Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Vibration of Mechanical Systems الأحد 28 أبريل 2013, 7:24 pm | |
|
أخوانى فى الله أحضرت لكم كتاب
Vibration of Mechanical Systems
ويتناول الموضوعات الأتية :
1 Equivalent Single-Degree-of-Freedom System and Free Vibration 1 1.1 Degrees of Freedom 3 1.2 Elements of a Vibratory System 5 1.2.1 Mass and/or Mass-Moment of Inertia 5 Pure Translational Motion 5 Pure Rotational Motion 6 Planar Motion (Combined Rotation and Translation) of a Rigid Body 6 Special Case: Pure Rotation about a Fixed Point 8 1.2.2 Spring 8 Pure Translational Motion 8 Pure Rotational Motion 9 1.2.3 Damper 10 Pure Translational Motion 10 Pure Rotational Motion 11 1.3 Equivalent Mass, Equivalent Stiffness, and Equivalent Damping Constant for an SDOF System 12 1.3.1 A Rotor–Shaft System 13 1.3.2 Equivalent Mass of a Spring 14 1.3.3 Springs in Series and Parallel 16 Springs in Series 16 Springs in Parallel 17 1.3.4 An SDOF System with Two Springs and Combined Rotational and Translational Motion 19 1.3.5 Viscous Dampers in Series and Parallel Dampers in Series 22 Dampers in Parallel 23 1.4 Free Vibration of an Undamped SDOF System 25 1.4.1 Differential Equation of Motion 25 Energy Approach 27 1.4.2 Solution of the Differential Equation of Motion Governing Free Vibration of an Undamped Spring–Mass System 34 1.5 Free Vibration of a Viscously Damped SDOF System 40 1.5.1 Differential Equation of Motion 40 1.5.2 Solution of the Differential Equation of Motion Governing Free Vibration of a Damped Spring–Mass System 41 Case I: Underdamped (0 < ξ < 1 or 0 < ceq < cc) 42 Case II: Critically Damped (ξ = 1 or ceq = cc) 45 Case III: Overdamped (ξ > 1 or ceq > cc) 46 1.5.3 Logarithmic Decrement: Identification of Damping Ratio from Free Response of an Underdamped System (0 < ξ < 1) 51 Solution 55 1.6 Stability of an SDOF Spring–Mass–Damper System 58 Exercise Problems 63 2 Vibration of a Single-Degree-of-Freedom System Under Constant and PurelyHarmonic Excitation 72 2.1 Responses of Undamped and Damped SDOF Systems to a Constant Force 72 Case I: Undamped (ξ = 0) and Underdamped (0 < ξ < 1) 74 Case II: Critically Damped (ξ = 1 or ceq = cc) 75 Case III: Overdamped (ξ > 1 or ceq > cc) 76 2.2 Response of an Undamped SDOF System to a Harmonic Excitation 82 Case I: ω = ωn 83 Case II: ω = ωn (Resonance) 84 Case I: ω = ωn 87 Case II: ω = ωn 87 2.3 Response of a Damped SDOF System to a Harmonic Excitation 88 Particular Solution 89 Case I: Underdamped (0 < ξ < 1 or 0 < ceq < cc) Case II: Critically Damped (ξ = 1 or ceq = cc) 92 Case III: Overdamped (ξ > 1 or ceq > cc) 94 2.3.1 Steady State Response 95 2.3.2 Force Transmissibility 101 2.3.3 Quality Factor and Bandwidth 106 Quality Factor 106 Bandwidth 107 2.4 Rotating Unbalance 109 2.5 Base Excitation 116 2.6 Vibration Measuring Instruments 121 2.6.1 Vibrometer 123 2.6.2 Accelerometer 126 2.7 Equivalent Viscous Damping for Nonviscous Energy Dissipation 128 Exercise Problems 132 3 Responses of an SDOF Spring–Mass–Damper System to Periodic andArbitrary Forces 138 3.1 Response of an SDOF System to a Periodic Force 138 3.1.1 Periodic Function and its Fourier Series Expansion 139 3.1.2 Even and Odd Periodic Functions 142 Fourier Coefficients for Even Periodic Functions 143 Fourier Coefficients for Odd Periodic Functions 145 3.1.3 Fourier Series Expansion of a Function with a Finite Duration 147 3.1.4 Particular Integral (Steady-State Response with Damping) Under Periodic Excitation 151 3.2 Response to an Excitation with Arbitrary Nature 154 3.2.1 Unit Impulse Function δ(t − a) 155 3.2.2 Unit Impulse Response of an SDOF System with Zero Initial Conditions 156 Case I: Undamped and Underdamped System (0 ≤ ξ < 1) 158 Case II: Critically Damped (ξ = 1 or ceq = cc) 158 Case III: Overdamped (ξ >1 or ceq>cc) 159 3.2.3 Convolution Integral: Response to an Arbitrary Excitation with Zero Initial Conditions 160 3.2.4 Convolution Integral: Response to an Arbitrary Excitation with Nonzero Initial Conditions 165 Case I: Undamped and Underdamped (0 ≤ ξ <1 or 0 ≤ ceqCase II: Critically Damped (ξ = 1 or ceq = cc) 166 Case III: Overdamped (ξ > 1 or ceq > cc) 166 3.3 Laplace Transformation 168 3.3.1 Properties of Laplace Transformation 169 3.3.2 Response of an SDOF System via Laplace Transformation 170 3.3.3 Transfer Function and Frequency Response Function 173 Significance of Transfer Function 175 Poles and Zeros of Transfer Function 175 Frequency Response Function 176 Exercise Problems 179 4 Vibration of Two-Degree-of-Freedom-Systems 186 4.1 Mass, Stiffness, and Damping Matrices 187 4.2 Natural Frequencies and Mode Shapes 192 4.2.1 Eigenvalue/Eigenvector Interpretation 197 4.3 Free Response of an Undamped 2DOF System 198 Solution 200 4.4 Forced Response of an Undamped 2DOF System Under Sinusoidal Excitation 201 4.5 Free Vibration of a Damped 2DOF System 203 4.6 Steady-State Response of a Damped 2DOF System Under Sinusoidal Excitation 209 4.7 Vibration Absorber 212 4.7.1 Undamped Vibration Absorber 212 4.7.2 Damped Vibration Absorber 220 Case I: Tuned Case ( f = 1 or ω22 = ω11) 224 Case II: No restriction on f (Absorber not tuned to main system) 224 4.8 Modal Decomposition of Response 227 Case I: Undamped System (C = 0) 228 Case II: Damped System (C = 0) 228 Exercise Problems 231 5 Finite and Infinite (Continuous) Dimensional Systems 237 5.1 Multi-Degree-of-Freedom Systems 237 5.1.1 Natural Frequencies and Modal Vectors (Mode Shapes) 239 5.1.2 Orthogonality of Eigenvectors for Symmetric Mass and Symmetric Stiffness Matrices 5.1.3 Modal Decomposition 245 Case I: Undamped System (C = 0) 246 Case II: Proportional or Rayleigh Damping 249 5.2 Continuous Systems Governed by Wave Equations 250 5.2.1 Transverse Vibration of a String 250 Natural Frequencies and Mode Shapes 251 Computation of Response 255 5.2.2 Longitudinal Vibration of a Bar 258 5.2.3 Torsional Vibration of a Circular Shaft 261 5.3 Continuous Systems: Transverse Vibration of a Beam 265 5.3.1 Governing Partial Differential Equation of Motion 265 5.3.2 Natural Frequencies and Mode Shapes 267 Simply Supported Beam 269 Cantilever Beam 271 5.3.3 Computation of Response 273 5.4 Finite Element Analysis 279 5.4.1 Longitudinal Vibration of a Bar 279 Total Kinetic and Potential Energies of the Bar 283 5.4.2 Transverse Vibration of a Beam 286 Total Kinetic and Potential Energies of the Beam 291 Exercise Problems 295 APPENDIX A: EQUIVALENT STIFFNESSES (SPRING CONSTANTS) OF BEAMS, TORSIONAL SHAFT, AND LONGITUDINAL BAR299 APPENDIX B: SOME MATHEMATICAL FORMULAE 302 APPENDIX C: LAPLACE TRANSFORM TABLE 304 References 305 Index
أتمنى أن تستفيدوا منه وأن ينال إعجابكم رابط تنزيل كتاب Vibration of Mechanical Systems
عدل سابقا من قبل Admin في الأحد 09 مارس 2014, 12:44 am عدل 1 مرات |
|
ماهر88 مهندس فعال
عدد المساهمات : 160 التقييم : 165 تاريخ التسجيل : 18/02/2013 العمر : 46 الدولة : العراق العمل : تدريسي الجامعة : البصره
| موضوع: رد: كتاب Vibration of Mechanical Systems الأحد 28 أبريل 2013, 9:13 pm | |
|
كل الشكر والتقدير وجزاك الله كل الخير |
|
Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Vibration of Mechanical Systems الأحد 28 أبريل 2013, 9:53 pm | |
|
- ماهر88 كتب:
- كل الشكر والتقدير وجزاك الله كل الخير
لا شكر على واجب جزانا الله وإياك خيراً |
|
engineer basem مهندس تحت الاختبار
عدد المساهمات : 16 التقييم : 16 تاريخ التسجيل : 21/01/2014 العمر : 35 الدولة : yemen العمل : student الجامعة : faculty of engineering
| موضوع: رد: كتاب Vibration of Mechanical Systems السبت 08 مارس 2014, 1:21 pm | |
| |
|
Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Vibration of Mechanical Systems الأحد 09 مارس 2014, 12:39 am | |
|
- engineer basem كتب:
- الف شكر يالغالي
|
|