Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Machine Elements Life and Design الإثنين 09 يوليو 2012, 11:45 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Machine Elements Life and Design Boris M. Klebanov David M. Barlam Frederic E. Nystrom
و المحتوى كما يلي :
Table of Contents PART I Deformations and Displacements . 1 Chapter 1 Deformations in Mechanisms and Load Distribution over the Mated Surfaces of Parts .3 Reference 9 Chapter 2 Movements in Rigid Connections and Damage to the Joint Surfaces 11 2.1 Interference-Fit Connections (IFCs) 11 2.1.1 IFCs Loaded with a Torque .11 2.1.2 IFCs Loaded with Bending Moment .12 2.2 Bolted Connections (BCs) 14 2.2.1 Forces in Tightened BC under Centrically Applied Load .16 2.2.2 Forces in Tightened BC under an Eccentrically Applied Load 18 2.3 Damage to the Mating Surfaces in the Slip Area 19 References 20 Chapter 3 Deformations and Stress Patterns in Machine Components .21 3.1 Structure and Strength of Metals .21 3.2 Deformations in the Elastic Range 24 3.3 Elastoplastic Deformation (EPD) of Parts .32 3.4 Surface Plastic Deformation (SPD) .36 References 39 PART II Elements and Units of Machines 41 Chapter 4 Shafts 43 4.1 Selecting the Basic Shaft Size .43 4.2 Elements of Shaft Design .46 4.3 Hollow Shafts .53 4.4 Selection of a Loading Layout for Strength Analysis .54 4.5 Analysis of Shaft Deformations .58 References 65 Chapter 5 Shaft-to-Hub Connections 67 5.1 General Considerations and Comparison .67 5.1.1 Interference-Fit Connections (IFCs) 67 5.1.2 Key Joints .69 5.1.3 Splined Joints (SJs) 705.2 Strength Calculation and Design of IFCs 71 5.2.1 Calculation for Total Slippage .71 5.2.1.1 Surface Pressure 72 5.2.1.2 Coefficient of Friction .74 5.2.2 Design of IFCs .77 5.3 Design and Strength Calculation of Key Joints .79 5.3.1 Role of IFC in the Key Joint .79 5.3.2 Strength of Keys .85 5.3.3 Strength of the Shaft Near the Keyway .86 5.3.4 Strength of Hub Near the Keyway 88 5.3.5 Round Keys 92 5.4 Splined Joints .93 5.4.1 SJs Loaded with Torque Only 94 5.4.2 SJs Loaded with Torque and Radial Force 97 5.4.3 Allowable Bearing Stresses in SJs .100 5.4.4 Lubrication of SJs 101 References 102 Chapter 6 Supports and Bearings 103 6.1 Types and Location of Supports 103 6.2 Rolling Bearings (RBs) 108 6.2.1 Design of RBs 108 6.2.2 Stresses and Failures in RBs 111 6.2.3 Design of Supports with Rolling Bearings 115 6.2.4 Choice and Arrangement of Supports 121 6.2.5 Fits for Bearing Seats .123 6.2.6 Requirements for Surfaces Adjoined to RBs .131 6.2.7 Elastic Deformation of RBs under Load .133 6.2.8 RBs with Raceways on the Parts of the Mechanism .135 6.2.9 Lubrication of RBs .137 6.3 Sliding Bearings (SBs) .138 6.3.1 Friction of Lubricated Surfaces 138 6.3.2 Types of SBs .140 6.3.3 Materials Used in SBs 141 6.3.4 Design of Radial SBs .144 6.3.5 Design of Thrust SBs .149 6.3.6 Surfaces Connected with SBs: Features Required 151 6.3.7 Oil Supply to SBs .153 References 158 Chapter 7 Gears .159 7.1 Geometry and Kinematics of Gearing .160 7.2 Forces in Spur Gearing and Stresses in Teeth .167 7.3 Kinds of Tooth Failure .170 7.4 Contact Strength (Pitting Resistance) of Teeth 174 7.5 Bending Strength (Breakage Resistance) of Gear Teeth .181 7.6 Unevenness of Load Distribution across the Face Width (Factor KW) .187 7.7 Dynamic Load in the Gear Mesh and Factor Kd .195 7.8 Load Distribution in Double-Helical Gears (Factor KWh) .197 7.9 Backlash in the Gear Mesh 1987.10 Lubrication of Gears .200 7.11 Cooling of Gears 208 References 213 Chapter 8 Gear Design 215 8.1 Gear and Shaft: Integrate or Separate? 215 8.2 Spur and Helical Gears 217 8.3 Built-up Gear Wheels .224 8.4 Manufacturing Requirements and Gear Design 235 8.5 Bevel Gears .238 8.6 Design of Teeth 239 References 240 Chapter 9 Housings .241 9.1 The Function of Housings 241 9.2 Materials for Housings .243 9.3 Design of Housings 248 9.3.1 Housings Split through the Axes of Shafts 248 9.3.1.1 Design of Mounting Feet 250 9.3.1.2 Design of Lifting Elements .251 9.3.2 Housings Split at Right Angle to the Axes of the Shafts 251 9.3.3 Nonsplit Housings 253 9.4 Deformations and Stiffness Problems 254 9.5 Housing Seals .255 9.5.1 Sealing of Rigid Connections (Static Seals) 255 9.5.2 Sealing Movable Joints 262 9.5.2.1 Noncontact Seals .262 9.5.2.2 Contact Seals .264 9.5.2.3 Combined Seals .274 References 275 Chapter 10 Bolted Connections (BCs) 277 10.1 Load Distribution between the Bolts .278 10.1.1 Load Distribution in Bolted Joints Loaded in Shear .282 10.1.2 Load Distribution in Bolted Joints Loaded in Tension .287 10.2 Tightening of Bolts .292 10.2.1 Tightening Accuracy .292 10.2.2 Stability of Tightening 295 10.2.2.1 Self-Loosening of Bolts 295 10.2.2.2 Plastic Deformation of Fasteners and Connected Parts .295 10.2.3 Locking of Fasteners .300 10.3 Correlation between Working Load and Tightening Force of the Bolt 302 10.3.1 Load Normal to Joint Surface 302 10.3.2 Shear Load 305 10.3.3 Bending Load 311 10.4 Strength of Fasteners 313 10.4.1 Static Strength .313 10.4.2 Fatigue Strength 317 References 319Chapter 11 Connection of Units .321 11.1 Housing Connections 321 11.2 Shaft Connections .329 11.2.1 Alignment of Shafts 329 11.2.2 Rigid Couplings 334 11.2.3 Resilient Couplings .336 11.2.4 Gear Couplings .342 References 352 PART III Life Prediction of Machine Parts 355 Chapter 12 Strength of Metal Parts 357 12.1 Strength of Metals 359 12.1.1 Strength at a Static Load 359 12.1.2 Fatigue Strength (Stress Method) .363 12.1.3 Limited Fatigue Life under Irregular Loading (Stress Method) 374 12.1.4 Fatigue Life (Strain Method) 376 12.2 Strength of Machine Elements .386 12.2.1 Surface Finish .387 12.2.2 Dimensions of the Part .387 12.2.3 Stress Concentration .388 12.2.4 Use of Factors K S, Kd, and Ke .389 12.3 Comparative Calculations for Strength 390 12.4 Real Strength of Materials .395 References 396 Chapter 13 Calculations for Strength 397 13.1 Characteristics of Stresses in the Part 397 13.1.1 Estimation of External Loads .397 13.1.2 Determination of Forces Applied to the Part .398 13.1.3 Estimation of Stresses in the Part .403 13.2 Safety Factors .404 13.3 Errors Due to Inappropriate Use of FEM 405 13.3.1 Design Principles and Precision of FEM .405 13.3.2 Design of Model for FEM Computation 407 13.3.3 Interpretation of Boundary Conditions .409 13.3.4 Is the Computer Program Correct? 