Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Mechanical Properties of Ceramics الأحد 29 ديسمبر 2013, 9:40 am | |
|
أخوانى فى الله أحضرت لكم كتاب Mechanical Properties of Ceramics
JOHN B. WACHTMAN W. ROGER CANNON M. JOHN MATTHEWSON Rutgers University
ويتناول الموضوعات الأتية :
1 Stress and Strain 1 1.1 Introduction 1 1.2 Tensor Notation for Stress 5 1.3 Stress in Rotated Coordinate System 8 1.4 Principal Stress 11 1.4.1 Principal Stresses in Three Dimensions 15 1.5 Stress Invariants 16 1.6 Stress Deviator 16 1.7 Strain 17 1.8 True Stress and True Strain 20 1.8.1 True Strain 21 1.8.2 True Stress 22 Problems 23 2 Types of Mechanical Behavior 27 2.1 Introduction 27 2.2 Elasticity and Brittle Fracture 28 2.3 Permanent Deformation 31 3 Elasticity 35 3.1 Introduction 35 3.2 Elasticity of Isotropic Bodies 36 3.3 Reduced Notation for Stresses, Strains, and Elastic Constants 38 v 3.4 Effect of Symmetry on Elastic Constants 41 3.5 Orientation Dependence of Elastic Moduli in Single Crystals and Composites 43 3.6 Values of Polycrystalline Moduli in Terms of Single–Crystal Constants 44 3.7 Variation of Elastic Constants with Lattice Parameter 45 3.8 Variation of Elastic Constants with Temperature 47 3.9 Elastic Properties of Porous Ceramics 49 3.10 Stored Elastic Energy 52 Problems 53 4 Strength of Defect-Free Solids 55 4.1 Introduction 55 4.2 Theoretical Strength in Tension 55 4.3 Theoretical Strength in Shear 59 Problems 60 5 Linear Elastic Fracture Mechanics 63 5.1 Introduction 63 5.2 Stress Concentrations 64 5.3 Griffith Theory of Fracture of a Brittle Solid 65 5.4 Stress at Crack Tip: An Estimate 69 5.5 Crack Shape in Brittle Solids 70 5.6 Irwin Formulation of Fracture Mechanics: Stress Intensity Factor 71 5.7 Irwin Formulation of Fracture Mechanics: Energy Release Rate 75 5.7.1 Relationship betweenGandKI 76 5.8 Some Useful Stress Intensity Factors 79 5.9 TheJIntegral 81 5.10 Cracks with Internal Loading 83 5.11 Failure under Multiaxial Stress 85 Problems 87 6 Measurements of Elasticity, Strength, and Fracture Toughness 89 6.1 Introduction 89 6.2 Tensile Tests 91 6.3 Flexure Tests 95 6.3.1 Three-Point Bending 98 6.3.2 Four-Point Bending 100 6.3.3 Fracture Toughness Measurement by Bending 101 6.4 Double-Cantilever-Beam Test 104 vi CONTENTS 6.5 Double-Torsion Test 106 6.6 Indentation Test 106 6.6.1 Direct Method 108 6.6.2 Indirect Method 109 6.6.3 Modified Method 111 6.6.4 Summary of the Three Methods 112 6.6.5 ASTM Standard C 1421 Method 112 6.7 Biaxial Flexure Testing 113 6.8 Elastic Constant Determination Using Vibrational and Ultrasonic Methods 113 Problems 115 7 Statistical Treatment of Strength 119 7.1 Introduction 119 7.2 Statistical Distributions 120 7.3 Strength Distribution Functions 121 7.3.1 Gaussian, or Normal, Distribution 122 7.3.2 Weibull Distribution 122 7.3.3 Comparison of the Normal and Weibull Distributions 124 7.4 Weakest Link Theory 125 7.5 Determining Weibull Parameters 128 7.6 Effect of Specimen Size 129 7.7 Adaptation to Bend Testing 130 7.8 Safety Factors 136 7.9 Example of Safe Stress Calculation 136 7.10 Proof Testing 138 7.11 Use of Pooled Fracture Data in Linear Regression Determination of Weibull Parameters 140 7.12 Method of Maximum Likelihood in Weibull Parameter Estimation 141 7.13 Statistics of Failure under Multiaxial Stress 144 7.14 Effects of Slow Crack Propagation andR-Curve Behavior on Statistical