accuracy at Extrema 149 8.5 Order of Accuracy Isn’t Everything 150 8.6 Modified Equations 151 8.7 Accuracy Near Discontinuities 155 Exercises 156 9 Variable-Coefficient Linear Equations 158 9.1 Advection in a Pipe 159 9.2 Finite Volume Methods 161 9.3 The Color Equation 162 9.4 The Conservative Advection Equation 164 9.5 Edge Velocities 169 9.6 Variable-Coefficient Acoustics Equations 171 9.7 Constant-Impedance Media 172 9.8 Variable Impedance 173 9.9 Solving the Riemann Problem for Acoustics 177 9.10 Transmission and Reflection Coefficients 178 9.11 Godunov’s Method 179 9.12 High-Resolution Methods 181xii Contents 9.13 Wave Limiters 181 9.14 Homogenization of Rapidly Varying Coefficients 183 Exercises 187 10 Other Approaches to High Resolution 188 10.1 Centered-in-Time Fluxes 188 10.2 Higher-Order High-Resolution Methods 190 10.3 Limitations of the Lax–Wendroff (Taylor Series) Approach 191 10.4 Semidiscrete Methods plus Time Stepping 191 10.5 Staggered Grids and Central Schemes 198 Exercises 200 Part II Nonlinear Equations 11 Nonlinear Scalar Conservation Laws 203 11.1 Traffic Flow 203 11.2 Quasilinear Form and Characteristics 206 11.3 Burgers’ Equation 208 11.4 Rarefaction Waves 209 11.5 Compression Waves 210 11.6 Vanishing Viscosity 210 11.7 Equal-Area Rule 211 11.8 Shock Speed 212 11.9 The Rankine–Hugoniot Conditions for Systems 213 11.10 Similarity Solutions and Centered Rarefactions 214 11.11 Weak Solutions 215 11.12 Manipulating Conservation Laws 216 11.13 Nonuniqueness, Admissibility, and Entropy Conditions 216 11.14 Entropy Functions 219 11.15 Long-Time Behavior and N-Wave Decay 222 Exercises 224 12 Finite Volume Methods for Nonlinear Scalar Conservation Laws 227 12.1 Godunov’s Method 227 12.2 Fluctuations, Waves, and Speeds 229 12.3 Transonic Rarefactions and an Entropy Fix 230 12.4 Numerical Viscosity 232 12.5 The Lax–Friedrichs and Local Lax–Friedrichs Methods 232 12.6 The Engquist–Osher Method 234 12.7 E-schemes 235 12.8 High-Resolution TVD Methods 235 12.9 The Importance of Conservation Form 237 12.10 The Lax–Wendroff Theorem 239Contents xiii 12.11 The Entropy Condition 243 12.12 Nonlinear Stability 244 Exercises 252 13 Nonlinear Systems of Conservation Laws 253 13.1 The Shallow Water Equations 254 13.2 Dam-Break and Riemann Problems 259 13.3 Characteristic Structure 260 13.4 A Two-Shock Riemann Solution 262 13.5 Weak Waves and the Linearized Problem 263 13.6 Strategy for Solving the Riemann Problem 263 13.7 Shock Waves and Hugoniot Loci 264 13.8 Simple Waves and Rarefactions 269 13.9 Solving the Dam-Break Problem 279 13.10 The General Riemann Solver for Shallow Water Equations 281 13.11 Shock Collision Problems 282 13.12 Linear Degeneracy and Contact Discontinuities 283 Exercises 287 14 Gas Dynamics and the Euler Equations 291 14.1 Pressure 291 14.2 Energy 292 14.3 The Euler Equations 293 14.4 Polytropic Ideal Gas 293 14.5 Entropy 295 14.6 Isothermal Flow 298 14.7 The Euler Equations in Primitive Variables 298 14.8 The Riemann Problem for the Euler Equations 300 14.9 Contact Discontinuities 301 14.10 Riemann Invariants 302 14.11 Solution to the Riemann Problem 302 14.12 The Structure of Rarefaction Waves 305 14.13 Shock Tubes and Riemann Problems 306 14.14 Multifluid Problems 308 14.15 Other Equations of State and Incompressible Flow 309 15 Finite Volume Methods for Nonlinear Systems 311 15.1 Godunov’s Method 311 15.2 Convergence of Godunov’s Method 313 15.3 Approximate Riemann Solvers 314 15.4 High-Resolution Methods for Nonlinear Systems 329 15.5 An Alternative Wave-Propagation Implementation of Approximate Riemann Solvers 333 15.6 Second-Order Accuracy 335xiv Contents 15.7 Flux-Vector Splitting 338 15.8 Total Variation for Systems of Equations 340 Exercises 348 16 Some Nonclassical Hyperbolic Problems 350 16.1 Nonconvex Flux Functions 350 16.2 Nonstrictly Hyperbolic Problems 358 16.3 Loss of Hyperbolicity 362 16.4 Spatially Varying Flux Functions 368 16.5 Nonconservative Nonlinear Hyperbolic Equations 371 16.6 Nonconservative Transport Equations 372 Exercises 374 17 Source Terms and Balance Laws 375 17.1 Fractional-Step