412 13.3.5 More about Simplified Analytical Models .412 13.3.6 Consideration of Deformations .416 13.4 Human Error .416 13.4.1 Arithmetic .416 13.4.2 Units (Dimensions) .417 13.4.3 Is This Formula Correct? 418 References 419 Chapter 14 Finale 421 Index 423 Index A Abrasive wear, 115, 171, 192 Action, line of, 161, 163–164, 195 Addendum. See Tooth Admissible stress, 86, 356–359, 364, 387, 389, 391–392, 394–395, 404 Alignment, 8, 56, 58, 104–105, 197, 236, 249, 253–255, 265, 274 angular, 85, 96, 106, 109–110, 121, 331, 344–345 radial, 330 of shaft, 119, 329–334 techniques, unit connections, 333 of teeth, 197 Aluminum alloy, 19, 46, 110, 143, 151, 245, 297, 316, 323, 325, 380 Angle helix, 76, 103–104, 165–166, 193, 197–198, 219, 224, 236 pressure, 96, 103, 117, 160, 168, 173, 186, 196, 220 slope, 60, 63, 65, 357, 384, 412 Angular misalignment, 345 effect on shaft, bearing loads, 331 Arrangement, of bearings, 121–123, 130 Assembled gears, 238 Attachment point, 278, 280, 282, 291, 416 Axial fixation, shafts, 104 Axial force (load), 5, 8, 13–14, 63, 67, 71, 74–75, 80–84, 103, 115–123, 129, 132–133, 136–137, 141, 152, 197–198, 219–220, 227, 236, 246, 249, 255, 274, 301, 311, 339, 342, 408–409 Axles, 3, 44, 71, 106, 137, 200, 241, 273, 284, 357 B Babbit alloys, 143–144, 149, 151 Backlash, 102–103, 198–199, 242 gear mesh, 198–200 Ball bearing, 108–109, 117–118, 129, 132, 134–135, 255, 374, 418 Bandage gears, local slippage, 229 Base circle, 160–161, 163, 195 Base pitch, 160–161, 163, 169, 181–182, 195–196 Basquin’s formula, 382 Beam supports, strength calculations, 408 Bearing stress, 86, 92–93, 95–96, 100–101, 296 Bearing surface, 84, 141, 146, 149, 151, 293, 295–298, 300–301, 311, 318 Bearings adsorbed oil film, 138 alignment, 119, 151–152, 249 arrangement, 122–123 axial movement under load, shaft misalignment from, 119 ball, 51, 108–109, 117–118, 123, 129, 132, 134–136, 255, 374, 418 clearance in, 117 comparison of, 111 cylindrical roller, axial load, 116 diesel engine crank mechanism, oil ducts, 157 double-row, 56 elastic deformation, 133–135 failure, 108, 111–115 fits, 44, 123–131 flat working surface, sliding thrust, 150 four-point ball, 123, 136 Hersey-Stribeck diagram, 140 high-speed roller, compared, 111 hollow shaft, 152, 154 housing oil ducts, 154 hydrodynamic oil film, sliding, 141 load distribution, 57, 128 lubricated surfaces, contact of, 139 lubrication of, 137–140 needle, 110 oil distribution grooves, 146–147 oil supply, plain, spline connections, 157 planet wheel, sliding, 148 radial, 117 radial ball, assembling, 109 ring fastening, 129 roller without inner rings, 135 rollers, ring, shaft, interaction, 124 rolling, 108–138 rotating oil pressure, 155 self-aligning, 151–152 self-made roller, 136 shaft shoulder height, 133 sliding, 138–158, 197 straight roller, 106, 110, 113, 116–118, 120–121, 134–136, 418 tapered roller, 118–119, 122, 129–130, 132, 134, 255, 270 two-cylinder contact, stresses in, 112 two-row, 110 types of, 108, 140–141 Bending deformation, 4, 7, 25, 56, 58, 67, 152, 181, 217–219, 227, 247, 250, 273, 282, 310, 318, 329, 365 gears, failure, toothed rim, 218 straight beam, 25 Bending moment between bearings, angular deformation, 59 bolts, 291424 Machine Elements: Life and Design Bending strength, 4, 44, 161, 169–170, 173, 176, 179, 181, 183–187, 192, 199, 232, 240, 348 Bending strength of teeth, 232 Bending stress, 14, 37–39, 56, 75–77, 84, 91, 166, 168–169, 181–183, 185–187, 193–194, 197, 218, 249–250, 267–268, 310–311, 331, 357, 359, 364, 390, 399 Bevel gears, 107, 136, 179–180, 186, 200, 208, 238–239, 252–253, 256 Block brake, 5 Bolted connections, 11, 14–19, 226, 256, 277–319, 368, 403–404 aluminum parts, 296 bending, threads, 318 bending moment, 291 bolt design comparison, 298 bolt joint loaded in tension, bending, analytical model, 288 bolt shank, maximal, average tension stresses, 304 bolt tension force, eccentric, coaxially applied loads, 303 bolted joints loaded in shear, load distribution in, 282–287 center of gravity, 285 center of rotation, 285 comparative calculations of, 292 cone-fitted bolts, flange connection with, 293 contours, complex, 290 fastener strength, 313–319 fatigue strength, 317–319 static strength, 313–317 fitted bolts, connection with, 307 flange connection slip in, 310 types, 306 helical insert for thread reinforcement, 316 high fatigue strength bolt design, 318 load distribution, loaded in tension, 287–292 load distribution between bolts, 278–292 loaded in shear, 283 loaded with shear forces, 305 locking fasteners, 300 long stud bolt vibrations, 312 parallelogram of forces, false use, 281 rib, 279 statically determinate, indeterminate beams, 280 thin-walled tubes, flange connection of, 278 tightened bolt connection, stress distribution, 297 tightening of bolts, 292–302 accuracy, 292–295 stability of tightening, 295–299 working load, tightening force of bolt, correlation, 302–313 bending load, 311–313 load normal to joint surface, 302–305 shear load, 305–311 Bolted joint concentric, eccentric loading, 16 concentrically loaded, 16 eccentrically loaded, 16 two part, 14 Bolts centrically loaded, 16–18, 282 eccentrically loaded, 16, 18–19, 303 elongation, 294 fitted, 226, 282, 287, 307–309, 316, 319 locking of, 300–302 stability of tightening, 295–302 strength fatigue, 317–319 static, 313–317 tapered, 309–310 tightening, 292–302 accuracy, 292–295 tightening accuracy, 292–295 tightening force, 257, 278, 302–313 tightening torque, 80–81, 83–84, 292–295, 301, 306, 313 working load, tightening force of bolt, correlation, 302–313 bending load, 311–313 load normal to joint surface, 302–305 shear load, 305–311 Boundary condition, 85, 241, 292, 409–411, 416 Brake, 4–5, 130, 292 Broaching, 71 Broken sections, 26 Bronze, 95, 107, 143–144, 146, 148, 316 Buckling, 46 Built-up gear wheels, 224–235 Burnishing, 20, 37–38, 53 C Cage, 107–111, 115, 123, 136–137 Cantilever beam, strength calculations, 407 finite element method, 410 Carburizing, 20, 44, 101, 132, 239, 265, 270 Case hardening, 115, 184, 225 