Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Biomaterials Science - An Introduction to Materials in Medicine الثلاثاء 22 أكتوبر 2013, 6:59 am | |
|
أخوانى فى الله أحضرت لكم كتاب Biomaterials Science - An Introduction to Materials in Medicine Edited by Buddy D. Ratner and Allan S. Hoffman Center for Bioengineering and Department of Chemical Engineering University of Washington Seattle, Washington Frederick J. Schoen Department of Pathology Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts Jack E. Lemons Departments of Biomaterials and Surgery School of Dentistry and Medicine University of Alabama at Birmingham Birmingham, Alabama
و المحتوى كما يلي :
CONTENTS Contributors ix 2.6 Ceramics, Glasses, and Glass-Ceramics 73 Preface xi LARRY L. HENCH Biomaterials Science.- An Interdisciplinary 2.7 Nafural Materjals 84 Endeavor IOANNIS v. YANNAS BUDDY D. RATNER 1 2.8 Composites 94 HAROLD ALEXANDER PART I MATERIALS SCIENCE AND 2.9 Thin Films, Grafts, and Coatings 105 ENGINEERING BUDDY D. RATNER AND ALLAN S. HOFFMAN CHAPTER 1 Properties of Materials 2.10 Fabrics 118 SHALABY W. SHALABY 1.1 Introduction 11 JACK E. LEMONS 2.11 Biologically Functional Materials 124 ALLAN S.HOFFMAN 1.2 Bulk Properties of Materials 11 FRANCIS W. COOKE PART II 1.3 Surface Properties of Materials 21 PART II BUDDY D RATNER BIOLOGY, BIOCHEMISTRY, CHAPTER 2 Classes of Materials Used in Medicine AND MEDICINE 2.1 Introduction 37 CHAPTERS Some Background Concepts ALLAN S. HOFFMAN 3.1 Introduction 133 BUDDY D. RATNER 2.2 Metals 37 JOHN B. BRUNSKI 3.2 Proteins: Structure, Properties, and Adsorption 2.3 Polymers 50 to Surfaces 133 SUSAN A. V1SSER, ROBERT W. HERGENROTHER, THOMAS A. HORBETT AND STUART L.COOPER 3.3 Cells: Their Surfaces and Interactions with 2.4 Hydrogels 60 Materials 141 NIKOLAOS A. PF.PPAS JEFF M. SCHAKENRAAD 2.5 Bioresorbable and Bioerodible Materials 64 3.4 Tissues 147 JOACHIM KOHN AND ROBERT LANGER FREDERICK J. SCHOEN Vvi CONTENTS CHAPTER 4 Host Reactions to Biomaterials and Their Evaluation 4.1 Introduction 165 FREDERICK .). SCHOEN 4.2 Inflammation, Wound Healing, and the Foreign Body Response 165 JAMES M. ANDERSON 4.3 Immunology and the Complement System 173 RICHARD J. JOHNSON 4.4 Systemic Toxicity and Hypersensitivity 188 KATHARINE MERRITT 4.5 Blood Coagulation and Blood—Materials Interactions 193 STEPHEN R. HANSON AND LAURENCE A.HARKER 4.6 Tumorigenesis and Biomaterials 200 FREDERICK J. SCHOEN 4.7 implant-Associated Infection 205 ANTHONY G. GRISTINA AND PAUL T. NAYLOR CHAPTER 5 Testing Biomaterials 5.1 Introduction 215 BUDDY D. RATNER 6.4 Mechanical Breakdown in the Biological Environment 267 CARL R. McMILLIN 6.5 Pathologic Calcification of Biomaterials 272 YASHWANT PATHAK, FREDERICK J. SCHOEN, AND ROBERT J. LEVY CHAPTER 7 Application of Materials in Medicine and Dentistry 7.1 Introduction JACK E. LEMONS 7.2 Cardiovascular Applications PAUL DIDISHEIM AND JOHN T. WATSON 283 283 7.3 Nonthrombogenic Treatments and Strategies 297 SUNG WAN KIM 7.4 Dental Implants JACK E. LEMONS 7.5 Adhesives and Sealants DENNIS C. SMITH 7.6 Ophthalmologic Applications MIGUEL F. REFOJO 7.7 Orthopedic Applications J. LAWRENCE KATZ 5.2 In Vitro Assessment of Tissue Compatibility SHARON I. NORTHUP 215 7.8 Drug Delivery Systems JORGE HELLER 346 5.3 In Vivo Assessment of Tissue Compatibility 220 MYRON SPECTOR AND PEGGY A. LALOR 5.4 Testing of Blood—Materials interactions 228 STEPHEN HANSON AND BUDDY D. RATNER 5.5 Animal Models 238 BRAD H. VALE, JOHN E. WILLSON, AND STEVEN M. NIEMI CHAPTER 6 Degradation of Materials in the Biological Environment 6.1 Introduction 243 BUDDY D. RATNER 6.2 Chemical and Biochemical Degradation of Polymers 243 ARTHUR J. COURY 6.3 Degradative Effects of the Biological Environment on Metals and Ceramics 260 DAVID F, WILLIAMSAND RACHEL L, WILLIAMS 7.9 Sutures DENNIS GOUPIL 356 7.10 Burn Dressings 360 JEFFREY B. KANE, RONALD G. TOMPK1NS, MARTIN L.YARMUSH, AND JOHN F. BURKE 7 . 1 1 Bioelectrodes LOIS S. ROBBLEE AND JAMES D.SWEENEY 7.12 Biomedical Sensors and Biosensors PAUL YAGER CHAPTER 8 Artificial Organs 8.1 Introduction FREDERICK J. SCHOEN 8.2 Implantable Pneumatic Artificial Hearts KEVIN D. MURRAY AND DON B. OLSEN 8.3 Extracorporeal Artificial Organs PAUL S. MALCHESKY 400CONTENTS vii PACT III 9.7 Correlations of Material Surface Properties with PRACTICAL ASPECTS Biological Responses OF B1OMATER1ALS 9.8 Implant Retrieval and Evaluation 451 CHAPTE CHAPTER 9 R 9 Implant Implant s ansd anDevice d Device s • J s AMES M. ANDERSON CHAPTER 10 New Products and Standards 9.1 Introduction 415 FREDERICK J. SCHOEN 10.1 Introduction 457 JACK E. LEMONS 9.2 Sterilization of Implants 415 JOHN B. KOWALSKI ANDROBERT F. MORRISSEY 10.2 Voluntary Consensus Standards 457 STANLEY A. BROWN 9.3 Cardiovascular Implantation 420 10.3 Product Development and Regulation 461 LINDA M. GRAHAM, DIANA WHITTLESEY, AND BRIAN BEVACQUA NANCY B MATED 9.4 Dental Implantation 426 A. NORMAN CRANIN, ARAM SIRAKIAN, ANDMICHAEL KLEIN CHAPTER 11 Perspectives and Possibilities in Biomaterials Science BUDDY D. RATNER 465 9.5 Ophthalmic Implantation 435 STEPHEN A. OBSTBAUM APPENDIX Properties of Biological Fluids STEVEN M. SLACK 469 9.6 Implant and Device Failure 443 ALLAN S, INDEX A Alginates, 120 Aramid (aromatic polyamide fiber), 96 Absorbable materials, see Bioerodable Alloys, see also specific ASTM numbers Association for the Advancement of materials cobalt-based, 41—46 Medical Instrumentation, 240, 459 Activated-partial thromboplastin time galvanic corrosion, 262 ASTM, see American Society for Testassay, 298—299 stainless steel, 41 ing and Materials Adhesion, see Adhesives and sealants; titanium-based, 46—50 ASTM F67 (titanium), 46, 47 Bacterial adhesion; Cell adhesion; Alternative pathway, 177-178 ASTM F75 (cobalt), 41-45 Platelet adhesion Alumina (A12O3) ASTM F90 (cobalt), 45 Adhesions, prevention of, 65 degradation in vivo, 266 ASTM F136 (titanium), 47-50 Adhesives and sealants in dental implants, 76—78, 313 ASTM F138 (stainless steel), 41 hard tissue adhesives in hip replacement, 76-77 ASTM F.139 (stainless steel), 41 composite polymer-ceramic resins, in joint replacements, 343 ASTM F562 (cobalt), 46 325-327 properties, 76-78 ASTM F799 (cobalt), 45 glass ionomer cements, 325 American Dental Association, 459 