rambomenaa كبير مهندسين
عدد المساهمات : 2041 التقييم : 3379 تاريخ التسجيل : 21/01/2012 العمر : 47 الدولة : مصر العمل : مدير الصيانة بشركة تصنيع ورق الجامعة : حلوان
| موضوع: كتاب Internal Combustion Engine Handbook الجمعة 19 أكتوبر 2012, 4:24 pm | |
|
تذكير بمساهمة فاتح الموضوع :اخوانى فى الله احضرت لكم اليوم كتاب
Internal Combustion Engine Handbook Basics, Components, Systems, and Perspectives
Contents 1 Historical Review 1 2 Definition and Classification of Reciprocating Piston Engines 9 2.1 Definitions 9 2.2 Potentials for Classification 10 2.2.1 Combustion Processes 10 2.2.2 Fuel 10 2.2.3 Working Cycles 11 2.2.4 Mixture Generation 11 2.2.5 Gas Exchange Control 11 2.2.6 Supercharging 11 2.2.7 Configuration 11 2.2.8 Ignition 12 2.2.9 Cooling 12 2.2.10 Load Adjustment 13 2.2.11 Applications 13 2.2.12 Speed and Output Graduations 14 3 Characteristics 15 3.1 Piston Displacement and Bore-to-Stroke Ratio 15 3.2 Compression Ratio 16 3.3 Rotational Speed and Piston Speed 17 3.4 Torque and Power 18 3.5 Fuel Consumption 19 3.6 Gas Work and Mean Pressure 20 3.7 Efficiency 22 3.8 Air Throughput and Cylinder Charge 23 3.9 Air-Fuel Ratio 24 4 Maps 27 4.1 Consumption Maps 28 4.2 Emission Maps 29 4.3 Ignition and Injection Maps 32 4.4 Exhaust Gas Temperature Maps 33 5 Thermodynamic Fundamentals 35 5.1 Cyclical Processes 35 5.2 Comparative Processes 36 5.2.1 Simple Model Processes 36 5.2.1.1 Constant Volume Cycle 37 5.2.1.2 Constant Pressure Cycle 37 5.2.1.3 Seiliger Process 37 5.2.1.4 Comparison of the Cyclical Processes 39 5.2.2 Energy Losses 39 5.3 Open Comparative Processes 39 5.3.1 Work Cycle of the Perfect Engine 39 5.3.1.1 Elements of Calculation 40 5.3.1.2 Work of the Perfect Engine 41 5.3.1.3 Effectiveness of the Perfect Engine 41 5.3.1.4 Exergy Loss in the Perfect Cycle 42 5.3.2 Approximation of the Real Working Cycle 42 5.3.2.1 Models to Determine Combustion Behavior 42 5.4 Efficiency 44 5.5 Energy Balance in the Engine 45 5.5.1 Balance Equation 45 6 Crank Gears 47 6.1 Crankshaft Drive 47 6.1.1 Design and Function 47XXVI Contents 6.1.3 Tangential Force Characteristic and Average Tangential Force 56 6.1.4 Inertial Forces 59 6.1.4.1 Inertial Forces in Single-Cylinder Crank Gears 59 6.1.4.2 Inertial Forces in a Two-Cylinder V Crank Gear 60 6.1.4.3 Inertial Forces and Inertial Torque in Multicylinder Crank Gears 62 6.1.4.4 Example 63 6.1.5 Mass Balancing 65 6.1.5.1 Balancing Single-Cylinder Crank Gears 65 6.1.5.2 Balancing Multicylinder Crank Gears 66 6.1.6 Internal Torque 68 6.1.7 Throw and Firing Sequences 69 6.2 Rotational Oscillations 70 6.2.1 Fundamentals 70 6.2.2 Reduction of the Machine System 71 6.2.3 Natural Frequencies and Modes of Natural Vibration 71 6.2.4 Exciter Forces And Exciter Work 73 6.2.5 Measures to Reduce Crankshaft Excursions 74 6.2.6 Two-Mass Flywheels 75 7 Engine Components 79 7.1 Pistons / Wristpins / Wristpin Circlips 79 7.1.1 Pistons 79 7.1.1.1 Requirements and Functions 79 7.1.1.2 Engineering Designs 79 7.1.1.3 Offsetting the Boss Bore 81 7.1.1.4 Installation Play and Running Play 81 7.1.1.5 Piston Masses 82 7.1.1.6 Operating Temperatures 83 7.1.1.7 Piston Cooling 84 7.1.1.8 Piston Designs 84 7.1.1.9 Piston Manufacture 88 7.1.1.10 Protection of Running Surfaces/Surfaces 89 7.1.1.11 Piston Materials 90 7.1.2 Wristpins 92 7.1.2.1 Functions 92 7.1.2.2 Designs 92 7.1.2.3 Requirements and Dimensioning 92 7.1.2.4 Materials 92 7.1.3 Wristpin Snap Rings 92 7.2 Connecting Rod 93 7.2.1 Design of the Connecting Rod 94 7.2.2 Loading 94 7.2.3 Conrod Bolts 95 7.2.4 Design 96 7.2.4.1 Conrod Ratio 97 7.2.5 Conrod Manufacture 97 7.2.5.1 Manufacturing the Blank 97 7.2.5.2 Machining 98 7.2.6 Conrod Materials 98 7.3 Piston Rings 100 7.3.1 Embodiments 100 7.3.1.1 Compression Rings 100 7.3.1.2 Oil Control Rings 101 7.3.2 Ring Combinations 102 7.3.3 Characterizing Features 103 7.3.4 Manufacturing 104 7.3.4.1 Shaping 104 7.3.4.2 Wear-Protection Layers 104 7.3.4.3 Surface Treatments 105 7.3.4.4 Contact Surface Shapes for Piston Rings 106 7.3.4.5 Materials for Piston Rings 106 7.3.5 Loading, Damage, Wear, Friction 106 7.4 Engine Block 107 7.4.1 Assignments and Functions 1077.4.2 Engine Block Design 110 7.4.2.1 Types of Engine Blocks 110 7.4.3 Optimizing Acoustic Properties 114 7.4.4 Minimizing Engine Block Mass 115 7.4.5 Casting Processes for Engine