Cast housing, 153, 173, 245–246 Casting materials cast steel, 244–245 gray cast iron, 31, 200, 221, 232–233, 244–245, 260, 293, 316 Centrifugal force, 8, 74, 102, 110, 115, 137, 155–156, 201, 275 Change of clearance, unit connections, driving/driven teeth, 349 Chrome plating, 270 Clearance, 3–5, 8, 18, 56–57, 70–71, 78, 85, 95, 98, 103–105, 107, 115, 117–120, 122–123, 126–129, 131, 133–135, 141, 145, 149, 151–152, 198, 235–236, 263–265, 267–269, 272–273, 294, 305, 309, 318, 329, 332–333, 343, 348–349 Coating, 20, 137, 141, 143, 173, 243–244, 271, 295 Coefficient, 18–19, 27–28, 31, 64, 67–69, 72, 74–77, 79–81, 83, 89, 95, 117, 120–121, 125, 127, 134–135, 139–140, 143–144, 171, 183, 228–230, 232–234, 264, 272, 278, 293–295, 301, 305–308, 315, 317, 357, 379–380, 382–384, 386, 393, 404 of friction, 69, 72, 74–77, 79–80, 83, 95, 120, 139–140, 228–229, 232–233, 293, 295, 306–307, 315, 350Index 425 Cold rolling, residual stress distribution after, 37 Cold working, 44, 53 Combined load, 117, 119 Comparative calculations, 175, 187, 226, 231, 282, 284, 292, 390 Compliance, 7, 15, 17–18, 44, 57, 72, 97, 125, 131, 151–152, 187, 217–218, 279, 282–283, 291, 298–299, 302–303, 313, 330, 336, 404, 411–412 Compressive force, 18, 226 Compressive stress, 15, 20, 35–39, 50, 53, 112, 172, 184–185, 227 Computer program, 58, 149, 241, 355, 397, 403, 407, 412 Conical gears, rigidity with, 222 Connections alignment techniques, 333 bolted, 11, 14–15, 19, 226, 256, 277, 279, 281, 283, 285, 287, 289, 291–295, 297, 299, 301, 303, 305, 307–309, 311, 313, 315, 317, 319, 368, 403–404 change of clearance, 349 crowded tooth, contact patch, 352 crowned teeth shape, 345 deformations, 322, 324 design, 322 enlarged tooth length, 348 flange, 103–104, 275, 277–278, 292, 303, 305–306, 308–310, 319, 342 frame twisting, 323 gear coupling, 343 hobbing, 346 housing connections, 321–329 interference fit, 102 shaft connections, 329–352 splined, 93 stress calculation, 324 tapered, 67–68, 73, 80 Contact length, 113 Contact line, 113, 165–169, 174, 177, 188, 194 Contact patch, unit connections, crowded tooth, 352 Contact pattern, 107, 253–254 Contact pressure, 13, 20, 51–53, 69, 96, 230, 303 Contact ratio, 161, 163, 165–166, 194–196 Contact seals, 264–274 lip-type seals, 269–271 mechanical seals, 272–274 O-rings, 268–269 piston ring packing, 265–268 Contact strength, of teeth, 174–181 Contact stress, 100, 110, 112, 117, 129, 168–169, 173–174, 176, 179, 183, 193 loaded tooth, 168 Cooling, 74, 103, 131, 149, 173, 200, 206, 208–212, 247, 270–271, 273–274, 338, 343 gears, 208–212 Copper alloys, 146, 209, 266, 293 Copper plating Cotter pin, 206, 300 Couplings, 20, 43–44, 68–69, 95, 104, 156, 174, 197, 208, 292–293, 321–323, 331, 334, 336–343, 347–352, 398 gear type resilient, 292, 336, 342 rigid, 68, 334 Crack propagation, 387 Critical frequency, 45, 312–313, 336, 399, 403 Critical load, 18 Crowned teeth, 343, 345–346, 352 Crystal cell, 22 Crystal lattice, 21–24, 172, 357, 376, 380 imperfections, 22 Crystal structure, 21 Crystals, in metal structure, 23 Cyclic load, 24, 31, 36, 91, 111, 148, 277, 311, 398 Cyclic properties, 391 Cylindrical roller bearing, axial load, 116 D D’Alembert principle, 166 Damage accumulation, 404 Damage to joint surfaces, rigid connections, movements in, 11–20 bolted connections, 14–19 bolted joint concentric, eccentric loading, 16 two part, 14 eccentrically loaded bolted connection, deformations, 19 fretting, strength-damaging effect, 20 interference-fit connection, self-dismantling under bending load, 14 interference-fit connections, 11–14 load distribution nonuniformity, 13 loaded with bending moment, 12–14 loaded with torque, 11–12 torsional deformation, 12 mating surfaces, slip area, damage to, 19–20 tightened bolt connection, forces in, 16 Dead center, 3 Dedendum. See Tooth Deflection, 17, 54, 58, 84, 151, 196, 325, 332 Deformation bending, 4, 7, 25, 37, 39, 56, 58–60, 67, 152, 181, 217–219, 227, 247, 250, 273, 282, 310, 318, 329, 365 elastic, 4, 8–9, 19, 24–35, 65, 68, 93, 104, 110, 112–114, 117–118, 122, 131, 133–135, 142, 151, 168, 187, 196, 215, 219, 229, 241–242, 263, 273, 297, 299, 307, 315, 333, 349, 418 elasto-plastic, 32–36 housings, 254–255 mated part surfaces, 3–9 shafts, analysis, 58–65 stress patterns, machine components, 21–39 bending deformation, straight beam, 25 bending stresses, T-beam, 37 broken sections, 26 burnishing shafts, roller shapes, 38426 Machine Elements: Life and Design cold rolling, residual stress distribution after, 37 crystal cell, 22 crystal lattice, 22 crystals, in metal structure, 23 dislocation, movement under load, 22 elasto-plastic deformation, parts, 32–36 elasto-plastic deformation effectiveness, 34 filleted bar, strain distribution, 28 grains in metal structure, 23 metal strength, 21–24 metal structure, 21–24 notched strip in tension, stress concentration, 30 plane sections, 26 reversed bending, loss of residual stress from, 39 shot peening, residual stress distribution after, 37 straight bar, strain distribution, 26 stress-strain diagrams, 32 surface plastic deformation, 36–39 thin-walled beams, deformation of, 25 surface, plastic, 36–39, 53, 190, 295 unit connections, 322, 324 Deformation pattern, 29, 278, 281, 287, 416 Design elements, shafts, 46–53 of housings, 248–254 unit connections, 322 Diagram, stress-strain, 32, 360 Diameter, pitch, 63, 100, 160, 167, 179, 183, 186, 220, 232–233, 350 Diametral pitch, 96, 136, 160, 181, 183 Dimension factor, 90 Disk thickness, gears, 221 Disk-type gears, deformation, 219 Dislocation, 21–24, 31, 380 movement under load, 22 Displacement, 1, 4, 8, 23, 56, 85, 93, 98, 101–102, 104–105, 115, 122, 132, 145–146, 152, 154, 158, 173, 183, 194, 198–199, 229–230, 236, 238–239, 251, 255–256, 263, 307–308, 319, 332, 401–402, 405, 407–411, 416 Distortion, 110–112, 115, 132, 143, 172, 238 Distribution, load, 1, 3–9, 11–13, 56–58, 65, 76, 85–195, 197–198, 200, 213, 217–220, 223, 226, 241, 250, 255, 257, 277–292, 301, 317–318, 336, 338–340, 349–350, 352, 403 Double-helical gears, 103, 197–199, 235–236 bearings or, 197 load distribution, 197–198 overload factor, 198 Double-reduction gear, shaft-to-hub connections, intermediate shaft, 76 Double-row