ASTM grain size, 41 methyl methacrylate, 324 American National Standards Institute, Atactic polymers, 52 resin cements, 325 459 Atomic force microscopy, 32—33 zinc phosphate, 325 American Society for Testing and Mate- Atomic structure zinc polycarboxylate, 325 rials, 18, 215, 217, 457 carbon, 11—12, 12—13 mechanisms American Type Tissue Culture Collec- ceramics, 12 adsorption, 320—322 tion, 216 inorganic glasses, 13-14 diffusion, 322 Amorphous state, defined, 14 metals, 12 electronic transfer, 322 Animal models polymers, 14 mechanical interlocking, 320 AAAS resolution on use of animals, Atrophy, stress protection, 101, 102— ophthalmologic applications, 240-241 104,222-223 333—334 laws and regulations, 238-239 Austenite phase, 41 overview, 319—320 species considerations, 239—240 Autoclaving, 417 research directions, 327 standards, 459-460 Autologous saphenous vein, 287 soft tissue adhesives Animal and Plant Health Inspection A-W glass-ceramic (A-WGC), in bone bioadhesives, 323—324 Service, 239 bonding, 79 cyanoacrylate esters, 323 Animal Welfare Act, 239 fibrin sealants, 323 Anisotropy, defined, 16—17 gelatin-resorcinol-formaldehyde Annealing B glue, 323 metals, 21 Bacterial adhesion Adsorption, protein polymers, 271 and biomaterial corrosion, 211 and leukocyte localization, 168, 179 Antibiotic resistance, in biomaterial-cen- and matrix proteins, 210 mechanisms, 136-140 tered infections, 212 mechanisms, 209-210 Agar diffusion test methodology, 218 Antigenicity, see Immunogenicity microzones, 211 Albumin Apheresis, 404-410 research results, 205-206 and bacterial adherence, 210 APHIS, see Animal and Plant Health In- species differences, 208 surface hydrophilicity modification, spection Service Barriers, temporary, 65 298 Apoptosis, defined, 157 BCC, see Body-centered cubic structure 473474 INDEX B cells, structure and functions, 187 iridium, 373—374 Blood-material interactions Bend testing, 18 iridium oxide, 374 blood compatibility, 229—232 Bioabsorption, see Bioerodable mate- nerve cell stimulation, 371 classifications, 283—284 rials nerve regeneration, 371 testing Bioactive fixation, defined, 74 platinum, 373 anticoagulants, 233 Bioadhesives, 323-324 silver, 373 blood flow effects, 233-234 Biobrane, 366 stainless steel, 374 blood handling, 233 Bioceramics, see also Ceramics stimulation waveforms, 372—373 donor species considerations, 232, alumina, 76-78, 343 tantalum, 374 239-240 applications, 82f Bioerodable materials interaction time, 234-235 bioerodable, 74—75, 83 applications, 64—65, 353 in vitro, 235 degradation in vivo, 265—267 bioerodable composites, 101—102 in vivo, 235—237 microstructure, 75—76 ceramics, 82, 83 overview, 228-229 processing methods, 75—76 composites, 96, 97, 101—102 thrombogenicity, 229—231, 297—298 tissue attachment, 73—75, 343 defined, 65—66 Blood pumps zirconia, 77 mechanisms of bioerosion, 69—70 calcification, 273 Biocompatibility, 2, 11, 445-447 natural polymers, 84-94 titanium microsphere lining, 294 blood compatibility, 228—229 rate of bioerosion, 70—72 Blood substitutes, 295 cytotoxicity, 215—216 synthetic polymers, 66—69, 96, 97 Body-centered cubic structure, 12 systemic toxicity Biofilms Bonds, interatomic immune response, 180, 191-192 and biomaterial-centered infections, covalent, 11-12 nonimmune, 189 208 hydrogen, 12 thrombogenicity, 229—231 defined, 210—211 in adsorption bonding theory, 320 Biocompatibility testing detachment, 211-212 in hydrogels, 60 application-specific tests, 219 Biofix bone pins, 69 in polymers, 14 blood-material interactions, 228— Bioglass, 75, 79 ionic, 11 238, 298-299 Biological fixation, 74, 78 metallic, 12 hierarchy, 240 Biomedical sensors, see also Biosensors van der Waals, 12 in vitro tests blood gas sensors, 384 in adsorption bonding theory, 320 activated-partial thromboplastin consuming vs. nonconsuming, in hydrogels, 60 times assay, 298—299 376-377 in polymers, 14 agar diffusion test, 218 electrochemically active sensors, Bone bonding direct contact test, 217 383—384 bioactive ceramics, 78—81, 343 elution test, 218 ion-selective electrodes, 383 dental implants, 311-312, 317 safety factors, 216 optical pH sensors, 382-383 hydroxyapatite implants, 83 thrombin and ATIII adsorption optical thermometers, 380—381 porous polymer coatings, 342 test, 299 overview, 376-379 synthetic hydroxyapatite, 96, 343 thrombin chromogenic assay, 299 pH potentiometers, 382 Bone cement disease, 268—269 in vivo tests, see also Animal models pressure transducers, 381 Bone remodeling controls, 225 resonance temperature detectors, 380 and dental implants, 311—312 criteria, 228 thermistors, 380 and implant stiffness, 102—104, histology and histochemistry, thermocouples, 380 222—223 225-226 Biomer Brittle fracture, 18 immunohistochemistry, 226 degradation, 270 Bulk erosion, defined, 70 mechanical testing, 227 and heparin immobilization, Burn dressings percutaneous injection, 224 303-304 amnion temporary dressing, 365 scanning electron microscopy, 227 Bioresorbable materials, see Bioeroda- burn classifications, 360 selecting implant sites, 222-224 ble materials; Degradable implants natural skin grafts, 361—362, 365 surgical protocols, 224—225 Biosensors relevant properties of skin substitutes transmission electron microscopy, acoustic/mechanical, 386—387 biodegradation rate, 363 226-227 biomembrane-based, 387 dimensions and pore size, standards, 459-460 defined, 384-385 362-363 thrombogenicity, 229-231,298—299 electrochemical, 386 macrostructure, 364 Biodegradable implants, see Degrad- immobilization of biochemistry, 385 minimal antigenicity, 363—364 able implants optical waveguide, 386 porosity, 362 Bioelectrodes potential-based, 386 strength, 363 applications, 371 research directions, 387-388 wetting and adherence, 362 capacitor electrodes, 374 thermal and phase transition, 387 synthetic graft materials charge transfer mechanisms, 372 Blood gas sensors, 384 culture grafts, 367—368INDEX 475 multilaminar dressings, 366-367, Catheters, 289-290, 424-425 ASTM F90, 45 368-369 catheter-related thrombosis, 290 ASTM F562, 46 single laminar polymer dressings, Celgard, in oxygenator membranes, ASTM F799, 45 365-366 285 in dental implants, 313, 314, 316 n-Butyl cyanoacrylate, in soft tissue ad- Cell adhesion in joint replacements, 