Blocks 117 7.4.5.1 Die Casting 117 7.4.5.2 Die Casting 117 7.4.5.3 Lost-Foam Process 117 7.4.5.4 Sand Casting 118 7.4.5.5 Squeeze Casting 118 7.5 Cylinders 118 7.5.1 Cylinder Designs 118 7.5.1.1 Monolithic Design 118 7.5.1.2 Insertion Technique 119 7.5.1.3 Bonding Technology 121 7.5.2 Machining Cylinder Running Surfaces 121 7.5.2.1 Machining Processes 122 7.5.3 Cylinder Cooling 122 7.5.3.1 Water Cooling 122 7.5.3.2 Air Cooling 124 7.6 Oil Pan 124 7.6.1 Oil Pan Design 124 7.7 Crankcase Venting 125 7.7.1 Conventional Crankcase Ventilation 125 7.7.2 Positive Crankcase Ventilation (PVC) System 126 7.7.3 Vacuum-Regulated Crankcase Ventilation 126 7.8 Cylinder Head 126 7.8.1 Basic Design for the Cylinder Head 127 7.8.1.1 Layout of the Basic Geometry 127 7.8.1.2 Determining the Manufacturing Processes 128 7.8.1.3 Layout of the Gas Exchange Components 128 7.8.1.4 Variable Valve Control 128 7.8.2 Cylinder Head Engineering 128 7.8.2.1 Laying out the Rough Dimensions 128 7.8.2.2 Combustion Chamber and Port Design 129 7.8.2.3 Valve Train Design 131 7.8.2.4 Cooling Concepts 132 7.8.2.5 Lubricating Oil Management 132 7.8.2.6 Engineering Design Details 133 7.8.2.7 Engineering in Construction Steps 133 7.8.2.8 Using CAD in Engineering 134 7.8.2.9 Computer-Assisted Design 134 7.8.3 Casting Process 137 7.8.3.1 Sand Casting 137 7.8.3.2 Die Casting 138 7.8.3.3 Lost-Foam Process (Full Mold Process) 139 7.8.3.4 Pressure Die-Casting Process 140 7.8.4 Model and Mold Construction 141 7.8.5 Machining and Quality Assurance 142 7.8.5.1 Mass-Production Manufacture 142 7.8.5.2 Prototype Manufacturing 142 7.8.5.3 Quality Assurance for Cylinder Heads 142 7.8.6 Shapes Implemented for Cylinder Heads 143 7.8.6.1 Cylinder Heads for Gasoline Engines 143 7.8.6.2 Cylinder Heads for Diesel Engines 145 7.8.6.3 Special Cylinder Head Designs 146 7.8.7 Perspectives in Cylinder Head Technology 148 7.9 Crankshafts 148 7.9.1 Function in the Vehicle 148 7.9.1.1 The Crankshaft in the Reciprocating Piston Engine 149 7.9.1.2 Requirements 149 7.9.2 Manufacturing and Properties 149 7.9.2.1 Process and Materials 149 7.9.2.2 Material 6.1.2 Forces Acting on the Crankshaft Drive 517.9.3 Lightweight Engineering and Future Trends 151 7.9.3.1 Hollow Cast Crankshafts 151 7.9.3.2 ADI Austempered Ductile Iron 151 7.9.3.3 Increasing Component Strength through Postcasting Treatment 151 7.10 Valve Train Components 152 7.10.1 Valve Train 152 7.10.1.1 Direct Drive Valve Trains 152 7.10.1.2 Indirect Drive Valve Trains 153 7.10.1.3 Hydraulic Valve Play Compensation 156 7.10.1.4 Mechanical Valve Play Adjustment 156 7.10.1.5 Future Trends 157 7.10.2 Belt Tensioning Systems, Idler and Deflection Pulleys 161 7.10.2.1 Introduction 161 7.10.2.2 Automatic Belt Tensioning System for Synchronous Belt Drives 161 7.10.2.3 Idler and Deflection Pulleys for Synchronous Belt Drives 162 7.10.2.4 Prospects for the Future 162 7.10.3 Chain Tensioning and Guide Systems 162 7.10.3.1 Introduction 162 7.10.3.2 Chain Tensioning Element 163 7.10.3.3 Tensioning and Guide Rails 164 7.10.3.4 Sprockets 164 7.11 Valves 165 7.11.1 Functions and Explanation of Terms and Concepts 165 7.11.2 Types of Valves and Manufacturing Techniques 165 7.11.2.1 Monometallic Valves 165 7.11.2.2 Bimetallic Valves 165 7.11.2.3 Hollow Valve 166 7.11.3 Embodiments 167 7.11.3.1 Valve Head 167 7.11.3.2 Valve Seat 167 7.11.3.3 Valve Stem 167 7.11.4 Valve Materials 168 7.11.4.1 Heat Treatment 169 7.11.4.2 Surface Finishing 169 7.11.5 Special Valve Designs 169 7.11.5.1 Exhaust Control Valves 169 7.11.6 Valve Keepers 170 7.11.6.1 Tasks and Functioning 170 7.11.6.2 Manufacturing Techniques 170 7.11.7 Valve Rotation Devices 170 7.11.7.1 Function 170 7.11.7.2 Designs and Functioning 171 7.12 Valve Springs 171 7.13 Valve Seat Inserts 174 7.13.1 Introduction 174 7.13.2 Demands Made on Valve Seat Inserts 175 7.13.2.1 Loading on Valve Seat Inserts 175 7.13.2.2 Materials and Their Properties 177 7.13.2.3 Geometry and Tolerances 179 7.13.2.4 Cylinder Head Geometry and Assembly 181 7.14 Valve Guides .182 7.14.1 Requirements for Valve Guides 182 7.14.1.1 Loading on Valve Guides 182 7.14.2 Materials and Properties 184 7.14.2.1 Materials 184 7.14.2.2 Materials Properties 185 7.14.3 Geometry of the Valve Guide 187 7.14.4 Installing in the Cylinder Head 189 7.15 Oil Pump 189 7.15.1 