bearings, 56 Durability, 20, 31, 51, 69, 108, 176, 270, 355–356, 359, 374, 384–385 Dynamic analysis, 195, 397 Dynamic factor, 76, 182 Dynamic load, 76, 131, 175, 182, 185, 195–196, 398 E Eccentric loading, 19, 303 Eccentricity, 104, 107, 263 Efficiency, 159, 204, 208, 210–212 Elastic deformation, 4, 8–9, 19, 24, 32, 34–35, 65, 68, 93, 104, 110, 112–114, 117–118, 122, 131, 133, 142, 151, 168, 187, 196, 215, 219, 229, 241–242, 263, 273, 297, 299, 307, 315, 333, 349, 418 shafts, gear rim displacements, 8 Elastic elongation, 32, 299 Elastic range deformation beam, 33 deformations in, 24–31 Elasto-plastic deformation, 32–36 effectiveness, 34 parts, 32–36 Elasto-plastic range deformation beam, 33 torsional deformation, 35 Elastomeric spider, flexible coupling, 337 Elements of machines, 41–353 Elliptic fillet, 318 Elongation, 6, 17, 26, 28, 30, 32, 268, 294, 296, 299, 315, 361, 378, 386, 396, 406 elastic, 32, 299 plastic, 32, 315 Endurance limit, 365 Energy loss, 24, 210, 264, 270 Engineering stress, 377–378 Enlarged tooth length, unit connections, 348 Equivalent number of cycles, 178, 375–376 Equivalent radius, 113, 168–169, 174 Equivalent stress, 83, 91, 306, 314–315, 327, 362, 371–373, 385 Escalator drive unit, foundation for proof test, 328 Escalator main drive, 62–63 External loads, strength calculations, 397 F F ace, gear, load distribution across, 218 Face width, 8, 54, 63, 65, 106, 165–166, 168, 171, 174–175, 179–182, 185, 187, 190, 192–195, 198–200, 205, 213, 217, 219–220, 224, 228, 347 Factor of load distribution, 175 of safety, 127, 287, 368 Failures of bearings, 108, 111–115 of gears, 170–173, 176, 218 Fan cooling, 208 Fasteners, 102, 282, 292, 295–296, 300–301, 311, 313–319, 411 fatigue strength, 317–319 static strength, 313–317 Fatigue high cycle (HCF), 364, 376, 395 low cycle (LCF), 363–364, 376, 378, 384–385, 391 Fatigue crack, 6, 11, 19, 37, 71, 86, 114, 170, 172, 215, 218, 292–293, 317, 363–364, 377, 387 Fatigue failure, 51, 177, 218, 358 Fatigue life (strain method), 376–386 Fatigue limit, 18, 51, 53, 90–91, 112, 143, 177–178, 317, 357, 364–365, 367, 374, 376, 387–390, 396Index 427 Fatigue strength, 13, 19, 37, 44, 51–53, 68, 79, 88–89, 313, 317–318, 357, 359, 361, 363–374, 382, 384, 387, 390, 395–396 Fillet radius, 29, 38, 47–50, 53, 86, 89, 184, 219, 318 Filleted bar, strain distribution, 28 Finish. See Surface finish Finite element method (FEM), 7–9, 15, 30, 54, 73, 85–86, 88, 90, 97, 169, 181, 183, 185, 194, 231, 241, 278, 282, 286–287, 290–291, 299, 303, 305, 321, 403–416 boundary condition interpretation, 409–413 computer program, 412 deformations, 416 design principles, precision, 405–407 model design for, 407–409 simplified analytical models, 412–416 Fits for rolling bearings, 123–131 Flange attachment, gear, 223 Flange connection, 103–104, 275, 277–278, 292, 303, 305–306, 308–310, 319, 342 Flat working surface, sliding thrust bearing, 150 Flexible coupling with pins, rubber sleeves, 336 with rubber pads, 337 Flexible couplings, with elastomeric elements, 341 Forced-feed lubrication, 203–206 Forces in tightened bolt connection, 16 Four-point ball bearing, 123, 136 Fragility, 170 Frame strength, 322 Frame twisting, unit connections, 323 Frequency, natural (critical), 45, 312–313, 336, 399, 403 Fretting, 19–20, 51, 53, 65, 68, 71, 88, 95, 127, 144, 215, 217, 278, 292–293, 364 strength-damaging effect, 20 Friction coefficient, 19, 67–68, 72, 74–75, 89, 117, 121, 125, 127, 140, 171, 228, 230, 234, 264, 272, 278, 294, 301, 305–306, 308, 315, 339, 351–352 static, 74 Friction force, 11, 14, 72, 75, 79, 89, 91, 93, 110, 117, 120, 124–125, 138, 164–167, 171, 173–174, 197–198, 223, 226, 228–229, 268, 270, 272, 277, 282, 285, 287, 292, 294, 301, 305–310, 338, 350, 411 Friction modes, 139–140, 270 Function of housings, 241–243 G Gears assembled, 238 backlash, 198–200 gear mesh, 198–200 bandage, local slippage, 229 bending deformation, failure, toothed rim, 218 bending stress, 187 loaded tooth, 168 in tooth root, load distribution influence, 194 bevel, 207, 238–239 bevel gears, 238–239 built-up gear wheels, 224–235 clearance, 237 conical, rigidity with, 222 contact stress, loaded tooth, 168 cooling, 208–212 cooling process, 209 coupling bending moment, 350 unit connections, 343 misalignment, 343 couplings, 342–352 design, 215–240 disk thickness, gears, 221 disk-type, deformation, 219 double-helical, 197–198 double-helical ear, 235 double-helical gear, overload factor, 198 double-helical gears bearings or, 197 load distribution, 197–198 face, load distribution across, 218 flange attachment, 223 gear, shaft, connection, 216 gear mesh, factor, dynamic load, 195–197 gear tooth failures, 170 geometry, 160, 162, 197 geometry of, 160–167 grinding wheels types, 237 heating process, 209 helical, 164–168, 176, 178–180, 186, 198–199, 206, 217–224, 227, 238, 240, 255 helical gear, 217–224 hobbing machine, double-helical gear, 235 involute teeth geometry, 160 kinematics of, 160–167 leading, lagging surfaces in contact, 165 load distribution unevenness across face, 87–195 local separation, rim from center, 232 lubrication, 200–207 lubrication grooves, scraper, 203 manufacturing requirements, 235–238 mesh, backlash, 198–200 non-surface-hardened teeth, fatigue life line, 178 number of teeth, tooth shape dependence on, 161 oil bath lubrication, gears, 200 oil collector, lubrication holes, 203 oil level indicators, 204 oil spray, direction on gears, 206 oil sprayers, 205 output shaft, 46 pinion shaft design, 216 pitch change, from deflection under load, 196 pitch deviations, tooth impact by, 195 pump, gears, 55 ratio, 76, 163, 179–180, 202, 417 ribbed wall, stresses in, 228 rim, 170, 238 center of gear, connections, 225 shaft with, 215–217 shapes, 217 shrink-fit connection between rim, center, surface pressure, 230428 Machine Elements: Life and Design sketch, 7 spur, 99, 107, 116, 160–164, 166–169, 171, 174, 176, 181, 186, 195–196, 199, 206, 213, 217–226, 238, 240, 417 spur gear, 217–224 spur gear geometry, 162 spur gear teeth, helical teeth, contact lines, 167 spur gearing forces, 167–169 stress amplitude, number of cycles to failure, dependence, 176 teeth, 8, 36, 44, 63, 76, 96, 99, 103, 132, 136, 160–161, 