Distributions of Strength 146 7.15 Surface Flaw Distributions and Multiple Flaw Distributions 147 Problems 149 8 Subcritical Crack Propagation 151 8.1 Introduction 151 8.2 Observed Subcritical Crack Propagation 152 8.3 Crack Velocity Theory and Molecular Mechanism 155 CONTENTS vii 8.4 Time to Failure under Constant Stress 158 8.5 Failure under Constant Stress Rate 162 8.6 Comparison of Times to Failure under Constant Stress and Constant Stress Rate 164 8.7 Relation of Weibull Statistical Parameters with and without Subcritical Crack Growth 164 8.8 Construction of Strength–Probability–Time Diagrams 166 8.9 Proof Testing to Guarantee Minimum Life 171 8.10 Subcritical Crack Growth and Failure from Flaws Originating from Residual Stress Concentrations 172 8.11 Slow Crack Propagation at High Temperature 173 Problems 175 9 Stable Crack Propagation andR-Curve Behavior 177 9.1 Introduction 177 9.2 R-Curve (T-Curve) Concept 179 9.3 R-Curve Effects of Strength Distributions 185 9.4 Effect ofRCurve on Subcritical Crack Growth 186 Problems 186 10 Overview of Toughening Mechanisms in Ceramics 189 10.1 Introduction 189 10.2 Toughening by Crack Deflection 191 10.3 Toughening by Crack Bowing 193 10.4 General Remarks on Crack Tip Shielding 194 11 Effect of Microstructure on Toughness and Strength 199 11.1 Introduction 199 11.2 Fracture Modes in Polycrystalline Ceramics 200 11.3 Crystalline Anisotropy in Polycrystalline Ceramics 204 11.4 Effect of Grain Size on Toughness 207 11.5 Natural Flaws in Polycrystalline Ceramics 210 11.6 Effect of Grain Size on Fracture Strength 212 11.7 Effect of Second-Phase Particles on Fracture Strength 217 11.8 Relationship between Strength and Toughness 219 11.9 Effect of Porosity on Toughness and Strength 220 11.10 Fracture of Traditional Ceramics 222 Problems 224 12 Toughening by Transformation 227 12.1 Introduction 227 12.2 Basic Facts of Transformation Toughening 228 viii CONTENTS 12.3 Theory of Transformation Toughening 230 12.4 Shear-Dilatant Transformation Theory 233 12.5 Grain-Size-Dependent Transformation Behavior 233 12.6 Application of Theory to Ca-Stabilized Zirconia 242 Problems 245 13 Mechanical Properties of Continuous-Fiber-Reinforced Ceramic Matrix Composites 249 13.1 Introduction 249 13.2 Elastic Behavior of Composites 250 13.3 Fracture Behavior of Composites with Continuous, Aligned Fibers 253 13.4 Complete Matrix Cracking of Composites with Continuous, Aligned Fibers 255 13.5 Propagation of Short, Fully Bridged Cracks 260 13.6 Propagation of Partially Bridged Cracks 264 13.7 Additional Treatment of Crack-Bridging Effects 267 13.8 Additional Statistical Treatments 269 13.9 Summary of Fiber-Toughening Mechanisms 270 13.10 Other Failure Mechanisms in Continuous, Aligned-Fiber Composites 270 13.11 Tensile Stress–Strain Curve of Continuous, Aligned-Fiber Composites 271 13.12 Laminated Composites 273 Problems 274 14 Mechanical Properties of Whisker-, Ligament-, and Platelet-Reinforced Ceramic Matrix Composites 277 14.1 Introduction 277 14.2 Model for Whisker Toughening 278 14.3 Combined Toughening Mechanisms in Whisker-Reinforced Composites 288 14.4 Ligament-Reinforced Ceramic Matrix Composites 288 14.5 Platelet-Reinforced Ceramic Matrix Composites 289 Problems 289 15 Cyclic Fatigue of Ceramics 291 15.1 Introduction 291 15.2 Cyclic Fatigue of Metals 292 15.3 Cyclic Fatigue of Ceramics 295 15.4 Mechanisms of Cyclic