Overview of Oil Pump Systems 189 7.15.1.1 Internal Gear Pump 189 7.15.1.2 External Gear Pump 191 7.15.1.3 Vane Pumps 191 7.15.1.4 Benefits and Drawbacks of Individual Pump Systems 191XXIX 7.15.2 Regulation Principles 192 7.15.2.1 Direct Regulation 192 7.15.2.2 Indirect Regulation 192 7.15.2.3 Regulation in the Clean Oil Stream 193 7.15.2.4 Two-Stage or Multistage Regulation 193 7.15.2.5 Two-Stage Regulation Pump 194 7.15.2.6 Regulated Internal Gear Pump 194 7.15.2.7 Regulated External Gear Pump 194 7.15.2.8 Regulated Vane Pump 194 7.15.3 Engineering Basics 194 7.15.3.1 Crankshaft Pump 195 7.15.3.2 Sump Pump 196 7.15.3.3 Key Oil Pump Values Taken from Practice 197 7.15.3.4 Comparison between Crankshaft and Sump Pumps 197 7.15.3.5 Cavitation and Noise Emissions 198 7.15.4 Calculation 201 7.15.4.1 Numerical Simulation of Flow—CFD 201 7.15.4.2 One-Dimensional Simulation of Flow Grids 201 7.16 Camshaft 201 7.16.1 Camshaft Functions 202 7.16.2 Valve Train Configurations 202 7.16.3 Structure of a Camshaft 203 7.16.4 Technologies and Materials 203 7.16.4.1 Cast Camshaft 204 7.16.4.2 Assembled Camshaft 204 7.16.4.3 Steel Camshaft 205 7.16.4.4 Materials Properties and Recommended Matches 206 7.16.5 Reduction of Mass. 206 7.16.6 Factors Influencing Camshaft Loading 207 7.16.7 Designing Cam Profiles 207 7.16.8 Kinematics Calculation 208 7.16.9 Dynamics Calculations 210 7.16.10 Camshaft Shifter Systems 210 7.17 Chain Drive 213 7.17.1 Chain Designs 213 7.17.2 Typical Chain Values 214 7.17.3 Sprockets 215 7.17.4 Chain Guide Elements 215 7.18 Belt Drives 216 7.18.1 Belt Drives Used to Drive Camshafts 217 7.18.1.1 Synchronous Belt Drive 217 7.18.1.2 Synchronous Belt Drive System 219 7.18.1.3 Synchronous Belt Dynamics 221 7.18.1.4 Application Examples 221 7.18.2 Toothed V-Belt Drive to Power Auxiliary Units 221 7.18.2.1 Micro-V® Drive Belts 222 7.18.2.2 Auxiliary Component Drive System 223 7.18.2.3 Application Examples 224 7.19 Bearings in Internal Combustion Engines 224 7.19.1 Fundamentals 224 7.19.1.1 Radial Bearing 224 7.19.1.2 Axial Bearing 225 7.19.2 Calculating and Dimensioning Engine Bearings 226 7.19.2.1 Loading 226 7.19.2.2 Bearing Journal Displacement Path 227 7.19.2.3 Elastohydrodynamic Calculation 227 7.19.2.4 Major Dimensions: Diameter, Width 229 7.19.2.5 Oil Feed Geometry 229 7.19.2.6 Precision Dimensions 229 7.19.3 Bearing Materials 230 7.19.3.1 Bearing Metals 231 7.19.3.2 Overlays 233 7.19.4 Types of Bearings—Structure, Load-Bearing Capacity, Use 2357.19.4.2 Two-Material Bearing 236 7.19.4.3 Three-Material Bearing 237 7.19.4.4 Miba™ Grooved Bearings 237 7.19.4.5 Sputter Bearing 237 7.19.5 Bearing Failure 237 7.19.5.1 Progress of Damage 237 7.19.5.2 Types of Bearing Damage 239 7.19.6 Prospects for the Future 240 7.20 Intake Systems 240 7.20.1 Thermodynamics in Air Intake Systems 240 7.20.2 Acoustics 243 7.21 Sealing Systems 247 7.21.1 Cylinder Head Sealing Systems 247 7.21.1.1 Ferrolastic Elastomer Head Gaskets 247 7.21.1.2 Metal-Elastomer Head Gaskets 248 7.21.1.3 Metaloflex® Layered Metal Head Gaskets 248 7.21.1.4 Prospects for the Future 251 7.21.2 Special Seals 251 7.21.2.1 Functional Description of the Flat Seal 251 7.21.2.2 Elastomer Seals 251 7.21.2.3 Metal-Elastomer Seals 252 7.21.2.4 Special Metaloseal® Gaskets 253 7.21.2.5 Prospects for the Future 255 7.21.3 Elastomer Sealing Systems 255 7.21.3.1 Elastomer Seals 255 7.21.3.2 Metal-Elastomer Gaskets 256 7.21.3.3 Modules 257 7.21.4 Development Methods 258 7.21.4.1 Finite Element Analysis 258 7.21.4.2 Simulation in the Laboratory—Testing Functions and Service L i f e . . . . . 2 6 0 7.22 Threaded Connectors at the Engine 262 7.22.1 High-Strength Threaded Connectors 262 7.22.2 Quality Requirements 262 7.22.3 Threaded Connectors 263 7.22.3.1 Head Bolt 263 7.22.3.2 Main Bearing Cap Bolt 264 7.22.3.3 Conrod Bolt 264 7.22.3.4 Belt Pulley Bolt 266 7.22.3.5 Flywheel Bolt 267 7.22.3.6 Camshaft Bearing Cap Bolt 267 7.22.3.7 Oil Pan Attaching Screws 267 7.22.4 Threaded Connections in Magnesium Components 268 7.22.5 Screw Tightening Process 268 7.22.5.1 Torque-Controlled Tightening 268 7.22.5.2 Rotation-Angle Controlled Tightening 269 7.22.5.3 Tightening under Yield Point Control 270 7.23 Exhaust Manifold 270 7.23.1 Manifold Development Process 272 7.23.2 Manifolds as Individual Components 272 7.23.2.1 