340 hesives, 323 adhesive proteins, 141, 149 Collagen adhesive sites, 142-143 in artificial skin, 364-365, 366 cell-cell contact sites, 142-143, 149 biodegradable implants, 88-91 cell-substratum contact sites, 143 bovine, as composite matrix, 97 C critical surface tension, 146 calcification, 279 Calcification integrin receptors, 141 chemical modifications, 88-91 assessment techniques, 275—276 kinetics, 143-144 m extracellular matrix analogs, bioprosthetic heart valves, 272-273, overview, 209 92-94 278-279 porosity,'145 immunogenicity, 91 blood pumps, 273, 278 spreading mechanisms, 144-146 native structure, 85-87 contraceptive intrauterine devices, ancj surface contact angle, 33 physical structural modifications, 2-'^ surface roughness, 145 8/~os homografts, 273 thermodynamics, 145 porosity, 88 overview, 272 and wettability, 145 ryPe *> n> 1U»IV' 85"87' 150-153 pathophysiology, 277-279 Cell differentiation, 149-150 W V> 153 prevention, 279-280 Cell regeneratjon5 155 Collagen-glycosammoglycan copolyimplant pretreatment, 279 CeU structure ' mers, 88, 92-94 mhibitors, 279-280 compartmentalization, 148-149 Complement system soft contact lenses, 274-275, 279 cytoskeleton 141 activation during urinary prosthesis encrustation, 275 < 141147 cardiopulmonary bypass, 285 Calcitite,' 7 , 5 ^ i TT i Cellula \\ \ \ r adaptations ' .• • , in j wound uhealin r hemodialysis g , ; ,',. 180—18 . , 3 Calcium phosphate, see also Hydroxy- , 17~ adsorption to biomatenais, 168 apatite; 6-Tricalcium phosphate ^ .. '.,, - , , . alternative pathway, 177-178 . , r . „. „-, Cements, see Adhesives and sealants ... . . '_~ .„,, in biocerarmcs, 81-83 . . _. . cellular activation, 179—180 , . . . . oo -»^ Ceramics, see also Biocerarmcs . . . , ' bioerosion mechanisms, 83, 266 , .~ classical pathway, 173—177 n^ atomic structure, 12 _, . in composites, 96 , . i i i • 0< o-» Composites ^ ,s ~>c-> calcium phosphate-based, 81-83 , . , , , 0, n_ Capronor, 66, 353 . ,,. . . . . bioerodable, 96, 97 Carbid ~ , . ,e , phase .. , 41. a ° s cladding o r n metal joint prosthe classification - , .c n , 95r1 ses 343 Carbon, atomic structure, 12—13 .' 1 - 1 -, -, continuous fiber, 98—100 r Carbo . i c n fiber i j , productio *• a n process, & s coatings r on dental implants fabrication , 313 t i - - Q , 97—9 -, Q08 95-96 m comP°s^ 96 isotropic? 10Q Carbonization, 96 porous, 78 matrix systems, 96-97, 102-104 Cardiopulmonary bypass systems, Ceravital, 75, 79 bioerodable, 101-102 284-285 CG copolymers, see Collagen-glycos- mcchanical properties, 98-101 Cardiovascular applications, see also ammoglycan copolymers overview, 94-95 Hearts, total artificial; Thrombo- Chemotaxis, and leukocyte emigration, paniculate, 95 genicity reinforcing materials blood-material interactions, Chitosans, 120 carbon fiber, 95-96 283-284 Chondroitin 6-phosphate, 365 ceramics, 96 blood pumps, 294 Chondroitin 6-sulfate, 366-367 glass fiberS) 96 blood substitutes, 295 Chromium polymer fibers, 96 cardiopulmonary bypass systems, all°ys with cobalt, 41-46 short-fiber, 100-101 284-285 corrosion and passivation, 263 Compression molding, 98 catheters, 289-290, 424-425 Classical pathway, 173-177 Compression testing, 17-18 heart valves, 285-286, 422-424 Closed-mold processes, 97-98 Connective tissue inferior vena cava filters, 292 Coagulation jn vjvo biomaterial assessment, intra-aortic balloon pumps, 292-293 control, 197-198 222-223 pacemakers, 269-270,290-291 mechanisms, 196-197 structure and function, 154 stents, 289 overview, 195-196 Contact angle measurement, 23 vascular grafts, 287-288, 420-422 Coatings, on metallic implants, 40, 74, correlation with biological reactivity, ventricular assist devices, 293-295 342 33, 447 Casting, investment, 39—40 Cobalt techniques, 26? Cataract, 436-437 alloys, 41-46 Contact lenses Catgut, see Poly(glycolic acid) ASTM F75,41-45 flexible fluoropolymer, 330476 INDEX Contact lenses (continued) definitions, 65—66 membrane-controlled, 348 rigid, 330 fracture fixation, 101-102 monolithic, 347-348 soft hydrogel, 274—275, 329—330 sterilization, 72; see also Sterilization overview, 346—347 Continuous pultrusion, 98 of implants regulated Contraceptive implants, 66, 349,353, storage stability, 72 externally regulated, 288—289, 354 Degradation, unintended 354-355 Contraceptive intrauterine devices, 274 ceramics, 265-267 glucose concentration-modulated Copolyroers, 51-52, 54 corrosion, metallic, 101 (insulin delivery), 355 properties, 59—60 corrosion and bacterial infection, morphine-triggered (naltrexone), Corals, and porous ceramics, 78 211 355 Corneal implants, 331 metals, 261-265 sustained-release products, 347 Corrosion polymers, 243-258 transdermal, 349 crevice, 264 hydrolytic, 244-249 water penetration controlled fretting, 264 leaching, 269 applications, 351 galvanic, 262, 265 oxidative, 249-258 osmotically controlled, 349-350 intergranular, 265 stress crazing5 269 swelling-controlled, 63-64, 350 m vivo swelling, 269 Ductility, 18 and dynamic stress, 266, 267 systemic toxicity, 189 Durapatite, 75 overview, 260 Denaturation, protein, 136 Dynamic mechanical analysis, 55—56 protein influences, 263 Dental implants stress corrosion cracking, 265, 266 dinical environment5 310 surface passivation, 262, 263 designs? 308_310 E tissue reactions, 101, 268 endosteal implants, 312-315, EDXA, see Energy-dispersive X-ray microbiological, 267-268 431-432 analysis pitting, 264 fibre-osteal integration, 317 Elasticity, 15, 16 surface passivation 115 w 426_429 of ^ 337.338 CP titanium, see ASTM r67 • . T , ii/- ->\-> • 10 _ , ,, ' . _ mtraoral prostheses, 316-317 testing, 18 Creep, denned, 19 t . , -1*~. ,-,, . Q-, ^ n „ . . , , , „_. materials, 312if Elastin, 92, 153 Critical stress intensity factor, 20 . • -> 11 -> 1 -i T ^ -? r-i r L • i „ . , , , . ~,, osteomtegration, 311—312, 317 Electron spectroscopy tor chemical Critical surface tension, 23 , . , . „.,- .