167–169, 172, 174–187, 196, 205, 215, 228, 237, 239–240, 242, 253, 255 bending strength, 181–187 contact strength, 174–181 stresses in, 167–169 teeth design, 239–240 teeth machining tools, clearing space, 237 tooth design, 239 tooth engagement, 162 tooth failure, 170–173 tooth failures, 170 tooth load, 167 tooth misalignment, load distribution, contact line, 188 tooth root shape, grinding influence, 184 tooth spaces, oil drain, 199 types, 216 uneven load distribution, gear sensitivity, 190 vertical output shaft, two-stage bevel-planetary gear, 207 wear-prone gear, run-in process, 191 welded, 225 welded to shaft/hub, 217 Geometry of gears, 160–167 Gerber failure line, 369 Goodman diagram, 367–368 Grains in metal structure, 23 Gravitation, 241, 409 Gravity, center of, 251, 282–283, 285, 324, 414 Grease lubrication, 101, 137 Grinding wheels types, 237 Grooves in bearings, 146–147 H Hardened layer, 20, 50, 53, 114–115, 135–136, 170, 172–173 Hardness, 44, 68, 101, 111, 116, 127, 135, 137, 142–144, 151, 172–173, 176–178, 180, 182, 186–187, 190, 221, 244, 260, 265–266, 301, 309, 337, 339, 359, 361–362, 364, 384, 395–396 steel mechanical properties, 362 Harmonic drive, 208 Heat transfer factor, 208 Heat treatment, 43, 112, 172, 184, 222, 225, 227, 237–238, 240, 242, 246–247, 270, 361, 384, 387, 391, 395–396 Heating, 8, 38, 74, 78–79, 111, 131, 138, 172, 200, 209–211, 262, 271, 338, 413 of gears, 209 of rubber elements, 338 Helical gear, 164–166, 168, 176, 178–180, 186, 198–199, 206, 217–224, 227, 238, 240, 255 Herringbone gear, 197–198 Hertzian stress, 114, 135, 168, 171, 174–175, 177 loaded tooth, 168 Hertz’s formula, 168, 174 High-speed roller bearings, compared, 111 Hob radial motion, tooth thickness, relationship, 347 Hobbing, 235–236, 346 Hollow shafts, 46, 51–54, 131–132, 152, 154, 334–335 deformation, 152 design, 52 oil supply through, 154 Hooke’s law, 377–378, 389, 405–406 Housing connections, 321–329 deformations, 254–255 design, 8, 248–255 function, 241–243 material, 243, 245–246 materials for, 243–247 nonsplit, 253–254 seals, 255–275 split at right angle to axes of shafts, 251–253 split through axes of shafts, 248–251 lifting elements, 251 mounting feet, 250–251 stiffness, 254–255 Hub strength, 90–91 Human error, strength calculations, 416–419 arithmetic, 416–417 units, 417–419 Hydrodynamic, 9, 139–141, 149–152, 155–156, 174, 206, 275 oil film, 9, 141 Hypotheses, of plane cross section, 24–25, 33 Hysteresis loop, 380, 382 I Idling gears, 161, 336–337 Impact load, 108, 170, 181, 243–244, 336 Impact toughness, 359, 396 Imperfections of crystal lattice, 22 Induction hardening, 20, 53, 101, 228 Interference fit connections, 102 Interference-fit connections, 11–14 friction coefficient, 74–77 load distribution, 13 load distribution nonuniformity, 13 loaded with bending moment, 12–14 loaded with torque, 11–12 self-dismantling under bending load, 14 shaft-to-hub connections, 67–69, 71–79 design, 77–79 easily disassembled, 69 slippage, 13 torsional deformation, 12 Internal stress, 24, 31, 37, 246–247, 332 Involute profile of teeth, 161, 184, 196 Involute teeth geometry, 160Index 429 J Jam nuts, 300 Joints bolted, 11, 14, 16, 20, 226, 240–241, 287, 319, 403 keyed, 67 loaded in shear, 277, 282–283, 287, 310, 341 loaded in tension, 14, 254, 282, 287–288, 359, 405 separation of, 245, 254–255, 277 splined, 67, 70, 93 Journal, shaft K Key displacement, shaft-to-hub connections, 85 Key joints design, strength calculation, shaft-to-hub connections, 79–93 hub near keyway, strength, 88–92 keys, strength, 85–86 role of interference-fit connections, 79–85 round keys, 92–93 shaft near keyway, strength, 86–88 hub strength, 79–93 keys strength, 85–86 shaft strength, 86–88 shaft-to-hub connections, 69–70 Key-joints, 67 Keyed hub, stress in, shaft-to-hub connections, 88–89 Keyway deformation under load, shaft-to-hub connections, 88 Keyway end, stress concentration, shaft-to-hub connections, 87 Kinematics, 5, 160, 183, 256, 399 L Labyrinth seal, 206, 269, 274 Lame formula, 126 Layout of shaft loading scheme, 54–58 Leading, lagging surfaces in contact, 165 Leading surfaces, 165, 171 Leak-proofness, 275 Length of action, 161, 173, 183 Length of contact, 113 Life factor, 176–177 Life prediction, 355, 364, 395, 404 machine parts, 421 metal part strength, 357–396 strength calculations, 397–419 Lifting device, 4 Lifting drum, with driving shaft, strength calculations, 398 Lifting element, 251 Limited fatigue life, irregular loading (stress method), 374–376 Linear expansion factor, 78, 245 Lip-type seals, 269–271 Load cyclic, 24, 31, 36, 91, 111, 148, 277, 311, 398 impact, 108, 170, 181, 243–244, 336 Load capacity Load distribution across face, 87–195 along the teeth, 7–8, 65, 96–97, 99, 106, 170, 190 between the bolt, 223, 226, 277–278, 403 bolted joints loaded in shear, 282–287 between bolts, 278–292 double-helical gear, 197–198 mated part surfaces, 3–9 between the teeth, 96–97, 99–100, 350 unevenness across face, gears, 87–195 Load distribution factor, 189, 194 Loading layout, shafts, strength analysis, 54–58 Loading types, strength calculations, 401 Locking fastener, 300–301 Long addendum design, 161, 183, 186 Loose spline joint lubrication, shaft-to-hub connections, 101 Low-cycle fatigue, 363, 376, 378, 384–385, 391 Lubrication bearings, 137–140 forced-feed, 203–206 gears, 200–207 grease, 101, 137 grooves, scraper, 203 pressure-fed, 107 splash, 107, 201 spline joint, 101 M Machine element strength, 386–390 dimensions of part, 387–388 stress concentration, 388–389 surface finish, 387 Machine parts, life prediction, 355–421 Magnesium alloy, 221, 245, 296, 301 Manufacturing requirements, 235–238 Margin of safety, 170, 173 Mated part surfaces, deformations, load distribution, 3–9 Materials for housings, 243–247 Mating surfaces, slip area, damage to, 19–20 Maximal principal stress, 88 Maximal stress, 24, 27–31, 48, 77, 83, 85, 89–90, 171, 268, 303, 305, 317, 319, 357, 364, 367, 370–371, 374, 376, 389, 398, 404, 413 Mean stress, 31, 90–91, 317, 364, 366–367, 369–371, 373, 385 Mechanical properties, 34, 53, 245, 267, 317, 359, 361–362, 387, 395 Mechanical seals, 272–274 Mesh, gear, factor, dynamic load, 195–197 Metal strength, 