Cast Manifold 272 7.23.2.2 Tube Manifold 273 7.23.2.3 Single-Wall, Half-Shell Manifold 273 7.23.2.4 Manifolds with Air Gap Insulation (AGI Manifold) 274 7.23.3 The Manifold as a Submodule 274 7.23.3.1 Integrated Manifold and Catalytic Converter 274 7.23.3.2 Integrated Manifold and Turbochanger 274 7.23.4 Manifold Components 275 7.24 Control Mechanisms for Two-Stroke Cycle Engines 275 8 Lubrication 279 8.1 Tribological Principles 279 8.1.1 Friction 279 8.1.2 Wear 280 8.2 Lubrication System 281 7.19.4.1 Solid Bearings 2358.2.1 Lubrication 281 8.2.2 Components and Function 281 9 Friction 289 9.1 Parameters 289 9.2 Friction States 289 9.3 Methods of Measuring Friction 290 9.4 Influence of the Operating State and the Boundary Conditions 291 9.4.1 Run-in State of the Internal Combustion Engine 291 9.4.2 Oil Viscosity 291 9.4.3 Temperature Influence 292 9.4.4 Engine Operating Point 292 9.5 Influence of Friction on the Fuel Consumption 293 9.6 Friction Behavior of Internal Combustion Engines Already Built 294 9.6.1 Breakdown of Friction 294 9.6.2 Engine Power Unit 295 9.6.2.1 Crankshaft 295 9.6.2.2 Conrod Bearing and Piston Group 296 9.6.2.3 Mass Balancing 297 9.6.3 Valve Timing (Valve Train and Timing Gear) 297 9.6.4 Auxiliaries . 297 9.6.4.1 Oil Pump 299 9.6.4.2 Coolant Pump 300 9.6.4.3 Alternator 300 9.6.4.4 Fuel Injection Pump 301 9.6.4.5 Air Conditioning Compressor 301 9.6.4.6 Radiator Fan . 302 9.6.4.7 Power Steering Pump 302 9.6.4.8 Vacuum Pump 302 10 Charge Cycle 305 10.1 Gas Exchange Devices in Four-Stroke Engines 305 10.1.1 Valve Gear Designs 306 10.1.2 Components of the Valve Gear 307 10.1.3 Kinematics and Dynamics of the Valve Gear 312 10.1.4 Design of Gas Exchange Devices in Four-Stroke Engines 314 10.2 Calculating Charge Cycles 325 10.3 The Charge Cycle in Two-Stroke Engines 328 10.3.1 Scavenging 328 10.3.2 Gas Exchange Organs 330 10.3.3 Scavenging Air Supply 331 10.4 Variable Valve Actuation 333 10.4.1 Camshaft Timing Devices 335 10.4.1.1 Overview of the Functional Principles of Camshaft Timing D e v i c e s . . . . . 3 3 5 10.4.1.2 The Effects of Camshaft Timing Devices on Engines 337 10.4.1.3 Camshaft Adjusters for Production Engines 338 10.4.1.4 Reflections about Camshaft Adjusters 341 10.4.2 Systems with Stepped Variation of the Valve Stroke or Opening Time 342 10.4.3 Infinitely Variable Valve Actuation 344 10.4.3.1 Mechanical Systems 344 10.4.3.2 Hydraulically Actuated Systems 344 10.4.3.3 Electromechanical Systems 345 10.5 Pulse Charges and Load Control of Reciprocating Piston Engines Using an Air Stroke Valve 346 10.5.1 Introduction 346 10.5.2 Design and Operation of the Air Stroke Valve 346 10.5.3 Options for Influencing the Charge Cycle 347 10.5.3.1 Dynamic Supercharging in Induction Engines (Pulse Charge) 347 10.5.3.2 Supporting and Recharging Supercharged Engines 347 10.5.3.3 Throttle-Free Load Control 348 10.5.3.4 EGR Control 348 10.5.3.5 Hot Charging 348 10.5.3.6 Cold Charging Supercharged Engines 349 10.5.3.7 Cylinder Shutoff 349 10.5.4 Prototype for Engine10.5.4.1 Parameters and Design 349 10.5.4.2 Implemented Prototype 349 10.5.5 Demonstration of Function in Single-Cylinder Engines 350 10.5.5.1 Increasing Air Expenditure by Dynamic Supercharging 350 10.5.5.2 Increasing Torque by Dynamic Supercharging 351 10.5.5.3 Required Air Stroke Valve Operating Times in Dynamic Supercharging..352 10.5.5.4 Hot Charging 353 10.5.6 Summary and Outlook 354 11 Supercharging of Internal Combustion Engine 355 11.1 Mechanical Supercharging 355 11.2 Exhaust Gas Turbocharging 356 11.3 Intercooling 358 11.4 Interaction of Engine and Compressor 359 11.4.1 Four-Stroke Engine in the Compressor Map 359 11.4.2 Mechanical Supercharging 361 11.4.3 Exhaust Gas Turbocharging 361 11.5 Dynamic Behavior 366 11.6 Additional Measures for Supercharged Internal Combustion Engines 370 11.6.1 SI Engines 370 11.6.2 Diesel Engines 370 12 Mixture Formation and Related Systems 373 12.1 Internal Mixture Formation 373 12.2 External Mixture Formation 373 12.3 Mixture Formation using Carburetors 373 12.3.1 Mode of Operation of the Carburetor 373 12.3.2 Designs 374 12.3.2.1 Number of Intake Air Ducts 374 12.3.2.2 Position of the Intake Air Duct 375 12.3.2.3 Designs for Special Applications 375 12.3.3 Important Auxiliary Systems on Carburetors 376 12.3.4 Electronically