-,, , . ,-, a5 , „ ., . „ ' .._ packaging and preparation, 432-434 analysis, 23-28 a n d cell adhesion, 146, 4 4 7 v 1 1 1 - , ^ - , • • j • -,-, j ,, j - ~ tAA IAS removable dentures, 317 contamination detection, 33 and cell spreading, 144-146 . . . . ' _ _ , 0 . . . . , . . . ' . ,-, ,,• i c-i research directions, 317-318 correlation with biological reactivity, Crystalline polymers, 52 . . . . . ,,r -,., ^~. r ' aijif_ ,c subpenosteal implants, 315-316, 33 Vjryatdiiiics, u Atn A-H i i- i i • • i-» Crystal structures, 12-13 ^ 429~4{l , , , ^ c,and ^colored titanium 33 ^, i Denture prostheses, removable, 317 Electrostatic spinning, 121 Ubiocompnatibility reactions, 180-183 Dermagraft, 368 ELI alloy, see ASTM F136 "first use syndrome" in cardiopulmo- Desmosomes, structure and function, Elution test methodology, 218 narv bvoass 285 ^^' ^^'' ^^ Endosteal implants, seeDental imCyanoacrylate surg'icaUdhesives, 323 Dexon sutures' 69 Plants ophthalmologic applications, Dextran, 120 Energy, surface, 23; see also Contact 333—334 Diabetes, see Insulin delivery implants angle measurement Cytokines 183—186 Dialysis, see Hemodialysis; Organs, ar- and cell spreading, 144—146 Cytoskeleton, and cell adhesion, 141 tificial immunoglobulin G adsorption correCytosol, defined, 148/", 149 Differential scanning calorimetry, 56 lation, 33 Cytotoxicity Direct contact test methodology, 217 Energy-dispersive X-ray analysis, 31 assay methods, 217-220 Di-para-xylylene, in parylene coatings, calcification assessment, 276 defined, 215 115-116 Epikeratophakia (corneal transplant), DLVO theory, 143-144 331 DPX, see Di-/?#ra-xylylene Epithelium £) Drug delivery systems in vivo biomaterial assessment, Dacron, see Polyethylene tere- chemically controlled 223-224 phthalate) applications, 353-354 structure and function, 153—154 Daughter cells, defined, 156 bioerodable core, 353 ePTFE, see Expanded poly(tetrafluoroDegradable implants bioerodable matrix, 67-68, ethylene) applications, 64-65 353-354 ESCA, see Electron spectroscopy for bioerodable composites, 101—102, covalently attached to polymer chemical analysis 346 backbone, 352-353 Ethical concerns, It bone plates, 345—346 diffusion-controlled Ethylene oxide sterilization, 72, collagen-based, 88-91 applications, 348-349 417-418INDEX 477 Exocytosis, and oxidation of polymer Foreign body reaction observing, 15 implants, 251-252 fibrosis, 171-172 and yield stress, 41 Expanded poly(tetrafluoroethylene) form and topography of implant sur- Grain structure, 15 in mechanical heart valves, 286 face, 171, 204 Granulation tissue, 170-171 in struts of bioprosthetic heart and host defense impairment, 212 Granulomas, defined, 170—171 valves, 286 overview, 171 in vascular prosthesis, 121—122, 288 progression to neoplasia, 204 Extracellular matrix, see also Collagen simulating neoplasms, 201 H constituents and functions, 141— 45S5 glass, properties, 78 HA, see Hydroxyapatite 142, 150—153 Fourier transform infrared spectrome- Hall-Petch relationship, 41 synthetic analogs ter,31 Haynes-Stellite 21, see ASTM F75 nerve regeneration template, 94 Fracture fixation devices Haynes-Stellite 25, see ASTM F90 skin regeneration template, 92—94 bioerodable, 96 HCP, see Hexagonal close-packed Eye, see Ophthalmologic applications bioerodable composites, 101—102 structure bone plates, 345-346 Heartmate Ventricular Assist System, corrosion and allogenic responses, 294 F 101 Hearts, total artificial, see also VentricFabrication process factors degradable polymers, 65 ular assist devices annealing, 21, 271 Fracture stress, 18 clinical use, 398—399 and material strength, 20—21 Fracture toughness, 20; see also history, 293, 389—390 metal implants, 39-40 Toughness Jarvik-7, 390, 393 Fabrics FTIR spectrometer, see Fourier trans- natural heart physiology, 391 alginates, 120 form infrared spectrometer Utah total artificial heart cellulose fibers, 118 design and function, 392—395 characterization, 122 hemolysis, 397-398 chitosans, 120 G immunosuppression, 396 construction, 120—122 GAGs, see Glycosaminoglycans infection problems, 396 electrostatic spinning, 121 Gap junctions (cell-cell contact), 142, mechanical valve failure, 397 fiber bonding, 120-121 148f, 149 monitoring, 395-396 melt-blowing, 121 Gelatin-resorcinol-formaldehyde glue, postoperative hemorrhaging, 396 solution-blowing, 121 323 suture line leakage, 396—397 dextran, 120 Gel permeation chromatography, 54 Heart valves external applications, 122 Genotype, defined, 150 bioprosthetic, 286,423—424 internal applications, 122-123 Glass, see also Bioceramics calcification, 272—273 overview, 118 atomic structure, 13—14 failure by swelling, 269 simulated in vitro testing, 122 bioactive, 78-81 mechanical, 285-286,424 Face-centered cubic structure, 12 glass-ceramics, 76 overview, 422—423 Fatigue, defined, 20 processing method, 75 HEMA, see 2-hydroxyethyl methacFCC, see Face-centered cubic structure Glass fibers, in composites, 96 rylate FDA, see U.S. Food and Drug Adminis- Glass ionomer cements, 325 Hematopoiesis, 183 tration Glass transition temperature, 75 Hemidesmosomes, defined, 142 FEP, see Fluorinated ethylene pro- for polymers, 52 Hemodialysis pylene Glaucoma, 332 and activation of complement, Ferrite phase, 41 Glow discharge deposition, see Radio- 180—183 Fibrinogen frequency glow discharge plasma methods, 400-403 coagulation mechanisms, 197 deposition Hemofiltration, 403—404 in soft tissue adhesives, 323 Glues, see Adhesives and sealants Hemoperfusion, 404 Fibrinolytic system, 198 Glycosaminoglycans Heparin-contaimng surfaces Fibrin sealants, 323 in artificial skin, 365 heparin-grafted polymer coatings, Fibronectins in extracellular matrix, 153 305—306 and bacterial adherence, 210 properties, 92—93 heparin immobilization, 128, in extracellular matrix, 153 Golgi complex, structure and function, 302—304 Fibrosis, mechanisms, 171-173, 222 148/, 149 heparin-releasing systems, 300—302 Pick's first law,348 Gore-Tex, 59 testing methods, 298-299 Filament-winding process, 97 GPC, see Gel permeation chromatog- Hexagonal close-packed structure, 12 Fixation (histology), 158-160 raphy Higuchi equation, 348 Fluorinated ethylene propylene, 59 Grain size Hip replacement, see also Orthopedic Fluosol, 295 ASTM number, 41 applications Focal adhesion, defined, 143 and fabrication history, 41 alumina, 76-77478 INDEX Hip replacement (continued) formation on calcium phosphate ce- Intraocular lens implants bone bonding, 343 ramies, 82 capsular pacification, 441 bone remodeling, 102-104 2-Hydroxyethyl methacrylate dislocations, 440 ceramics, 343 calcification, 274-275 history, 437-439 composites, 344-345 properties, 