21–24, 357–396 bending loads, bars subjected to, stress distribution, 387 comparative calculations, 390–395 cyclic stress-strain curve construction, 381 fatigue life (strain method), 376–386 fatigue limit vs. mean stress, Goodman diagram, 367430 Machine Elements: Life and Design fatigue strength (stress method), 363–374 hardness, steel mechanical properties, 362 hysteresis loops, cyclic deformation transition period, 380 limited fatigue life, irregular loading (stress method), 374–376 machine element strength, 386–390 dimensions of part, 387–388 stress concentration, 388–389 surface finish, 387 maximal stress, vs. mean stress, Serensen diagram, 370 monotonic, cyclic stress-strain curves, differences, 382 real material strength, 395–396 rotating-bending endurance test machine, 366 shaft with fillet, 393 static load, strength at, 259–363 strain-life curves, 383 stress-strain diagram, 360 stress variation with time, 365 stresses, frequencies, spectrum, 375 tensile test specimen, 360 Metal structure, 21–24 Micro-slip, 229 Miner’s rule, 374 Minimal stress, 366 Misaligned hubs, 344 Misalignment angular, 85, 96, 106, 109–110, 121, 331, 344–345 of shafts, 329 Modification of profile, 170, 173, 196, 239 Modulus of elasticity of section, 46, 411, 413, 415 Moment of inertia, 12, 45, 60, 64, 258, 260–261, 267, 281, 314, 323, 325–326, 330, 408, 413–415 Monotonic loading, 379–381 Movable joints, sealing, 262–275 combined seals, 274–275 contact seals, 264–274 lip-type seals, 269–271 mechanical seals, 272–274 O-rings, 268–269 piston ring packing, 265–268 noncontact seals, 262–264 Movements, rigid connections, joint surface damage, 11–20 bolted connections, 14–19 bolted joint concentric, eccentric loading, 16 two part, 14 eccentrically loaded bolted connection, deformations, 19 fretting, strength-damaging effect, 20 interference-fit connection, self-dismantling under bending load, 14 interference-fit connection slippage, 13 interference-fit connections, 11–14 load distribution nonuniformity, 13 loaded with bending moment, 12–14 loaded with torque, 11–12 torsional deformation, 12 mating surfaces, slip area, damage to, 19–20 tightened bolt connection, forces in, 16 N Necking, 359, 361, 378 Needle bearing, 110 Neuber’s formula, 388 Neutral axis, 26, 34, 36, 289 Nitriding, 20, 44, 53, 101, 132, 172, 193, 225, 227, 266, 270 Non-surface-hardened teeth, fatigue life line, 178 Noncontact seals, 262–264 Notched strip in tension, stress concentration, 30 Number of cycles Number of reversals, 383 Number of teeth, 93, 96–97, 160–161, 165, 183, 186, 194–195, 239 tooth shape dependence on, 161 Nuts O O-rings, 256, 262, 264, 268–269, 272–274 Offset, 8 Oil bath lubrication, gears, 200 Oil collector, lubrication holes, 203 Oil-distributing grooves, 146, 154, 156–157 Oil distribution, 146–147 Oil level indicators, 204 Oil spray, direction on gears, 206 Oil sprayers, 205 Oil supply, 101, 201, 206, 313 plain bearings, spline connections, 157 Oil wedge, 116, 139–140, 146–147, 149–153 One-pair engagement, 161 Outside diameter, 161, 163, 296 Overhung bending moment, angular deformation, 60 Overhung force, 59 Overhung radial force, angular deformation, 59 Overload factor, 198 P P almgren-Miner rule, 374 Parallel link mechanism, 3, 242 Parametric excitation, 165, 195, 222 Parametric resonance, 195 Pattern deformation, 21–39, 278, 281, 287, 416 strain, 26, 28, 32 stress, 21–39, 174, 194, 409, 411 Pin Index 431 Pinion Pinion shaft design, gear, 216 Piston pin loading, 9 Piston ring packing, 265–268 Pitch, diametral, 96, 136, 160, 181, 183 Pitch change, from deflection under load, 196 Pitch circle, 160 Pitch deviations, tooth impact by, 195 Pitch diameter, 63, 100, 160, 167, 179, 183, 186, 220, 232–233, 350 Pitch point, 163–164, 166, 169, 173–174, 183 Plane cross sections hypothesis, 34 Plane sections, 26 Planet carrier, 106, 137 Planet wheel, 44, 105–106, 110, 136–137, 148, 215 sliding bearing, 148 Planet wheel bearings, 106 Planetary gear, 106, 178, 186, 208, 213, 215, 240 Plastic deformation Point of attachment, 277, 283 Point of contact, 161, 164–166 Poisson’s ratio, 415 Porosity, 251 Power loss, 103, 109, 208, 210, 227 Pressure angle Pressure lubrication system, 107 Profile involute, 161, 184, 196 working, 160–161 Profile modification, 170, 173, 196, 239 Pure shear, 386 Q Quantity of oil, 199, 205 R Radial ball bearing, assembling, 109 Radial bearings axial play, 117 radial clearance, 117 Radial force Radial misalignment, effect on shaft, bearing loads, 330 Radial sliding bearing, 197 Radius of curvature, 113, 161, 168–169, 174 Ramberg-Osgood equation, 379 Ratio contact, 161, 163, 165–166, 194–196 gear, 76, 163, 179–180, 202, 417 Real material strength, 395–396 Reliability Removable shaft shoulders, 49 Residual stresses, 34–39, 50, 111, 361, 364, 388 Resilience, 44, 63–64, 133–134 Resilient coupling, 292, 336–342 Resonance vibration, 45 Reversed bending, loss of residual stress from, 39 Ribbed plate, strength calculations, 413–414 Rigid connections damage to joint surfaces, movements in, 11–20 bolted connections, 14–19 eccentrically loaded bolted connection, deformations, 19 fretting, strength-damaging effect, 20 interference-fit connection, self-dismantling under bending load, 14 interference-fit connection slippage, 13 interference-fit connections, 11–14 mating surfaces, slip area, damage to, 19–20 tightened bolt connection, forces in, 16 seals, 255–262 movable joints, sealing, 262–275 Rigid couplings, 334–336 Rigidity Rim center of gear, connections, 225 gear, 170, 218, 225, 230, 232, 238 Roller bearings, 46, 55–56, 104, 106–107, 109–114, 116–123, 125, 129–130, 132, 134–137, 158, 197–198, 255, 270, 339, 418 Rolling bearings, 43–44, 47, 56, 95, 107–138, 158, 201, 245, 271, 275, 333 bearing seats, fits for, 123–131 choice, arrangement of supports, 121–123 design, 108–111, 115–121 elastic deformation, under load, 133–135 failures, 111–115 lubrication, 137–138 with raceways on parts of mechanism, 135–137 stress, 111–115 surfaces adjoined to, requirements, 131–133 types, 108 Root fillet, 169, 240 Round keys, 92, 238 Round pins, shaft-to-hub connections, 92 S Safety factor Seals, 101, 115, 173, 203, 206, 255–275 combined, 262, 274 contact, 