Methods 377 17.2 An Advection–Reaction Equation 378 17.3 General Formulation of Fractional-Step Methods for Linear Problems 384 17.4 Strang Splitting 387 17.5 Accuracy of Godunov and Strang Splittings 388 17.6 Choice of ODE Solver 389 17.7 Implicit Methods, Viscous Terms, and Higher-Order Derivatives 390 17.8 Steady-State Solutions 391 17.9 Boundary Conditions for Fractional-Step Methods 393 17.10 Stiff and Singular Source Terms 396 17.11 Linear Traffic Flow with On-Ramps or Exits 396 17.12 Rankine–Hugoniot Jump Conditions at a Singular Source 397 17.13 Nonlinear Traffic Flow with On-Ramps or Exits 398 17.14 Accurate Solution of Quasisteady Problems 399 17.15 Burgers Equation with a Stiff Source Term 401 17.16 Numerical Difficulties with Stiff Source Terms 404 17.17 Relaxation Systems 410 17.18 Relaxation Schemes 415 Exercises 416 Part III Multidimensional Problems 18 Multidimensional Hyperbolic Problems 421 18.1 Derivation of Conservation Laws 421 18.2 Advection 423 18.3 Compressible Flow 424 18.4 Acoustics 425 18.5 Hyperbolicity 425 18.6 Three-Dimensional Systems 428 18.7 Shallow Water Equations 429Contents xv 18.8 Euler Equations 431 18.9 Symmetry and Reduction of Dimension 433 Exercises 434 19 Multidimensional Numerical Methods 436 19.1 Finite Difference Methods 436 19.2 Finite Volume Methods and Approaches to Discretization 438 19.3 Fully Discrete Flux-Differencing Methods 439 19.4 Semidiscrete Methods with Runge–Kutta Time Stepping 443 19.5 Dimensional Splitting 444 Exercise 446 20 Multidimensional Scalar Equations 447 20.1 The Donor-Cell Upwind Method for Advection 447 20.2 The Corner-Transport Upwind Method for Advection 449 20.3 Wave-Propagation Implementation of the CTU Method 450 20.4 von Neumann Stability Analysis 452 20.5 The CTU Method for Variable-Coefficient Advection 453 20.6 High-Resolution Correction Terms 456 20.7 Relation to the Lax–Wendroff Method 456 20.8 Divergence-Free Velocity Fields 457 20.9 Nonlinear Scalar Conservation Laws 460 20.10 Convergence 464 Exercises 467 21 Multidimensional Systems 469 21.1 Constant-Coefficient Linear Systems 469 21.2 The Wave-Propagation Approach to Accumulating Fluxes 471 21.3 CLAWPACK Implementation 473 21.4 Acoustics 474 21.5 Acoustics in Heterogeneous Media 476 21.6 Transverse Riemann Solvers for Nonlinear Systems 480 21.7 Shallow Water Equations 480 21.8 Boundary Conditions 485 22 Elastic Waves 491 22.1 Derivation of the Elasticity Equations 492 22.2 The Plane-Strain Equations of Two-Dimensional Elasticity 499 22.3 One-Dimensional Slices 502 22.4 Boundary Conditions 502 22.5 The Plane-Stress Equations and Two-Dimensional Plates 504 22.6 A One-Dimensional Rod 509 22.7 Two-Dimensional Elasticity in Heterogeneous Media 509xvi Contents 23 Finite Volume Methods on Quadrilateral Grids 514 23.1 Cell Averages and Interface Fluxes 515 23.2 Logically Rectangular Grids 517 23.3 Godunov’s Method 518 23.4 Fluctuation Form 519 23.5 Advection Equations 520 23.6 Acoustics 525 23.7 Shallow Water and Euler Equations 530 23.8 Using CLAWPACK on Quadrilateral Grids 531 23.9 Boundary Conditions 534 Bibliography 535 Index 55
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Finite Volume Methods for Hyperbolic Problems رابط مباشر لتنزيل كتاب Finite Volume Methods for Hyperbolic Problems
عدل سابقا من قبل Admin في الأربعاء 13 فبراير 2019, 4:00 pm عدل 2 مرات |
|
Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Finite Volume Methods for Hyperbolic Problems الأربعاء 28 نوفمبر 2012, 10:20 pm | |
| |
|
Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Finite Volume Methods for Hyperbolic Problems الثلاثاء 25 يونيو 2013, 9:13 am | |
| |
|
محمد محمد أحمد مهندس فعال جدا جدا
عدد المساهمات : 654 التقييم : 694 تاريخ التسجيل : 14/11/2012 العمر : 32 الدولة : EGYPT العمل : Student الجامعة : Menoufia
| موضوع: رد: كتاب Finite Volume Methods for Hyperbolic Problems الجمعة 12 يوليو 2013, 1:52 am | |
| |
|
Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Finite Volume Methods for Hyperbolic Problems الجمعة 12 يوليو 2013, 11:36 am | |
|
- محمد محمد أحمد كتب:
- جزاك الله خيرا
جزانا الله وإياك خيراً |
|