Controlled Carburetors 378 12.3.5 Constant Vacuum Carburetor 379 12.3.6 Operating Behavior 379 12.3.7 Lambda Closed-Loop Control 381 12.4 Mixture Formation by Means of Gasoline Injection 381 12.4.1 Intake Manifold Injection Systems 381 12.4.2 Systems for Direct Injection 382 12.4.2.1 Air-Supported Direct Injection 384 12.4.2.2 High-Pressure Injection 385 12.4.2.3 Injected Fuel Metering 389 12.5 Mixture Formation in Diesel Engines 390 12.5.1 Injection Systems—An Overview 391 12.5.2 Systems with Injection-Synchronous Pressure Generation 395 12.5.2.1 Individual Pump Systems with a Line 396 12.5.2.2 Inline Fuel Injection Pumps 396 12.5.2.3 Distributor Injection Pump 398 12.5.2.4 Pump Nozzle System 401 12.5.3 Systems with a Central Pressure Reservoir 401 12.5.3.1 High-Pressure Pump 402 12.5.3.2 Rail and Lines 404 12.5.3.3 Injectors 405 12.5.3.4 Injection Nozzle 407 12.5.3.5 Electronics 407 12.5.3.6 Developmental Trends 408 12.5.4 Injection Nozzles and Nozzle-Holder Assemblies 408 12.5.5 Adapting the Injection System to the Engine 412 13 Ignition 417 13.1 Spark-Ignition Engine 417 13.1.1 Introduction to Ignition 417 13.1.2 Requirements of the Ignition System 417 13.1.3 Minimum Ignition Energy 41713.1.4 Fundamentals of Spark Ignition 417 13.1.4.1 Phases of the Spark 417 13.1.4.2 Energy Transmission Efficiency 418 13.1.5 Coil Ignition System (Inductive) 418 13.1.6 Other Ignition Systems 420 13.1.7 Summary and Outlook 421 13.2 Spark Plugs 421 13.2.1 Demands on Spark Plugs 421 13.2.2 Design 421 13.2.3 Heat Range 422 13.2.4 Required Voltage for Ignition 423 13.2.5 Ignition Characteristic (and Mixture Ignition) 423 13.2.6 Wear 425 13.2.7 Application 426 13.3 Diesel Engines 426 13.3.1 Autoignition and Combustion 426 13.3.2 Diesel Engine Cold Starts 427 13.3.2.1 Important Influential Parameters 427 13.3.2.2 Start Evaluation Criteria 429 13.3.3 Components for Supporting Cold Starts 429 13.3.3.1 Glow Plug Systems 430 13.3.3.2 Heating Flange 432 13.3.4 Outlook 433 13.3.4.1 Combined Systems 433 13.3.4.2 Measurement of Ionic Current 433 13.3.4.3 Regulated Glow Plug Systems 434 14 Combustion 437 14.1 Principles 437 14.1.1 Fuels 437 14.1.2 Oxidation of Hydrocarbons 438 14.2 Combustion in SI Engines 440 14.2.1 Mixture Formation 440 14.2.1.1 Intake Manifold Injection 440 14.2.1.2 Direct Injection 440 14.2.2 Ignition 442 14.2.3 Combustion Process 443 14.2.3.1 Flame Propagation 443 14.2.3.2 Mean Pressure and Fuel Consumption 443 14.2.3.3 Cyclical Fluctuations 444 14.2.3.4 Engine Knock 444 14.3 Combustion in Diesel Engines 446 14.3.1 Mixture Formation 447 14.3.1.1 Phenomenology 447 14.3.1.2 Fuel Jet Propagation 448 14.3.2 Autoignition 449 14.3.3 Combustion Process 451 14.3.3.1 Phenomenological Description 451 14.3.3.2 Equivalent Combustion Curves 452 14.4 Heat Transfer 453 14.4.1 Heat Transfer Model 453 14.4.2 Determination of Heat Transfer Coefficients 454 15 Combustion Systems 457 15.1 Combustion Systems for Diesel Engines 457 15.1.1 Diesel Combustion 457 15.1.2 Diesel Four-Stroke Combustion Systems 462 15.1.2.1 Methods using Indirect Fuel Injection (IDI) 463 15.1.2.2 Direct Fuel Injection Method (DI) 465 15.1.2.3 Comparison of Combustion Systems 466 15.1.2.4 Special Methods and Features 468 15.2 Spark-Injection Engines 470 15.2.1 Combustion Processes in Port Fuel Injection (PFI) Engines 470 15.2.2 Combustion Process of Direct Injection Spark Ignition (DISI) Engines15.3 Two-Stroke Diesel Engines 485 15.4 Two-Stroke SI Engines 487 16 Electronics and Mechanics for Engine Management and Transmission Shift Control 491 16.1 Environmental Demands 491 16.2 Stand-Alone Products (Separate Devices) 492 16.3 Connecting Approaches 493 16.4 Integrated Products (MTM = Mechatronic Transmission Module) 494 16.5 Electronic Design, Structures, and Components 495 16.5.1 Basic Structure 495 16.5.2 Electronic Components 495 16.5.2.1 IC Knocking Input Filter Component 495 16.5.2.2 Driver Stage Component 495 16.5.2.3 Microcontroller 497 16.5.2.4 Voltage Regulator 497 16.6 Electronics in the Electronic Control Unit 498 16.6.1 General Description 498 16.6.2 Signal Conditioning 498 16.6.3 Signal Evaluation 500 16.6.4 Signal Output 500 16.6.5 Power Supply 500 16.6.6 CAN Bus Interface 500 16.6.7 Electronics for Transmission ECUs 500 16.7 Software Structures 501 16.7.1 Task of the Software In