63 inflammation, 440—441 metals, 340-342 in soft contact lenses, 57 iris chafing, 440 polymers, 342 Hypersensitivity reactions, 191-192 one-piece, 441 Histology overview, 332—333 artifacts, 162 oxidative degradation, 257 in vitro biomaterial assessment, I small incision lenses, 442 225-226 Immobilization surface modification, 441—442 techniques, 157-162 heparin, on blood-contacting sur- Ion beam implantation, 111-112 dehydration and embedding, 160 faces 298 Iridium, in bioeiectrodes, 373—374 fixation, 158-160 methods, 110, 125—128 Iridium oxide, in bioeiectrodes, 374 interpretation, 162 polyethylene oxide), on blood-con- Islet cel1 transplantation, 410-411 sectioning, 160-162 tacting surfaces, 298 ^O, see International Standards Orgastaining, 158f, 162 support designs, U4t nization Homografts therapeutic applications, 125* Isobutyl cyanoacrylate, in soft tissue adcalcification, 273 to transducers in biosensors, 385 hesives, 323 defined, 273 Immunogenicity Isotactic polymers, 52 heart valves, 273, 286 of biomaterials 177 Isotropic composites, 100 venous, 287 of biomaterial ^ear products, 191 Isotropy, defined, 16 Homopolymers of collagen.based implants, 88, 91 IUD' see Contraceptive mtrautennededasses' 58f Immunoglobulins vlces properties, 57-59 adsorption to biomaterials, 168 Hooke'slaw, 15 16 structure and function, 186 and composite laminae, 99—100 T u- u • ^ TT^ I . -.a AC Immunohistochemistry, 226 J Hot isostatic pressing, 39,45 T , 1-7-. -100 Jarvik-7 total artificial heart, 390, 393 . r , »' ' Immunology, 173-188 JT . . _ . ' . ' .. Humane ammal care and use,see Am- , , . \ *?* ACA Joint replacement, see Orthopedic appli- , , , Implant retrieval, 451-454 J r ' r rr mai models T , ./, cations .T . . , rt_ Implants,seespecific types Hyaluronic acid, properties, 92 T f . . . , -, .,, . . ;-- Industrial involvement,7 Hydration ratio, 62 . , . . . . . . T T , , » r» i Infection, biomatenal-centered ^ Hydrogels, see also Polymers ... . K. calcification, 274—275,279 . . ' Kelvin-Voight rheological model, 340 classification , •£• • sn , 60 m. . artmcia & l organs' , 21_2_ v . _ n Kevlar , . , seeArami .,, d (aromati . , c polyarncross-linkin i - , - j g density • /-> , 63 bacteria . l pathogens id , 207—208 - j r\ e fiber\ ) drug delivery systems, 63-64 ture strategies' 212-213 K^ sgg Critical stress intensity factor heparin-releasing. systems, 301-302 host defense imPairment mecha- Ki(jney agsist devic^ 400_404 molecular weight between cross- nisms, 212 links 62-63 microbiological sampling, 208 overview,'60 overview, 205-206 L preparation, 62 and Polymer degradation, 246 L_929 cdl Unej 217 soft contact lenses, 329-330 Inferior vena cavafilters,292 Lablk cells> defined) 156 structure, 60-62, 62-63 Inflammation Langhans' cells, and paniculate biomaswelling behavior, 62 acute' mechanisms, 167-168 terialSi 171 Hydrogen bonds, 12 chronic, mechanisms, 168-170 Langmuir-Blodgett deposition, 112 adsorption bonding theory, 320 cytokine factors, 185-186 Lens, artificial, see Intraocular lens imm polymers, 14 ys- foreign body tumorigenesis, 204 p}ants Hydrolysis (polymer implants) overview, 166—167 Leukocytes, see also Lymphocytes; clinical experience, 247-249 and polymer degradation, 246 Macrophages; Monocytes; Neutrokinetics, 245-246 Infrared spectroscopy, 31, 55 phils mechanisms, 70, 244-246 Injection molding, 98 in acute inflammation, 168 Hydron, 366 Insulin delivery implants, 355 in chronic inflammation, 168-170 Hydroxyapatite Integrin receptors, and cell adhesion, varieties and functions, 186-188 as anticorrosive coating, 74 141 Liver assist devices, 410 applications, 83 Interleukins, 185-186 Load-deflection testing, 17 calcification, 276 International Standards Organization, Loads, dynamic, 20 in composites, 96 215, 217, 459-460 Lost wax process, see Casting, incrystalline structure in bone, 335 Intra-aortic balloon pumps, 292—293 vestmentINDEX 479 Lucite, see Poly(methyl methacrylate) Methyl methacrylate, 63 Neutrophils Lung assist devices, 410 Methyl methacrylate cements, 324 in acute inflammation, 166, 168 Lymphocytes Microporosity, and tensile strength, 83 complement receptors, 179, 180 in chronic inflammation, 169 Microscopy and cytokines, 183 varieties and functions, 149, calcification assessment, 275 functions, 149 187-188 tissue analysis, 157-162 hematopoiesis, 183 Lysosomes, structure and function, Microstructure oxidation of polymer implants, 148f, 149 bioceramics, 75-76 249-252 cobalt-based alloys, 41—46 structure and functions, 186—187 and fabrication history, 20—21, Nexus, 142 M 75-76 Nitinol, 289 MAA, see Methacrylic acid overview, 14-15 Nitriding, defined, 40 MAC, see Membrane attack complex stainless steels, 41 NMR, see Nuclear magnetic resonance Macrophages titanium-based alloys, 47—50 Norplant, 349 in acute inflammation, 168 Microzones, defined, 211 NRT, see Nerve regeneration template in chronic inflammation, 166, Mitochondria, structure and function, Nuclear magnetic resonance, 55 169-170 148/", 149 Nucleus, structure and function, 148/i complement receptors, 180 MMA, see Methyl methacrylate 149 and cytokines, 185 Modulation (cell), 150 Number average molecular weight, 51 in foreign body reaction, 171 Molding techniques, 97—98 Nylon functions, 149 Molecular weight between cross-links degradation, 247—249 in granulation tissue, 170 (hydrogel), 62—63 properties, 59 hematopoiesis, 183 Molecular weight (polymer), 51 oxidation of polymer implants, determination, 54—55 249—252 Monoclonal antibodies, 191 structure and functions, 187 Monocytes O Macula adherens, 142 in chronic inflammation, 166, 169 Ocusert, 349 Maleic anhydride, 63 complement receptors, 180 0.2% Offset yield strength, 18, 19 Malleability, see Ductility oxidation of polymer implants, OHAp, see Hydroxyapatite Matrix systems (composites), 95, 249-252 Open-mold processes, 97 96-97 structure and functions, 187 Ophthalmologic applications Maxillofacial prostheses Monomers, defined, 50 anatomy, 435—436 materials, 315 Mononuclear phagocytic system, 169 artificial endothelium, 332 oxidative degradation, 257 Morphological fixation, defined, 74 cataract surgery, 436—437 Maxwell rheological model, 340 MP35N alloy, see ASTM F562 contact lenses Medical devices Mucosal implants, 316 flexible