262, 264, 275 labyrinth, 206, 269, 274432 Machine Elements: Life and Design lip-type, 269–271 mechanical, 264, 272–275 noncontact, 262–264 O-ring, 268 piston ring, 264–268, 275 rigid connections, 255–262 movable joints, sealing, 262–275 Section modulus, 46, 411, 413, 415 Seizure, 19, 68, 137, 143, 154, 294, 302 Self-aligning bearings, 151 Self-aligning thrust bearings, 152 Self-alignment, 142, 152, 197, 219, 272–273, 311 Self-dismantling, 14, 75 Self-locking nuts, 300, 302 Self-made roller bearings, 136 Sensitivity, 18, 31, 109, 117, 190, 303, 393, 404 Serensen’s fatigue line, 384 Serrated lock washer, 300–301 Service life, 2, 101, 107, 109, 112, 123, 127, 129–131, 173–180, 217, 219, 239, 265, 270, 321, 339, 349, 356, 358, 364, 375–376, 398 Shaft, gear, connection, 216 Shaft alignment, 329–334 Shaft connections, 329–352 gear couplings, 342–352 resilient couplings, 336–342 rigid couplings, 334–336 shaft alignment, 329–334 Shaft couplings, 334–352 Shaft deflection, 58, 151 Shaft design, 46 Shaft dimensions, 53 Shaft journal, 56, 69, 104, 107, 141, 143–147, 149, 153, 236 Shaft keyway, tension stress, shaft-to-hub connections, 87 Shaft loading layout, 55 Shaft misalignment coupling serviceability, 338 from displacement in bearings, 105 Shaft-mounted gear motor, 335 Shaft seals, 257, 275 Shaft shoulders, 47, 49, 51, 131–133, 146, 152 Shaft-to-hub connections, 67–102 comparisons, 67–71 double-reduction gear, intermediate shaft, 76 interference-fit connections, 67–69, 71–79 design, 77–79 easily disassembled, 69 total slippage calculation, 71–77 interference-fit main dimensions, 73 key displacement, 85 key joints, 69–70 design, strength calculation, 79–93 keyed hub, stress in, 88–89 keyway deformation under load, 88 keyway end, stress concentration, 87 load distribution, 85 loose spline joint lubrication, 101 parameters, calculated KJs, 89 round pins, 92 shaft keyway, tension stress, 87 spline connection centering, additional surfaces, 94 spline joints, load distribution, 97 spline shapes, 94 splined joints, 70–71, 93–102 bearing stresses in, 100–101 loaded with torque, radial force, 97–100 loaded with torque only, 94–97 thin-walled parts, key joints, 92 toothed rim dissymmetry, spline connection influence, 100 tractor gear box, intermediate shaft, 95 Shaft with gear, 215–217 Shafts, 43–65 bearings, load distribution between, 57 bending moment applied between bearings, angular deformation, 59 deformation analysis, 58–65 design elements, 46–53 escalator main drive, 62 escalator main drive shaft with pinion, 63 gear output shaft, 46 gear pump, gears, 55 hollow shaft, ball bearing, locknut, spline, 51 hollow shaft design, 52 hollow shafts, 53–54 loading layout, for strength analysis, 54–58 overhung bending moment, angular deformation, 60 overhung radial force, angular deformation, 59 press fit on shaft fatigue strength, decreasing detrimental effect, 52 radial force applied between bearings, angular deformation, 58 removable shaft shoulders, 49 shaft loading layout, 55 shouldered shafts, lines of forces, 48 size selection, 43–46 splined shafts, 54 tilt in bearings, 56 Shapes, gears, 217 Shear modulus, 12, 323, 325 Shear stress, 9, 46, 79, 81, 83, 86, 90–91, 114, 135–136, 172, 309, 316, 361–364, 368, 370, 372, 376, 385–386, 399 Shot peening, 20, 37–38, 53 residual stress distribution after, 37 Shouldered shafts, lines of forces, 48 Shrink-fitted rim, 228–229, 235 Simplified analytical models, 412–413, 418 Sines’ criterion, 373 Size factor, 185, 357, 388, 390 Size selection, shafts, 43–46 Sleeve coupling, 334 Sliding (plane, sleeve) bearings, 138–158, 197 design, 144–151 lubricated surface friction, 138–140 materials, 141–144 oil supply to, 153–158 radial, 144–149 against rotation, axial displacement fixation, 145 surfaces connected with, 151–153Index 433 thrust, 149–151 types, 140–141 Sliding thrust bearing, with tapered working surface, 150 Sliding velocity (speed), 109, 138, 140, 153, 164, 172–173, 183, 194, 270, 352 Slip plane, 22–24, 376 Slippage calculation, interference-fit connections, shaft-to-hub connections, 71–77 friction coefficient, 74–77 surface pressure, 72–74 Slope angle, 60, 63, 65, 357, 384, 412 Spacing of bolts, 259 Spalling, 172 Spherical bearing, 106 Splash lubrication, 107, 201 Spline connection centering, additional surfaces, shaft-to-hub connections, 94 Spline joints, load distribution, shaft-to-hub connections, 97 Spline shapes, shaft-to-hub connections, 94 Splined connection, 93 Splined joints, 67, 70–71, 93–102 Splined shafts, 54 Split (cotter) pins, 300, 302 Split through axes of shafts, 248–251 lifting elements, 251 mounting feet, 250–251 Spring lock washers, 300–302 Spur gears forces, 167–169 geometry, 162 teeth, helical teeth, contact lines, 167 Static load strength at, 259–363 Static strength Steels Straight bar, strain distribution, 26 Straight roller bearing, 106, 110, 113, 116–118, 120–121, 134–136, 418 Strain, elastic, 377 Strain analysis, 5, 241 Strain hardening, 361, 379–380 Strain method, 363, 376–377, 388–395 Strain pattern, 32 Strength bending calculation calculations, 397–419 beam supports, 408 cantilever beam, 407 finite element method, 410 displacements within single element, distribution, 405 external loads, estimation, 397 finite element method, inappropriate use, errors, 405–416 boundary condition interpretation, 409–413 computer program, 412 deformations, 416 design principles, precision, 405–407 model design for, 407–409 simplified analytical models, 412–416 forces applied to part, determination, 398–403 human error, 416–419 arithmetic, 416–417 units, 417–418 lifting drum, with driving shaft, 398 loading types, 401 ribbed plate, 413–414 safety factors, 404–405 stresses, characteristics, 397–404 stresses in part, estimation, 403–404 tensioned bar, distribution of load, strain, 406 two-support beam, 411 fatigue hub, 90–91 metal, 21–24, 357–396 bending loads, bars subjected to, stress distribution, 387 comparative calculations, 390–395 cyclic stress-strain curve construction, 381 fatigue life (strain method), 376–386 fatigue limit vs. mean stress, Goodman diagram, 367 fatigue strength (stress method), 363–374 hardness, steel mechanical properties, 362 hysteresis