Controlling Engines 501 16.7.2 Demands on the Software 502 16.7.3 The Layer Approach to Software 502 16.7.4 The Software Development Process 503 16.8 Torque-Based Functional Structure for Engine Management 503 16.8.1 Model-Based Functions Using the Example of Intake Manifold Charging 506 16.9 Functions 508 16.9.1 λ Regulation 508 16.9.2 Antijerk Function 510 16.9.3 Throttle Valve Control 512 16.9.4 Knocking Control 513 16.9.5 "On-Board" Diagnosis (OBD) 514 16.9.5.1 Self-Diagnosis Tasks 516 16.9.5.2 Monitoring the Catalytic Converter 516 16.9.6 Safety Approaches 518 17 The Powertrain 521 17.1 Powertrain Architecture 521 17.2 The Motor-Vehicle's Longitudinal Dynamics 521 17.3 Transmission Types 522 17.4 Power Level and Signal Processing Level 524 17.5 Transmission Management 525 17.5.1 Functions 525 17.5.1.1 Overview 525 17.5.1.2 Driving or Gearshift Strategy 525 17.5.1.3 Automatic Transmissions with Planetary Gears and Torque C o n v e r t e r . . . 5 2 7 17.5.1.4 Automated Stick-Shift Transmissions 527 17.5.1.5 Continuously Variable Transmissions (CVT) 527 17.6 Integrated Powertrain Management (IPM®) 528 17.7 The Integrated Starter-Motor/Alternator (ISG) 529 17.7.1 ISG: A System Overview 529 17.7.1.1 Torque Structure in a Motor Vehicle 529 17.7.1.2 Starter-Motor/Alternator Structure 530 17.7.1.3 Description of the Starter-Motor/Alternator's Most Important Modes of Use 530 17.7.2 Converters (Powertrain Management and Voltage Converters) 530 17.7.2.1 Requirements Made on the Electronics from a System V i e w p o i n t . . . . . . . 5 3 0 17.7.2.2 Function Groups and Design Criteria 531 17.7.2.3 Cooling 531 17.7.2.4 Classification of the Converter's Power Electronics 532Contents XXXV 17.7.2.5 DC/DC Converters 532 17.7.3 Electrical Machine 533 17.7.3.1 Design Criteria 533 17.7.3.2 Simulation Tools 533 17.7.3.3 Thermal Simulation 533 17.7.3.4 Mechanical Strengths 534 17.7.3.5 Requirements Made on the Electrical Machine 534 17.7.4 Series Development 535 18 Sensors 537 18.1 Temperature Sensors 537 18.2 Knock Sensors 537 18.3 Exhaust Gas Sensors 538 18.3.1 Lambda Sensors 538 18.3.2 NOx Sensors 538 18.4 Pressure Sensors 539 18.4.1 Normal Pressure Sensors 539 18.4.1.1 Piezoresistive Measurement Principle 540 18.4.1.2 Capacitive Measurement Principle 540 18.4.2 Medium Pressure Sensors 540 18.4.3 High-Pressure Sensors 541 18.4.3.1 Technical Boundary Conditions 541 18.4.3.2 Signal Transmission 541 18.4.3.3 Measuring Precision 541 18.5 Air Mass Sensors 541 18.5.1 Comparison of Air Mass-Controlled and Intake Manifold Pressure-Controlled S y s t e m s . 5 4 2 18.5.2 Measuring Principles 542 18.5.3 Hot-Film Anemometer 542 18.5.4 Secondary Air Mass Sensors (SAF) 543 18.6 Speed Sensors 543 18.6.1 Passive Speed Sensors 543 18.6.2 Active Sensors 543 19 Actuators 545 19.1 Drives for Charge Controllers 545 19.1.1 Pneumatic Drives 545 19.1.2 Electric Drives 545 19.1.2.1 Stepping Motor 545 19.1.2.2 DC Motor 546 19.1.2.3 Torque Motor 546 19.2 Throttle Valve Actuators 546 19.2.1 Key Function in SI Engines 546 19.2.2 Key Function in Diesel Engines and in Quality-Controlled SI Engines (Direct Injection) 546 19.2.3 Additional Functions 546 19.2.3.1 Idle-Speed Control of SI Engines 546 19.2.3.2 Position Signal 547 19.2.3.3 Dashpot Function 547 19.2.3.4 Cruise Control Function . 547 19.2.4 "Drive by Wire"/E-Gas 547 19.2.5 Charge Pressure Control 548 19.2.6 Vacuum/Prethrottle Actuators 548 19.3 Swirl and Tumble Plates 548 19.3.1 Swirl Plate Actuators (Swirl/Tumble Actuators) 548 19.4 Exhaust Gas Recirculation Valves 549 19.5 Evaporative Emissions Components 551 19.5.1 Canister-Purge Valves 551 19.5.2 Evaporative Emissions Diagnostics 553 19.5.2.1 Tank Diagnostics with Pressure 553 19.5.2.2 Tank Diagnostics with Vacuum 553 20 Cooling of Internal Combustion Engines 555 20.1 General 555 20.2 Demands on the Cooling System 555 20.3 Principles for Calculation and Simulation Tools 55520.4 Engine Cooling Subsystems 557 20.4.1 Coolant Cooling 557 20.4.1.1 Radiator Protection Media 558 20.4.2 Intercooling 559 20.4.3 Exhaust Gas Cooling 560 20.4.4 Oil Cooling 560 20.4.5 Fans and Fan Drives 562 20.5 Cooling Modules 562 20.6 Overall Engine Cooling System 563 21 Exhaust Emissions 565 21.1 Legal Regulations 565 21.1.1 Europe 565 21.1.2 California, USA 565 21.1.3 Japan 567 21.1.4 Harmonizing