fluoropolymer, 330 development progression, 6f Multiphase materials, defined, 15 overview, 328—329 FDA approval process, 462—463 Muscle tissue rigid, 330 FDA classifications, 462 in vivo biomaterial assessment, 223 soft hydrogel, 329-330 regulations, 461—464 structure and function, 154 corneal implants, 331 required testing, 463—464 Mutagenicity, testing, 460 glaucoma, 332 standards, 457-460 drug delivery system, 349 Melt-blowing, 121 pressure relief implants, 332 Membrane attack complex, 178—179 N intracorneal implants, 332 Membrane osmometry, 54—55 National Institutes of Health, 215, 239 intraocular lens implants Memory metal, see Nitinol Natural materials, see Collagen; Elas- capsular pacification, 441 Metallic implants tin;Glycosaminoglycans dislocations, 440 corrosion, 101 Nearnst equation, 261 history, 437—439 corrosion and bacterial infection, Necrosis, defined, 157 inflammation, 440-441 211 Neoplastic growth, distinguishing char- iris chafing, 440 Metals, see also specific metals and ap- acteristics, 200 one-piece, 441 plications Nerve regeneration template, 94 overview, 332—333 alloys, 41—50 Nerve tissue small incision lenses, 442 atomic structure, 12 in vivo biomaterial assessment, 224 surface modification, 441—442 fabrication, 37—40 regeneration, and bioelectrodes, 371 retinal detachment surgery, 333 microstructure, 15 structure and function, 154 Oppenheimer effect, defined, 202 Methacrylic acid, 63 Neutropenia Opsonins Methyl cyanoacrylate, in soft tissue ad- during cardiopulmonary bypass, 285 and acute inflammation, 168 hesives, 323 during hemodialysis, 181 complement receptors, 179—180480 INDEX Organelles, structure and function, Oxidation, polymer implants, 249-258 consumption 148/1 149 device-mediated, 255—257 and implant surface analysis, 33 Organs environmentally induced, 257-258 and thrombogenicity, 195 compact vs. tubular, 155 host-induced, 249—252 release reaction, 195 organization, 155-156 metal ion-induced, 255-257 structure and functions, 193-195 Organs, artificial, see also Hearts, total stress cracking, 252-255 thrombus formation, 233 artificial Oxygenators, 410 Platinum, in bioelectrodes, 373 apheresis Oxygen permeability coefficient, 329 Plexiglas, see Poly(methyl methaccentrifugal plasma separation, rylate) 405-406 PMMA, see Poly(methyl methacrylate) cytapheresis, 409-410 P PNVP, see Poly(N-vinyl-2-pyrrolidone) membrane plasma filtration, Pacemakers, 269-270, 290-291 Polyacrylamides, 63 408-409 Palavital, 75 Polyacrylonitrile membrane plasma separation, PAN, see Polyacrylonitrile in carbon fiber production, 95—96 406-407 Pancreatic assist devices, 410-411 in cardiopulmonary bypass systems, plasma exchange, 404-405 Parenchyma, 155-156 285 plasma treatment, 407-408 Parylene coatings, 115-116 Poly(allylamine), 302 sorption plasma fractionation, 409 Pascal, defined, 16 Polyamides, 247-249 biomaterial-centered infection, 212 PDMS, see Poly(dimethyl siloxane) Poly(amino acids), 68—69 kidney assist PDS, see Polydioxanone Polyanhydrides hemodialysis, 400-403 PE, see Polyethylene in drug delivery, 65, 68, 353-354 hemofiltration, 403-404 PEO, see Polyethylene oxide) properties, 67-68 hemoperfusion, 404 Peritoneal dialysis, 403 surface erosion, 70 peritoneal dialysis, 403 Permanent cells, defined, 156 Polycaproamide, 247-249 liver assist, 410 PET, see Poly(ethyleneterephthalate) Polycaprolactone lung assist PGA, see Poly(glycolic acid) degradation, 247 bubble-type oxygenators, 410 PGL, see Poly(glycolide lactide) enzymatic surface erosion, 70 membrane oxygenators, 410 Phagocytosis properties, 66—67 ventilators, 410 and biomaterials, 168, 249—252 Polycarbonate, 59 pancreatic assist, 410—411 impairment by Staphylococcus epider- Polycyanoacrylates Oros, 351 midis, 212 degradation, 249 Orthopedic applications mechanisms, 168 properties, 69 bone plates, 345-346 Pharmaceutical applications, see Drug Poly(dimethyl siloxane), 59 ceramics and glasses, 76—77, delivery systems Polydioxanone, 65 342-343 PHB, see Poly(hydroxybutyrate) Polydispersity index, 51 composite implants, 343-346 PHEMA, see Poly(hydroxyethyl methac- Polyesters, 246—247 and bone remodeling, 102—104 rylate) Polyester urethanes, 247 elasticity of bone, 337-338 Phenotype, defined, 150 Polyether urethanes hip replacement Photografting, 108—109 metal-ion induced oxidation in vivo, bone bonding, 343 PHV, see Poly(hydroxyvalerate) 255—257 bone remodeling, 102-104 PLA, see Poly(lactic acid) in pacemaker lead connectors, 290 ceramics, 343 Plasma deposition, mechanisms, 110 stress cracking in vivo, 252—255, composites, 344—345 Plasmalemma, structure and function, 269—270 metals, 340-342 148f, 149 Polyethylene, 57 polymers, 342 Plasmapheresis, 404 Poly(ethylene oxide) ligament and tendon replacement, Plasma spraying, 40 in coatings on blood-contacting sur- 346 Plasmic reticulum, structure and func- faces, 305-306 rheoiogical models, 340 tion, 148/, 149 hydrogels, 63 stress protection osteoporosis, 101, Plastic deformation, 18—19 immobilization on blood-contacting 102-104 strengthening effect, 21 surfaces, 298, 304 structure of bone, 335-337 Plastic strain, 18-19 surface hydrophilicity modification, viscoelasticity of bone, 338-340 Platelet adhesion 298 wear debris and blood flow, 233 Poly(ethylene terephthalate) and immune response, 191 mechanisms, 194 degradation, 246—247 and osteolysis, 268-269 and protein adsorption, 140 in synthetic vascular grafts, 288 Osmet, 351 Platelets Poly(glycolic acid) Osteointegration, see Bone bonding adhesion mechanisms, 140, 194 composite fracture fixation devices, Osteoporosis, stress protection, 101, aggregation, 194—195 101, 346 102-104 coagulant activity, 195 as composite matrix, 97INDEX 481 controlling degradation rate of poly- Poly(methyl methacrylate) elastic behavior, 15, 16 (lactic acid), 101-102, 346 antibiotic resistance of adherent bac- fabrication process, 20-21 in dermal replacement membrane, teria, 212 fatigue strength, 20 368 bacterial adherence, 208 isotropy, 16-17 in drug delivery systems, 353,354 in cardiopulmonary bypass systems, shear, 16 properties, 69 285 stress and strain, 15 in sutures, 65 intraocular lens implants, 333,437, tension and compression, 16 Poly(glycolide lactide), 59 439 testing, 17-20 Poly(hexamethylene adipamide), 247 in joint