كتاب Fundamentals of
aluminium metallurgy
Production, processing and applications
ويتناول الموضوعات الاتية :
1 Introduction to aluminium metallurgy 1
R.N. Lumley, CSIRO Light Metals Flagship, Australia
1.1 Aluminium as an engineering material 1
1.2 The development of aluminium alloys 2
1.3 Cast aluminium alloys 5
1.4 Wrought aluminium alloys 7
1.5 Production of aluminium 8
1.6 Uses of aluminium 8
1.7 Conclusion 17
1.8 References 18
Part I Production and casting of aluminium and its alloys 21
2 Production of alumina 23
J. Metson , The University of Auckland, New Zealand
2.1 Introduction to the aluminium oxides 23
2.2 Al minerals – mining and processing 24
2.3 Alumina production processes 27
2.4 The Bayer alumina refinery 30
2.5 Alumina microstructure 38
2.6 Impurities 40
2.7 Production of speciality aluminas 42
2.8 Alumina production trends 43
2.9 Acknowledgements 44
2.10 References 44
3 Production of primary aluminium 49
H. Kvande, Qatar University, Qatar
3.1 Introduction 49
3.2 Raw materials used in the aluminium production process 513.3 Energy efficiency in the utilisation of carbon anodes 52
3.4 The carbon anodes 52
3.5 Electrolyte materials 54
3.6 The cathode and cathode materials 56
3.7 Current efficiency 57
3.8 Cell amperage increase 60
3.9 Cell lines 61
3.10 Health, environment and safety (HES) 63
3.11 Inert anodes 65
3.12 The past, present and future of primary aluminium production 67
3.13 Acknowledgements 69
3.14 References 69
4 Production of secondary aluminium 70
G. Wall ace, Sims Aluminium Pty Limited, Australia
4.1 History of secondary aluminium 70
4.2 Sources of raw materials 73
4.3 Processing 78
4.4 Cost drivers 81
4.5 Future trends 81
4.6 Further reading 82
4.7 Reference 82
5 Ingot casting and casthouse metallurgy of aluminium
and its alloys 83
J.F. Grandfi eld, Grandfield Technology Pty Ltd, Australia
5.1 Direct chill casting 83
5.2 Heat flow and solidification 86
5.3 Macrosegregation 97
5.4 Typical surface defects 98
5.5 Gas pressurised extrusion billet casting 105
5.6 Rolling slab technology 107
5.7 Special variants of DC casting 108
5.8 DC casting safety 108
5.9 Chain conveyor casting 108
5.10 Melt treatment 110
5.11 Conclusion 123
5.12 Notes 124
5.13 References 124
6 Casting of aluminium alloys 141
S. Otarawann a, National Metal and Materials Technology
Center (MTEC), Thailand and A.K. Dahl e, The University of
Queensland, Australia
6.1 Introduction 1416.2 Aluminium casting alloys 141
6.3 Microstructure control in aluminium foundry alloys 142
6.4 Filling the casting 143
6.5 Feeding and porosity 144
6.6 Casting processes 144
6.7 Summary 153
6.8 References 153
7 Quality issues in aluminum castings 155
G.K. Sigwor th, GKS Engineering Services, USA
7.1 Introduction 155
7.2 Standard molds 156
7.3 Effect of solidification time 162
7.4 Theoretical basis for the quality index 164
7.5 Effect of inclusions and porosity on quality 167
7.6 Fatigue failure 169
7.7 Sources of casting defects 174
7.8 Effect of metal treatment and transfer on quality 177
7.9 Possible improvements in fatigue life 180
7.10 Conclusion 182
7.11 References 182
8 Case studies in aluminium casting alloys 185
J.A. Taylor and D.H. StJohn , CAST CRC, The University
of Queensland, Australia and M.A. Easton , CAST CRC, Monash
University, Australia
8.1 Introduction 185
8.2 The effect of the alloy specification range on
microstructure and properties 186
8.3 An impurity that reduces castability and increases
casting defects 190
8.4 The effect of grain refinement on defect formation 195
8.5 The effect of excess titanium on foundry alloys 202
8.6 Selecting the right master alloy for grain refinement in
terms of effectiveness and cost optimisation 207
8.7 Selecting the right master alloy for eutectic modification
in terms of effectiveness and cost optimisation 208
8.8 Summary 214
8.9 References 214
9 High pressure die casting of aluminium and its alloys 217
M .T. Murr ay, M Murray & Associates Pty Ltd, Australia
9.1 History of high pressure die casting 217