Exhaust Emission Regulations 568 21.2 Measuring Exhaust Emissions 569 21.2.1 Measuring Techniques for Certifying Automobiles 569 21.2.2 Measuring Technology for Engine Development 569 21.3 Pollutants and Their Origin 574 21.3.1 Spark-Injection Engines 574 21.3.1.1 Restricted Exhaust Emission Components 574 21.3.1.2 Unrestricted Exhaust Components 576 21.3.2 Diesel Engines 576 21.3.2.1 Restricted Exhaust Components 576 21.3.2.2 Unrestricted Exhaust Emission Components 578 21.4 Reducing Pollutants 578 21.4.1 Engine-Related Measures 578 21.4.1.1 Spark-Injection Engines 578 21.4.1.2 Diesel Engines 580 21.5 Exhaust Gas Treatment for Spark-Ignition Engines 582 21.5.1 Catalytic Converter Design and Chemical Reactions 582 21.5.2 Catalytic Converter Approaches for Stoichiometric Engines 583 21.5.2.1 Three-Way Catalytic Converter 583 21.5.2.2 Oxygen Storage Mechanism 584 21.5.2.3 Cold Start Strategies 585 21.5.2.4 Deactivation and Its Effect 587 21.5.3 Catalytic Converter Approaches for Lean-Burn Engines 589 21.5.3.1 Options for NOx Reduction in Lean Exhaust Gas 589 21.5.3.2 The NOx Storage Catalytic Converter 591 21.5.3.3 System with a Precatalytic Converter and NOx Adsorber 596 21.5.4 Metal Catalytic Converter Substrates 597 21.6 Exhaust Treatment in Diesel Engines 601 21.6.1 Diesel Oxidation Catalytic Converters 601 21.6.1.1 Pollutants in Diesel Exhaust 601 21.6.1.2 Characteristics of Diesel Oxidation Catalytic Converters 601 21.6.1.3 Deactivating the Catalyst Surface 601 21.6.1.4 Evaluating Diesel Oxidation Catalytic Converters 603 21.6.2 NOx Adsorbers for Diesel Passenger Cars 604 21.6.2.1 Operating Range of Storage Catalytic Converters 605 21.6.2.2 Desulfurization 605 21.6.2.3 Regeneration Methods 607 21.6.3 Particle Filters 607 21.6.3.1 Particle Definitions and Particle Properties 607 21.6.3.2 Goals of Particle Filtration 609 21.6.3.3 Requirements for Filter Media and Technical Solutions 610 21.6.3.4 Deposition and Adhesion 611 21.6.3.5 Regeneration and Periodic Cleaning 614 21.6.3.6 Regeneration Emissions and Secondary Emissions 617 21.6.3.7 Pressure Loss 618 21.6.3.8 Installation Area and System Integration 619 21.6.3.9 Damage Mechanisms, Experience 619 21.6.3.10 Quality Criteria 620 21.6.3.11 Performance Test, Type Test, OBD, Field Control 62021.6.3.12 Catalytic Soot Filter 621 21.6.3.13 Particle Measuring 623 22 Operating Fluids 627 22.1 Fuels 627 22.1.1 Diesel Fuel 628 22.1.1.1 Diesel Fuel Components and Composition 628 22.1.1.2 Characteristics and Properties 629 22.1.1.3 Additives for Diesel Fuel 634 22.1.1.4 Alternative Diesel Fuels 635 22.1.2 Gasoline 639 22.1.2.1 Gasoline Components and Composition 639 22.1.2.2 Characteristics and Properties 643 22.1.2.3 Alternative Gasolines 654 22.2 Lubricants 661 22.2.1 Types of Lubricants 661 22.2.2 Task of Lubrication 662 22.2.3 Types of Lubrication 662 22.2.4 Lubrication Requirements 662 22.2.5 Viscosity/Viscosity Index (V.I.) 663 22.2.5.1 Influence of Temperature on Viscosity 663 22.2.5.2 Influence of the Pressure on the Viscosity 664 22.2.5.3 Influence of Shear Speed on Viscosity 664 22.2.6 Basic Liquids 665 22.2.6.1 Mineral Basic Oils 665 22.2.6.2 Synthetic Basic Liquid 666 22.2.7 Additives for Lubricants 666 22.2.7.1 V.I. Improvers 667 22.2.7.2 Detergents and Dispersants 668 22.2.7.3 Antioxidants and Corrosion Inhibitors 668 22.2.7.4 Friction and Wear Reducers (EP/AW Additives) 669 22.2.7.5 Foam Inhibitors 669 22.2.8 Engine Oils for Four-Stroke Engines 669 22.2.8.1 SAE Viscosity Classes for Engine Oils 669 22.2.8.2 Single-Grade Engine Oil 669 22.2.8.3 Multigrade Oils 669 22.2.8.4 Fuel Economy Oils 670 22.2.8.5 Break-In Oils 671 22.2.8.6 Gas Engine Oils 671 22.2.8.7 Methanol Engine Oils 671 22.2.8.8 Hydrogen Engine Oils 671 22.2.8.9 Performance Classes 672 22.2.8.10 Evaluating Used Oil 676 22.2.8.11 Racing Engine Oils 683 22.2.8.12 Wankel Engine Oils 684 22.2.9 Engine Oils for Two-Stroke Engines 684 22.2.9.1 Two-Stroke Performance Classes 684 22.2.9.2 Two-Stroke Test Methods 685 22.3 Coolant 685 22.3.1 Frost Protection 685 22.3.2 Corrosion Protection 687 22.3.3 Specifications 688 23 Filtration of Operating Fluids 689 23.1 Air Filter 689 23.1.1 The Importance of Air Filtration for Internal Combustion Engines 689 23.1.2 Impurities in Engine Intake Air 689 23.1.3 Data for Assessment of Air-Filter Media 