replacement, 340, 342 toughness, 20 Poly(hydroxybutyrate), 66 properties, 57 viscous flow, 19-20 Poly(hydroxyethyl methacrylate) in rigid contact lenses, 330 microstructure, 14-15 in burn dressings, 366 surface analysis example, 26-28 surface, 21-34 in heparin-release devices, 300 Polymorphonuclear leukocytes, see analysis methods, 251 properties, 63 Neutrophils characterization, 21-22 in soft contact tenses, 329-330 Poly(ortho esters) sample preparation, 22 Poly(hydroxyvalerate), 66 in drug delivery, 68, 353 Proteins Poiy(lactic acid) properties, 68 adsorption behavior, 136-140 as composite matrix, 97 surface erosion, 70 ce" adhesion, 139-140 in drug delivery systems, 353, 354 Polyphosphazenes, 69 concentration in surface phase, in fracture fixation devices, 65, 101— Polypropylene 136— 13o 102,346 in cardiopulmonary bypass systems, conformational change, 139-140 in ligament and tendon replacement, 285 enthalpy, 140 346 in oxygenator membranes, 285 kinetics, 140 properties, 69 properties, 57-59 platelet adhesion, 140 in sutures, 65 Polysulfone thermodynamics, 140 Polymer fiber, 96 carbon fiber-polysulfone composites, P«lyelectrolyte behavior, 136 T, i • • ' u • im mA structure, 134-136 Polymerization techniques 102—104 . addition polymerization, 51—52 in cardiopulmonary bypass systems, , ^ i n^ , i • • n ci T O T defined, 92 condensation polymerization, 51—52 285 . .. . • «r-> fre , j e radica - il i polymerization • • r , 51 1 i stress crackin • - g in - vivo, i- 270-27 m IT1* m n , extracellula . . r matrix, 15 . . 3 . „ . . r. i / n i i \ / T- rseuaomonas aeruyinosa, biomatenalPolymers Poly(tetratluoroethylene), see also Ex- A ' f 707 annealing, 271 panded poly(tetrafluoroethylene) „„ , „ , , . ' ., . ^n . w , „ -r • rr> Pseudo -poly(ammo acids), 69 atomic structure, 14, 35 properties, 59 rrriri? n i / a a. i \ , . . . . _ , ' _. , , PirE, see Poly(tetrafluoroethylene) bioerodabie, 96, 97 Polyurethanes D ,, . ' . Q0 T7i TTA o^c i ' C s T77 Pultrusion, continuous, 98 calcification,' 273 . ', . 274—275 calcification . . ' , 27„3_ m/r ^_0 PVC< « , seePoli / y(viny • il u chloride i • j \ ) characterization, 54-57 degradation, 247,270 Pyrogenicity, 460 crystallinity, 52 and heparin immobilization, degradable, 64-72, 351-354 303-304 degradation, unintended, 243-258, in heparin-releasing catheters, 300 269-271 in intra-aortic balloon pumps, j^ fatigue, 52 292-293 Radiation grafting, 108-109 hydrolysis, 244-249 in pacemaker lead sheaths, 291 Radiation sterilization, 419-420 molecular weight, 50-51, 54-55 properties, 60 Radiofrequency glow discharge plasma natural, 84—94 in "skin button" of vascular access deposition 109—110 collagen, 85-91 device, 288 Radiofrequency glow discharge treatelastin, 92 Poly(vinyl alcohol), 63 rnent 107—108 glycosarainoglycans, 92, 93-94 Poly(vinyl chloride) Rayleigh's ratio, 55 oxidation, 249-258 plasticizer leaching, 269 Regulations, 461—464 surface analysis, 56-57 properties, 59 Reinforcing materials (composite) synthesis, 51-52 Poly(N-vinyl-2-pyrrolidone), 63 carbon fiber, 95-96 tacticity, 52 Powder metallurgy, 45 ceramics, 96 tensile strength, 52, 55-56 PP, see Polypropylene classification, 9St thermal properties, 52-54, 56 Prepreg, 97, 98 defined, 94-95 thermoplastic, defined, 14 Pressure transducers, 381 glass fibers, 96 thermosetting, defined, 14 Properties, material polymer fibers, 96 toughness, 52 atomic structure, 11-14 Renal failure, see Organs, artificial viscoelasticity, 53-54 mechanical, 15-21 Replamineform process, 78 wear rates in vivo, 268—269 ductility, 18 Research directions, 464—467482 INDEX Resin cements, 325 bacterial adherence, 208 correlation with biological reactions, Resorbable materials, see Bioerodable in bioelectrodes, 374 445-450 materials corrosion in vivo, 264-265 methods, 25? Reticuloendothelial system, 169 in dental implants, 316 atomic force microscopy, 32-33 RFGD plasma deposition, see Radiofre- in inferior vena cava filters, 292 contact angle measurement, 23 quency glow discharge plasma de- in joint replacements, 340 electron spectroscopy for chemical position microstructure, 41 analysis, 23—28 Rheological models, 340 Standards infrared spectroscopy, 31 ASTM system, 459 scanning electron microscopy, biocompatibility testing, 459-461 29-31 S devices, 457 scanning tunneling microscopy, Safe Medical Devices Act of 1990,462 materials, 457 31-33 SAXS, see Small-angle X-ray scattering procedural, 457 secondary ion mass spectrometry, Scaffold implants, temporary, 65 Staphylococcus aureus 28-29 Scanning electron microscopy antibiotic sensitivity and biomateri- sample preparation, 22 calcification assessment, 275—276 als, 212 Surface erosion, defined, 70 description and applications, 29—31 biomaterial-centered infections, 207, Surface modification, see also Surface in vivo biomaterial assessment, 227 208 analysis in tissue analysis, 160 protein receptors, 210 additives, 113—114 Scanning tunneling microscopy, 31-33 Staphylococcus epidermidis biomolecule immobilization, 128, Scar synthesis, blocking, 93-94 adhesion to polymers vs. metals, 210 298, 302 Sealants, see Adhesives and sealants antibiotic sensitivity and biomateri- delamination resistance, 106 Secondary ion mass spectrometry, als,212 methods 28-29 biomaterial-centered infections, 207, chemical reactions, 107-108 and discolored titanium, 33 208 conversion coatings, 115 Sectioning (histology), 160—162 phagocytosis impairment mecha- ion beam implantation, 111—112 Self-assembled rnonolayers, 112—113 nism, 212 Langmuir-Biodgett deposition, 112 SEM, see Scanning electron microscopy protein receptors, 210 lasers, 116 Sepsis, implant-associated, 206—207 Stem cells, defined, 156 parylene coatings, 115—116 Shear, 16 Stents, 65, 289 photografting, 108-109 Shear modulus, 16 Stereology, and implant pore structure, radiation grafting, 108-109 Shear strain, 16 88 radiofrequency glow discharge Shear stress, 16 Sterilization of implants plasma deposition, 109-110 Silanes, in surface silanization, degradable materials, 72 radiofrequency glow discharge 110-111 ethylene oxide sterilization, 72, treatment, 107—108 Silver, in bioelectrodes, 373 417-418 self-assembled monolayers, SIMS, see Secondary ion mass spec- implant and packaging compatibil- 112—113 trometry