loops, cyclic deformation transition period, 380 limited fatigue life, irregular loading (stress method), 374–376 machine element strength, 386–390 maximal stress, vs. mean stress, Serensen diagram, 370 monotonic, cyclic stress-strain curves, differences, 382 real material strength, 395–396 rotating-bending endurance test machine, 366 shaft with fillet, 393 static load, strength at, 259–363 strain-life curves, 383 stress-strain diagram, 360 stress variation with time, 365 stresses, frequencies, spectrum, 375 tensile test specimen, 360434 Machine Elements: Life and Design static tensile thread, 81 ultimate, 359, 377 yield, 143, 380–381 Stress admissible, 86, 356–359, 364, 387, 389, 391–392, 394–395, 404 alternating, 366 amplitude, 176 bearing, 86, 92–93, 95–96, 100–101, 296 bending calculation, 324 compressive, 15, 20, 35–39, 50, 53, 112, 172, 184–185, 227 contact, 100, 110, 112, 117, 129, 168–169, 173–174, 176, 179, 183, 193 engineering, 377–378 equivalent Hertzian, 114, 135, 168, 171, 174–175, 177 internal, 24, 31, 37, 246–247, 332 maximal, mean, 31, 90–91, 317, 364, 366–367, 369–371, 373, 385 minimal, 366 shear tension Von-Mises, 88–89 yield, 24, 31–32, 34, 39, 53, 82, 86, 144–145, 361, 364 Stress concentration Stress concentration factor (SCF), 29–31, 49, 52, 54, 86, 90, 94, 184–186, 357, 389, 392–393 Stress method, 363–364, 374, 376, 388–395 Stress pattern, 21–39, 174, 194, 409, 411 bending deformation, straight beam, 25 bending stresses, T-beam, 37 broken sections, 26 burnishing shafts, roller shapes, 38 cold rolling, residual stress distribution after, 37 crystal cell, 22 crystal lattice, 22 imperfections, 22 crystals, in metal structure, 23 dislocation, movement under load, 22 elastic range deformation beam, 33 deformations in, 24–31 elasto-plastic deformation, parts, 32–36 elasto-plastic deformation effectiveness, 34 elasto-plastic range deformation beam, 33 torsional deformation, 35 filleted bar, strain distribution, 28 grains in metal structure, 23 metal strength, 21–24 metal structure, 21–24 notched strip in tension, stress concentration, 30 plane sections, 26 reversed bending, loss of residual stress from, 39 shot peening, residual stress distribution after, 37 straight bar, strain distribution, 26 stress-strain diagrams, 32 surface plastic deformation, 36–39 thin-walled beams, deformation of, 25 Stress raiser, 29–31, 51, 78, 169, 318, 357, 388–389, 392–393 Stress release, 31 Stress-strain diagram, 32, 360, 377 Stresses, 397–404 contact (Hertzian), 100, 110, 112, 114, 117, 129, 135, 168–169, 171, 173–177, 179, 183, 193 Structural change, 1, 24, 242 Stud-bolts, 312 Supports, 103–158 axial fixation, shafts, 104 planet wheel bearings, 106 shaft misalignment, from displacement in bearings, 105 types, 103–108 Surface finish, 256, 387–388, 390 strenght, 387 Surface hardening, 20, 44, 53, 132, 170, 228, 232, 239–240 Surface layer Surface plastic deformation, 36–39, 53, 190, 295 Surface pressure Surface quality factor, 90 T T ab washers, 206, 296–297, 299–302 Tapered connection, 67–68, 73, 80 Tapered roller bearing, 118–119, 122, 129–130, 132, 134, 255, 270 Tapered roller bearings, 119, 130 Teeth, gears bending strength, 181–187 contact strength, 174–181 stresses in, 167–169 Teeth machining tools, clearing space, 237 Temperature limits, 111 Tensile strength, 43–45, 65, 78, 80, 89, 215, 244, 267, 297, 317, 359–360, 363, 384, 387, 390, 396 Tension stress, 7, 13, 36–38, 81–83, 86, 88, 114, 185, 277–278, 301, 304, 412–413, 416 Tensioned bar, distribution of load, strain, strength calculations, 406 Test specimen, 360 Thermal expansion, 103, 129, 242, 409Index 435 Thin-walled beams, deformation of, 25 Thread strength, 81 Tightened bolted connections under centrically applied load, 16–18 under eccentrically applied load, 18–19 forces in, 16 Tightening bolts, 292–302 accuracy, 292–295 stability of tightening, 295–299 fasteners, plastic deformation, 295–299 locking of fasteners, 300–302 self-loosening, bolts, 295 Tightening force Tightening torque, 80–81, 83–84, 292–295, 301, 306, 313 Tilt in bearings, 56 Timoshenko’s correction, 407 Tip relief, 182 Tooth active profile, 184 addendum, 173 bending strength, 181 breakage, 170, 173, 218 design, 239 engagement, 162 failure, gears, 170–173 fillet, 71 generation process, 183 load, 167 misalignment, load distribution, contact line, 188 root, 161, 164, 183–185, 194, 238–239 root shape, grinding influence, 184 shape, 161, 173, 183 spaces, oil drain, 199 thickness, 104, 186, 346–348 Toothed rim dissymmetry, spline connection influence, shaft-to-hub connections, 100 Tractor gear box, intermediate shaft, shaft-to-hub connections, 95 Tresca criterion, 386 True strain, 378 True stress, 377–378, 382 Twisted rubber element, shear stress distribution, 341 Two-pair engagement, 181 Two-row spherical roller bearing, 110 Two-support beam, strength calculations, 411 Types of gears, 216 Types of supports, 103–108 U Ultimate strength, ultimate stress, 31, 359, 377 Uncertainty, 31, 56, 300–301, 356 Uneven load distribution, gear sensitivity, 190 Unit connections, 321–353 housing connections, 321–329 shaft connections, 329–352 gear couplings, 342–352 resilient couplings, 336–342 rigid couplings, 334–336 shaft alignment, 329–334 Units Units of machines, 41–353 V V acancy, 21 Velocity, sliding, 109, 138, 140, 153, 164, 172–173, 183, 194, 270, 352 Vertical output shaft, two-stage bevel-planetary gear, 207 Vibration Viscosity Von-Mises stress, 88–89 W W arpage, 172, 215, 222, 227, 237, 247 Waviness, 72, 107, 172, 174 Wear Wear resistance, 70, 101, 132, 143, 243, 245, 271–272 Weight, shaft alignment, working forces, 332 Welded gear, 225 Welding, 5, 127, 142–143, 153, 172, 224–225, 244, 247 Width, face Working load, tightening force of bolt, correlation, 302–313 bending load, 311–313 load normal to joint surface, 302–305 shear load, 305–311 Working profile, 160–161 Working surface Worm gear, 208, 213, 240–241, 253 Y Y ield point, yield stress, Yield strength, 143, 380–381
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Machine Elements Life and Design رابط مباشر لتنزيل كتاب Machine Elements Life and Design
عدل سابقا من قبل Admin في الثلاثاء 01 سبتمبر 2020, 10:56 pm عدل 1 مرات |
|