689 23.1.4 Measuring Methods and Evaluation 690 23.1.5 Requirements Made on Modern Air-Filter Systems 690 23.1.6 Design Criteria for Engine-Air Filter Elements 691 23.1.7 Filter Housings 692 23.1.7.1 Design of Filter Housings 69223.2.1 Gasoline Fuel Filters 692 23.2.2 Diesel-Fuel Filters 693 23.2.3 The Performance Data of Fuel Filters 696 23.3 Engine-Oil Filtration 696 23.3.1 Wear and Filtration 696 23.3.2 Full-How Oil Filters 697 23.3.3 Removal Efficiency and Filter Fineness 698 23.3.4 Bypass Oil Filtration 699 24 Calculation and Simulation 701 24.1 Strength and Vibration Calculation 701 24.1.1 Procedures and Methods 701 24.1.2 Selected Examples of Applications 703 24.1.3 Piston Calculations 705 24.2 Flow Calculation 713 24.2.1 One- and Quasidimensional Methods 713 24.2.2 Three-Dimensional Flow Calculation 715 24.2.3 Selected Examples of Application 717 25 Combustion Diagnostics 723 25.1 Discussion 723 25.2 Indicating 723 25.2.1 Measuring Systems 724 25.2.2 Quality Criteria 725 25.2.3 Indicating: Prospects 726 25.3 Visualization 726 25.3.1 Functions and Discussion 726 25.3.2 Visualization Methods for Real Engine Operation 727 25.3.2.1 The Radiant Properties of Gas, Gasoline, and Diesel Flames 727 25.3.2.2 Flame Spectroscopy 727 25.3.2.3 Flame Propagation in Premixed Charges with Supplied Ignition 728 25.3.2.4 Flame Propagation in Diffusion Combustion in a Diesel Engine 728 25.3.3 Visualization of Combustion in Real Engine Operation by the Flame's Intrinsic Luminescence 728 25.3.3.1 Technical Exploitation: Flame Propagation 728 25.3.4 Visualization of Illuminated Processes 732 25.3.4.1 Visualization of Mixture Distribution 733 25.3.4.2 Visualization of Velocity Fields 733 25.3.5 Visualization: The Future 734 26 Fuel Consumption 737 26.1 General Influencing Factors 737 26.1.1 Air Resistance 737 26.1.2 Weight 737 26.1.3 Wheel Resistance 739 26.1.4 Fuel Consumption 739 26.2 Engine Modifications 740 26.2.1 Downsizing 741 26.2.2 Diesel Engine 742 26.2.3 Gasoline Engine 742 26.2.3.1 The Lean-Burn Engine Concept and Direct Injection 742 26.2.3.2 Variable Valve Timing 743 26.2.3.3 Ignition 744 26.2.4 Cylinder Shutoff 745 26.2.4.1 Concept for Reduction of Fuel Consumption 745 26.2.4.2 Consumption Benefits in the Part-Load Range 746 26.3 Transmission Ratios 746 26.3.1 Selection of Direct Transmission 746 26.3.2 Selection of Overall Transmission Ratio in the Highest Gear 747 26.4 Driver Behavior 748 26.5 CO2 Emissions 749 26.5.1 CO2 Emissions and Fuel Consumption 749 26.5.2 The Influence of Engine Use on CO2 Emissions 750 26.5.3 The Trend in Global CO2 Emissions 750 23.2 Fuel Filters 69227 Noise Emissions 753 27.1 Basic Physical Principles and Terms 753 27.2 Legal Provisions Concerning Emitted Noise 756 27.2.1 Methods of Measuring Emitted Noise 756 27.2.2 Critical Evaluation of the Informational Value of the Emitted Noise Measuring M e t h o d . 7 5 6 27.2.3 Emitted Noise Limits, International Legislation; Future Trends 757 27.3 Sources of Emitted Noise 757 27.4 Emitted Noise-Reduction Provisions 757 27.4.1 Provisions on the Engine 757 27.4.2 Provisions on the Vehicle 758 27.5 Engine Noise in the Vehicle Interior 759 27.6 Acoustic Guidelines for the Engine Designer 761 27.7 Measuring and Analytical Methods 762 27.8 Psychoacoustics 765 27.9 Sound Engineering 765 27.10 Simulation Tools 766 27.11 Antinoise Systems: Noise Reduction using Antinoise 767 28 Alternative Propulsion Systems 769 28.1 The Rationales for Alternatives 769 28.2 The Wankel Engine 769 28.3 Electric Propulsion 769 28.4 Hybrid Propulsion System 772 28.4.1 Storage Systems 773 28.5 The Stirling Engine 773 28.6 Gas Turbines 774 28.7 The Steam Motor 775 28.8 The Fuel Cell as a Vehicle Propulsion System 775 28.8.1 The Structure of the PEM Fuel Cell 777 28.8.2 Hydrogen as the Fuel 778 28.8.3 Methanol as the Fuel 778 28.8.4 Gasoline Engine Fuel 779 28.8.5 The Fuel Cell in the Vehicle 779 28.8.6 Evaluation of the Fuel Cell vis-à-vis Other Propulsion Systems 779 28.9 Summary 780 29 Outlook 783 Index 785 About the Editors 813 Color Section 815
أتمنى أن تستفيدوا منه وأن ينال إعجابكم وللامانة منقول رابط تنزيل الجزء الأول من كتاب Internal Combustion Engine Handbook رابط تنزيل الجزء الثانى من كتاب Internal Combustion Engine Handbook رابط تنزيل الجزء الثالث من كتاب Internal Combustion Engine Handbook
|
|