ity,416-417 silanization, 110-111 Sintering, ceramic radiation sterilization surface-modifying additives, liquid-phase, 75-76 60Co radiation, 419 113-114 solid-state, 76 electron beam, 419-420 reversal, 106 Sintering, metal, 40 steam sterilization (autoclaving), 417 thickness, 106 Skin regeneration template, 93-94 sterility assurance level, 415-416 Surface reactions, bioactive glass imSkin replacement, 65, 360—370 STM, see Scanning tunneling mi- plants, 78-81 Small-angle X-ray scattering, 55 croscopy Sutures, 59, 65, 356—359 Society for Biomaterials, 1 Strain, 15 Swelling (hydrogels), 62 Solids Stress, 15 Syndiotactic polymers, 52 atomic structure, 11—14 cyclic, 20 Systemic toxicity microstructure, 14-15 Stress protection atrophy, 101, 102- due to immune response, 191-192 Solutions, solid, 15 104,222-223 nonimmune, 189 SRT, see Skin regeneration template Stress relaxation, defined, 19 Stable cells, defined, 156 Stress relief, in polymeric devices, 271 Staining (histology), 158?, 162 Stroma, 155, 156 Stainless steel Subperiosteal implants, see Dental im- T antibiotic resistance of adherent bac- plants Tacticity, defined, 52 teria, 212 Surface analysis Tantalum, in bioelectrodes, 374 ASTM F138, 41 characterization, 21-22 T cells, structure and functions, 187 ASTM F139, 41 contamination detection, 33 TCP,see /3-Tricalcium phosphateINDEX 483 Tecoflex, 288 nerve tissue antibiotic resistance of adherentbacTeflon, see Poiy(tetrafluoroethylene) in vivo biomaterial assessment, teria, 212 TEM, see Transmission electron mi- 224 bacterial adherence, 208 croscopy structure and function, 154 in joint prostheses, 96, 342 Tensile modulus, defined, 16 Titanium Unit cells, 12 Tensile strain, 16 ASTM F67,46, 47 Urinary prosthesis, encrustation, 275 Tensile strength ASTM F136 alloy, 47-50 U.S. Food and Drug Administration, defined, 19 m joint replacements, 340 66, 215, 2.40 and microporosity, 83 ASTM Grade 1 alloy authority under law,461—462 Tensile stress 16 m cardiac pacemaker casings, 290 medical device approval, 462—463 Testing, mechanical properties, 17-20 in implantable drug pumps, 288 medical device testing, 463-464 Texture (in grain structure), defined, properties, 46 U.S. Pharmacopeia! Convention, Inc., 41 ASTM Grade 2 alloy 217 Therapeutic index 346 m cardiac pacemaker connector Utah total artificial heart, 392—399 Thermistors 380 blocks, 290 UTS, see Ultimate tensile stress Thermocouples, 380 properties, 46 Thin films, 106, 108-116; see also Sur- corrosion and passivation, 263 face modification in dental implants, 313, 315, 316 316L stainless steel, see Stainless steel discoloration due to oxide growth, V Thrombin ^ Vacuum bag-autoclave process, 97 coagulation mechanisms, 195, microsphere lining in blood pumps, van der Waals bonds, 12 196-197 "^^ adsorption bonding theory, 320 in sofc. t tissu .- J e adhesives L TT- , 323J , mining an , , d extraction , , 38 in polymers - , 14, T- I hromb U t • m i chromogeni•c TO assay, 29O9 Torsiona _, , , ^ l load testing , , , , 18 Vascula , f r access ^ , 288 Thrombogenicitv Toughness, defined, 20 Vascular grafts, 420-422 defined, 229-231 Toxicity biologic, 287-288 , ' . ' . . c assay methods, 217-220 synthetic, 288 heparin-contamtng surfaces, 1 ^ 1 - , ^ */ -, A , n 299-307 defined, 216 Ventilators, 410 Vn-r -.on delivered dose, 216 Ventricular assist devices, 293—295 overview, 297—298 j T.^ i_- ->oa aan , , , ir.r exposure dose, 216 history, 389-390 and platelet consumption, 195 . , ^,A .,. . , , . . .... . _rtn Toxicology, 215-220 Vicryl sutures, 65 and surface hydropnihcity, 298 ~ , , , , , . \r w i -> i - j s~> -r- x * i **r 11 » r-m ,rt ~>, * ransdermal drug delivery systems, N-Vmyl-2-pyrrolidone, 63 H-6A1-4V alloy, see ASTM H36 Q/1Q to ' \r \ + • \ . M A~, 349 Viscoelastic materials Tigh b ' t junction Iransmissio s (cell-cell contact), 143, T - . r n electro ^ • n microscop • y polymers ci , 53—5 CA4 '' . calcification assessment, 276 testing methods, 19—20 Tissue analysis techniques in vivQ biomaterial assessment, Viscous flow, defined, 19-20 electron microscopy, 162 226-227 Vitreous implants, 333 light microscopy, 157-162 in flssue analysis? 160 Vitrification, seeSintering, ceramic Tissue attachment /3-Tricalcium phosphate bioacdve fixation, 74, 78-81 bioerodable ceramics, 82, 266 biologicalfixation,74,78 in composites, 96 ceramic implants, 73-75 Tumorigenesis W morphological fixation, 74 association with implants, 200-202 WAXS, see Wide-angle X-ray scatTissue engineering, 296 orthopedic, 200-201 tering Tissue regeneration, 88, 92-94 vascular grafts, 201 Wear debris, artificial joints and osteoTissues, basic anc} foreign body reaction, 201,204 lysis, 268-269 connective tissue VS- inflammatory response, 204 Weight average molecular weight, 51 in vivo biomaterial assessment, neoplastic growth, 200 Wettability, see also Contact angle mea- 222—223 overview, 200 surement structure and function, 154 pathogenesis, 202-204 and adhesive joining, 320 epithelium and cell adhesion, 145 in vivo biomaterial assessment, and surface energy, 23 223-224 U White cells, see Leukocytes structure and function, 153-154 UHMW polyethylene, see Ultra-high- Whitlockite, see 0-Tricalcium phosmuscle tissue molecular-weight polyethylene phate in vivo biomaterial assessment, Ultimate tensile stress, defined, 19 Wide-angle X-ray scattering, 55 223 Ultra-high-molecular-weight polyeth- Wound healing, 170—173 structure and function, 154 ylene cellular adaptations, 172484 INDEX Wound healing (continued) X-ray photoelectron spectroscopy, 57; Z granulation tissue, 170-171 see also Electron spectroscopy for Zinc phosphate cements, 325 and surgical trauma, 224 chemical analysis Zinc polycarboxylate cements, 325 ^tozra-Xylylene ! ' } , see Parylen & e coating Zircom s ^- • a 1-7 (ZrOr\2 \ ), • in \,- hip i replacement, 77 Xenografts arterial 287 Zisman method, 23; see also Critical heart valves, 286 Y surface tension skin, 365 Young's modulus, see Tensile modulus Zonula occludens, defined, 143
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Biomaterials Science - An Introduction to Materials in Medicine رابط مباشر لتنزيل كتاب Biomaterials Science - An Introduction to Materials in Medicine
عدل سابقا من قبل Admin في السبت 17 يوليو 2021, 2:41 am عدل 1 مرات |
|