Fatigue of Ceramics 298 15.5 Cyclic Fatigue by Degradation of Crack Bridges 298 15.6 Short-Crack Fatigue of Ceramics 298 CONTENTS ix 15.7 Implications of Cyclic Fatigue in Design of Ceramics 301 Problems 301 16 Thermal Stress and Thermal Shock in Ceramics 303 16.1 Introduction 303 16.2 Magnitude of Thermal Stresses 304 16.3 Figure of Merit for Various Thermal Stress Conditions 304 16.4 Crack Propagation under Thermal Stress 306 Problems 313 17 Fractography 317 17.1 Introduction 317 17.2 Qualitative Features of Fracture Surfaces 318 17.3 Quantitative Fractography 325 17.4 Fractal Concepts in Fractography 328 17.5 Fractography of Single Crystals and Polycrystals 328 Problems 330 18 Dislocations and Plastic Deformation in Ductile Crystals 333 18.1 Introduction 333 18.2 Definition of Dislocations 334 18.3 Glide and Climb of Dislocations 337 18.4 Force on a Dislocation 337 18.5 Stress Field and Energy of a Dislocation 339 18.6 Force Required to Move a Dislocation 340 18.7 Line Tension of a Dislocation 341 18.8 Dislocation Multiplication 342 18.9 Forces between Dislocations 343 18.10 Dislocation Pileups 345 18.11 Orowan’s Equation for Strain Rate 346 18.12 Dislocation Velocity 347 18.13 Hardening by Solid Solution and Precipitation 348 18.14 Slip Systems 349 18.15 Partial Dislocations 351 18.16 Deformation Twinning 353 Problems 356 19 Dislocations and Plastic Deformation in Ceramics 357 19.1 Introduction 357 19.2 Slip Systems in Ceramics 358 19.3 Independent Slip Systems 359 19.4 Plastic Deformation in Single-Crystal Alumina 360 19.5 Twinning in Aluminum Oxide 366 x CONTENTS 19.6 Plastic Deformation of Single-Crystal Magnesium Oxide 368 19.7 Plastic Deformation of Single-Crystal Cubic Zirconia 369 Problems 369 20 Creep in Ceramics 371 20.1 Introduction 371 20.2 Nabarro–Herring Creep 373 20.3 Combined Diffusional Creep Mechanisms 374 20.4 Power Law Creep 376 20.5 Combined Diffusional and Power Law Creep 378 20.6 Role of Grain Boundaries in High-Temperature Deformation and Failure 379 20.7 Damage-Enhanced Creep 380 20.8 Superplasticity 382 20.9 Deformation Mechanism Maps 388 Problems 388 21 Creep Rupture at High Temperatures and Safe Life Design 391 21.1 Introduction 391 21.2 General Process of Creep Damage and Failure in Ceramics 391 21.3 Monkman–Grant Technique of Life Prediction 395 21.4 Two-Stage Strain Projection Technique 397 21.5 Fracture Mechanism Maps 399 Problems 403 22 Hardness and Wear 405 22.1 Introduction 405 22.2 Spherical Indenters versus Sharp Indenters 406 22.3 Methods of Hardness Measurement 408 22.4 Deformation around Indentation 410 22.5 Cracking around Indentation 412 22.6 Indentation Size Effect 413 22.7 Wear Resistance 416 Problems 421 23 Mechanical Properties of Glass and Glass Ceramics 423 23.1 Introduction 423 23.2 Typical Inorganic Glasses 423 23.3 Viscosity of Glass 424 23.4 Elasticity of Inorganic Glasses 425 23.5 Strength and Fracture Surface Energy of Inorganic Glasses 426 23.6 Achieving High Strength in Bulk Glasses 427 23.7 Glass Ceramics 429 Problems 429 CONTENTS xi 24 Mechanical Properties of Polycrystalline Ceramics in General and Design Considerations 431 24.1 Introduction 431 24.2 Mechanical Properties of Polycrystalline Ceramics in General 432 24.3 Design Involving Mechanical Properties 436 References 439 Index
أتمنى أن تستفيدوا منه وأن ينال إعجابكم رابط تنزيل كتاب Mechanical Properties of Ceramics
|
|