9.2 The die casting process 221
9.3 Aluminium alloys used in die casting 232
9.4 Defects in die casting 2359.5 Conclusion 257
9.6 References 259
10 Progress on the heat treatment of high pressure
die castings 262
R.N. Lumley, CSIRO Light Metals Flagship, Australia
10.1 Introduction 262
10.2 Role of alloying elements during solution treatment 271
10.3 Role of alloying elements during age hardening 279
10.4 Application to industrially produced parts and commercial
heat treatment facilities 291
10.5 Implications for redesign of high pressure die castings 299
10.6 Conclusion 300
10.7 Notes 302
10.8 References 302
Part II Metallurgical properties of aluminium and its alloys 305
11 Work hardening in aluminium alloys 307
W.J. Pool e and J.D. Embury, The University of British Columbia,
Canada and D.J. Llo yd, Novelis Global Technology Centre, Canada
11.1 Introduction 307
11.2 Fundamentals of work hardening 308
11.3 Models of work hardening 312
11.4 Applications of work hardening models to industrial alloys 325
11.5 Commercial aspects of work hardening 332
11.6 Conclusion and future trends 338
11.7 Acknowledgements 339
11.8 Notes 339
11.9 References 339
12 Precipitation and solute clustering in aluminium:
advanced characterisation techniques 345
G. Sha, R.K.W. Marc eau and S.P. Ring er, The University
of Sydney, Australia
12.1 Introduction 345
12.2 Al-Cu based alloys 347
12.3 Al-Cu-Mg based alloys 349
12.4 Al-Mg-Si based alloys 354
12.5 Al-Zn-Mg-(Cu) based alloys 356
12.6 Precipitation in Al alloys under severe plastic deformation 359
12.7 Conclusion 361
12.8 Acknowledgements 362
12.9 References 36213 Solute partitioning to enhance mechanical properties
of aged aluminium alloys 367
I.J. Pol mear, Monash University, Australia
13.1 Introduction 367
13.2 Solute partitioning through compositional change 368
13.3 Studies of underaged alloys 371
13.4 Secondary precipitation 379
13.5 Conclusion 381
13.6 Acknowledgments 382
13.7 References 383
14 Vacancies in aluminium and solute-vacancy
interactions in aluminium alloys 386
A . Somoza, Universidad Nacional del Centro de la Provincia
de Buenos Aires and Comisión de Investigaciones Científicas
de la Provincia de Buenos Aires, Argentina and A. Dupasquier,
Politecnico di Milano, Italy
14.1 Introduction 386
14.2 Experimental studies of vacancies and solute-vacancy
interactions 388
14.3 Modelling 408
14.4 Conclusion 415
14.5 Acknowledgements 416
14.6 References 416
15 Modeling the kinetics of precipitation processes
in aluminium alloys 422
C.R. Hutchinson , Monash University, Australia
15.1 Introduction 422
15.2 Physical processes controlling precipitation 425
15.3 Current approaches to modeling precipitation kinetics 426
15.4 Coupling precipitation and plastic deformation 458
15.5 Future trends and perspectives 461
15.6 References 462
16 Ultrafine-grained aluminium alloys: processes,
structural features and properties 468
Y . Estrin , Monash University and CSIRO Process Science and
Engineering, Australia and M. Murashkin and R. Vali ev, Ufa
State Aviation Technical University, Russia
16.1 Introduction 468
16.2 Severe plastic deformation techniques used in processing
of Al alloys 469
16.3 Producing ultrafine-grained aluminium alloys by means
of SPD techniques 47316.4 Mechanical properties of UFG Al alloys at room temperature 480
16.5 Innovation potential of UFG Al alloys 494
16.6 Conclusion 497
16.7 Acknowledgements 497
16.8 References 497
17 Design for fatigue crack growth resistance in
aluminum alloys 504
D .A. Lados , Worcester Polytechnic Institute, USA
17.1 Introduction 504
17.2 Background and current state of knowledge 505
17.3 Materials, processing, mechanical properties and fatigue
crack growth testing 507
17.4 Fatigue crack propagation in the near-threshold regime 510
17.5 Fatigue crack propagation mechanisms in Regions II and III
of crack growth 520
17.6 Kmax and stress ratio effects on fatigue crack growth 526
17.7 A dual parameter DK-Kmax approach to fatigue crack growth 529
