Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Fundamentals of Signal Processing for Sound and Vibration Engineers الأربعاء 25 ديسمبر 2013, 12:01 am | |
|
أخوانى فى الله أحضرت لكم كتاب Fundamentals of Signal Processing for Sound and Vibration Engineers Kihong Shin Andong National University Republic of Korea Joseph K. Hammond University of Southampton
ويتناول الموضوعات الأتية :
Contents Preface ix About the Authors xi 1 Introduction to Signal Processing 1 1.1 Descriptions of Physical Data (Signals) 6 1.2 Classification of Data 7 Part I Deterministic Signals 17 2 Classification of Deterministic Data 19 2.1 Periodic Signals 19 2.2 Almost Periodic Signals 21 2.3 Transient Signals 24 2.4 Brief Summary and Concluding Remarks 24 2.5 MATLAB Examples 26 3 Fourier Series 31 3.1 Periodic Signals and Fourier Series 31 3.2 The Delta Function 38 3.3 Fourier Series and the Delta Function 41 3.4 The Complex Form of the Fourier Series 42 3.5 Spectra 43 3.6 Some Computational Considerations 46 3.7 Brief Summary 52 3.8 MATLAB Examples 52 4 Fourier Integrals (Fourier Transform) and Continuous-Time Linear Systems 57 4.1 The Fourier Integral 57 4.2 Energy Spectra 61 4.3 Some Examples of Fourier Transforms 62 4.4 Properties of Fourier Transforms 67vi CONTENTS 4.5 The Importance of Phase 71 4.6 Echoes 72 4.7 Continuous-Time Linear Time-Invariant Systems and Convolution 73 4.8 Group Delay (Dispersion) 82 4.9 Minimum and Non-Minimum Phase Systems 85 4.10 The Hilbert Transform 90 4.11 The Effect of Data Truncation (Windowing) 94 4.12 Brief Summary 102 4.13 MATLAB Examples 103 5 Time Sampling and Aliasing 119 5.1 The Fourier Transform of an Ideal Sampled Signal 119 5.2 Aliasing and Anti-Aliasing Filters 126 5.3 Analogue-to-Digital Conversion and Dynamic Range 131 5.4 Some Other Considerations in Signal Acquisition 134 5.5 Shannon’s Sampling Theorem (Signal Reconstruction) 137 5.6 Brief Summary 139 5.7 MATLAB Examples 140 6 The Discrete Fourier Transform 145 6.1 Sequences and Linear Filters 145 6.2 Frequency Domain Representation of Discrete Systems and Signals 150 6.3 The Discrete Fourier Transform 153 6.4 Properties of the DFT 160 6.5 Convolution of Periodic Sequences 162 6.6 The Fast Fourier Transform 164 6.7 Brief Summary 166 6.8 MATLAB Examples 170 Part II Introduction to Random Processes 191 7 Random Processes 193 7.1 Basic Probability Theory 193 7.2 Random Variables and Probability Distributions 198 7.3 Expectations of Functions of a Random Variable 202 7.4 Brief Summary 211 7.5 MATLAB Examples 212 8 Stochastic Processes; Correlation Functions and Spectra 219 8.1 Probability Distribution Associated with a Stochastic Process 220 8.2 Moments of a Stochastic Process 222 8.3 Stationarity 224 8.4 The Second Moments of a Stochastic Process; Covariance (Correlation) Functions 225 8.5 Ergodicity and Time Averages 229 8.6 Examples 232CONTENTS vii 8.7 Spectra 242 8.8 Brief Summary 251 8.9 MATLAB Examples 253 9 Linear System Response to Random Inputs: System Identification 277 9.1 Single-Input Single-Output Systems 277 9.2 The Ordinary Coherence Function 284 9.3 System Identification 287 9.4 Brief Summary 297 9.5 MATLAB Examples 298 10 Estimation Methods and Statistical Considerations 317 10.1 Estimator Errors and Accuracy 317 10.2 Mean Value and Mean Square Value 320 10.3 Correlation and Covariance Functions 323 10.4 Power Spectral Density Function 327 10.5 Cross-spectral Density Function 347 10.6 Coherence Function 349 10.7 Frequency Response Function 350 10.8 Brief Summary 352 10.9 MATLAB Examples 354 11 Multiple-Input/Response Systems 363 11.1 Description of Multiple-Input, Multiple-Output (MIMO) Systems 363 11.2 Residual Random Variables, Partial and Multiple Coherence Functions 364 11.3 Principal Component Analysis 370 Appendix A Proof of ? ??2M sin 2 2??aMaM da = 1 375 Appendix B Proof of |Sxy( f )|2 ? Sxx( f )Syy( f ) 379 Appendix C Wave Number Spectra and an Application 381 Appendix D Some Comments on the Ordinary Coherence Function ?xy 2 ( f ) 385 Appendix E Least Squares Optimization: Complex-Valued Problem 387 Appendix F Proof of HW( f ) ? H1( f ) as ?( f ) ? ? 389 Appendix G Justification of the Joint Gaussianity of X( f ) 391 Appendix H Some Comments on Digital Filtering 393 References 395 Index 399
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Signal Processing for Sound and Vibration Engineers رابط مباشر لتنزيل كتاب Fundamentals of Signal Processing for Sound and Vibration Engineers
|
|