17.8 Kmax sensitivity and data normalization for generating
design curves 530
17.9 Conclusion 532
17.10 References 532
18 Fracture resistance in aluminium 538
J.F. Kno tt, The University of Birmingham, UK
18.1 Introduction 538
18.2 Fracture in uni-axial tension 539
18.3 Fracture in thin sheet: stretching and deep-drawing operations 544
18.4 Fracture in aluminium alloy castings 548
18.5 Fracture in high strength wrought alloys: fracture toughness 551
18.6 The fracture toughness of aluminium alloys: micro-structural
aspects 557
18.7 Fracture in aluminium particulate metal-matrix composites 563
18.8 Effects of serrated yielding (dynamic strain-aging) on fracture 565
18.9 Future trends: optimised properties versus ‘fitness
for purpose’ 569
18.10 References 571
19 Corrosion and corrosion protection of aluminium 574
N. Bir bilis and B. Hin ton , Monash University, Australia
19.1 Introduction 574
19.2 General, galvanic and pitting corrosion 575
19.3 Localised corrosion: intergranular and exfoliation 582
19.4 Environmentally assisted cracking 58419.5 Corrosion protection in the aircraft structure 590
19.6 Summary case study: corrosion of a C-130J Hercules
aircraft wing trailing edge strip 593
19.7 Acknowledgements 601
19.8 References 601
Part III Processing and applications of aluminium
and its alloys 605
20 Joining of aluminium and its alloys 607
S. Lathabai, CSIRO Process Science and Engineering, Australia
20.1 Introduction 607
20.2 Mechanical joining 609
20.3 Fusion welding 618
20.4 Solid state welding 630
20.5 Brazing 643
20.6 Adhesive bonding 647
20.7 Conclusion 650
20.8 References 650
21 Aluminium powder metallurgy 655
S.H. Huo, M. Qian and G.B. Sch aff er, The University of
Queensland, Australia and E. Crossin , The University of
Queensland, Australia and RMIT University, Australia
21.1 Introduction 655
21.2 The press and sinter powder metallurgy process 655
21.3 Sintering fundamentals 658
21.4 Sintering of aluminium 678
21.5 PM aluminium alloys and their applications 688
21.6 Future trends 692
21.7 Acknowledgements 694
21.8 References 694
22 Laser sintering and rapid prototyping of aluminium 702
T .B. Serco mbe, The University of Western Australia,
Australia
22.1 Introduction 702
22.2 The skeleton 705
22.3 Infiltration 711
22.4 Dimensional changes 713
22.5 Conclusion 714
22.6 Acknowledgements 715
22.7 References 71523 Aluminium sheet fabrication and processing 719
J. Hirsch , Hydro Aluminium Deutschland GmbH, Germany
23.1 Introduction 719
23.2 Aluminium alloys and specifications 721
23.3 The aluminium sheet fabrication processing route and
microstructure evolution 725
23.4 Parameters and metallurgical effects in Al alloy sheet
processing 741
23.5 Integrated material and through-process modelling 743
23.6 Conclusion 744
23.7 Acknowledgements 745
23.8 References 745
24 Application of modern aluminium alloys to aircraft 747
E .A. Stark e, Jr and J.T. Staley, Consultant, University of
Virginia, USA
24.1 Introduction 747
24.2 Drivers for materials selection and aluminum alloy product
development for aircraft 749
24.3 Performance criteria and property requirements for primary
structure of subsonic aircraft 751
24.4 Structure–property relationships 754
24.5 New products and recent manufacturing technologies 775
24.6 Conclusion 780
24.7 References 780
25 Materials selection and substitution using
aluminium alloys 784
M . Leary, RMIT University, Australia
25.1 Introduction 784
25.2 Fundamental material selection strategies 785
25.3 Material selection for specific scenarios 791
25.4 Non-stationary fatigue-limited application 803
25.5 Multi-objective problems and numeric optimisation 804
25.6 Multiple objective material selection 811
25.7 Environmental consequence of material selection 816
25.8 Conclusion 822
25.9 Acknowledgements 824
25.10 Notes 824
25.11 References 824
Index 8
رابط التحميل :
http://rapidgator.net/file/42442091
رابط أخر :
http://arabsh.com/files/0e3e4d4967f5/fundamentals-of-aluminium-metallurgy-rar.html