Admin مدير المنتدى
عدد المساهمات : 18984 التقييم : 35458 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Springer Handbook of Crystal Growth الخميس 29 مايو 2014, 2:13 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Springer Handbook of Crystal Growth Govindhan Dhanaraj, Kullaiah Byrappa, Vishwanath Prasad, Michael Dudley
ويتناول الموضوعات الأتية :
Contents List of Abbreviations . XXXI Part A Fundamentals of Crystal Growth and Defect Formation 1 Crystal Growth Techniques and Characterization: An Overview Govindhan Dhanaraj, Kullaiah Byrappa, Vishwanath (Vish) Prasad, Michael Dudley 3 1.1 Historical Developments 3 1.2 Theories of Crystal Growth . 4 1.3 Crystal Growth Techniques . 6 1.4 Crystal Defects and Characterization . 11 References 15 2 Nucleation at Surfaces Ivan V. Markov 17 2.1 Equilibrium Crystal–Ambient Phase 18 2.2 Work for Nucleus Formation . 24 2.3 Rate of Nucleation . 28 2.4 Saturation Nucleus Density 35 2.5 Second-Layer Nucleation in Homoepitaxy 38 2.6 Mechanism of Clustering in Heteroepitaxy 43 2.7 Effect of Surfactants on Nucleation . 45 2.8 Conclusions and Outlook 48 References 48 3 Morphology of Crystals Grown from Solutions Francesco Abbona, Dino Aquilano 53 3.1 Equilibrium Shape . 55 3.2 The Theoretical Growth Shape 64 3.3 Factors Influencing the Crystal Habit 71 3.4 Surface Structure . 72 3.5 Crystal Defects . 73 3.6 Supersaturation – Growth Kinetics . 73 3.7 Solvent . 75 3.8 Impurities . 78 3.9 Other Factors . 84 3.10 Evolution of Crystal Habit . 85 3.11 A Short Conclusion . 86 3.A Appendix 86 References 87XVIII Contents 4 Generation and Propagation of Defects During Crystal Growth Helmut Klapper . 93 4.1 Overview . 94 4.2 Inclusions . 95 4.3 Striations and Growth Sectors 101 4.4 Dislocations 107 4.5 Twinning 120 4.6 Perfection of Crystals Grown Rapidly from Solution . 125 References 127 5 Single Crystals Grown Under Unconstrained Conditions Ichiro Sunagawa . 133 5.1 Background 134 5.2 Smooth and Rough Interfaces: Growth Mechanism and Morphology 136 5.3 Surface Microtopography . 139 5.4 Growth Forms of Polyhedral Crystals . 143 5.5 Internal Morphology 146 5.6 Perfection of Single Crystals . 152 References 156 6 Defect Formation During Crystal Growth from the Melt Peter Rudolph 159 6.1 Overview . 159 6.2 Point Defects . 163 6.3 Dislocations 176 6.4 Second-Phase Particles . 188 6.5 Faceting 191 6.6 Twinning 193 6.7 Summary 194 References Part B Crystal Growth from Melt Techniques 7 Indium Phosphide: Crystal Growth and Defect Control by Applying Steady Magnetic Fields David F. Bliss . 205 7.1 Historical Overview 205 7.2 Magnetic Liquid-Encapsulated Growth . 206 7.3 Magnetic Field Interactions with the Melt . 209 7.4 Dislocation Density 216 7.5 Magnetic Field Effects on Impurity Segregation . 220 7.6 Optical Characterization of InP:Fe . 224 7.7 Summary 226 References 227Contents XIX 8 Czochralski Silicon Single Crystals for Semiconductor and Solar Cell Applications Koichi Kakimoto 231 8.1 Silicon Single Crystals for LSIs and Solar Applications . 232 8.2 Control of Crystal Defects in Czochralski Silicon 237 8.3 Growth and Characterization of Silicon Multicrystal for Solar Cell Applications 239 8.4 Summary 240 References 241 9 Czochralski Growth of Oxide Photorefractive Crystals Ernesto Diéguez, Jose Luis Plaza, Mohan D. Aggarwal, Ashok K. Batra . 245 9.1 Background 246 9.2 Crystal Growth . 246 9.3 Design and Development of Czochralski Growth System 247 9.4 Growth of Lithium Niobate Crystals and Its Characteristics . 252 9.5 Other Oxide Photorefractive Crystals . 262 9.6 Growth of Sillenite Crystals and Its Characteristics . 264 9.7 Conclusions . 273 References 273 10 Bulk Crystal Growth of Ternary III–V Semiconductors Partha S. Dutta 281 10.1 III–V Ternary Semiconductors . 282 10.2 Need for Ternary Substrates . 283 10.3 Criteria for Device-Grade Ternary Substrates . 284 10.4 Introduction to Bridgman Crystal Growth Techniques 286 10.5 Overview of III–V Binary Crystal Growth Technologies 292 10.6 Phase Equilibria for Ternary Compounds . 300 10.7 Alloy Segregation in Ternary Semiconductors 302 10.8 Crack Formation in Ternary Crystals 304 10.9 Single-Crystalline Ternary Seed Generation Processes 308 10.10 Solute Feeding Processes for Homogeneous Alloy Growth 311 10.11 Role of Melt–Solid Interface Shapes . 318 10.12 Conclusion 321 References 321 11 Growth and Characterization of Antimony-Based Narrow-Bandgap III–V Semiconductor Crystals for Infrared Detector Applications Vijay K. Dixit, Handady L. Bhat . 327 11.1 Importance of Antimony-Based Semiconductors . 329 11.2 Phase Diagrams . 330 11.3 Crystal Structure and Bonding 331 11.4 Material Synthesis and Purification 333XX Contents 11.5 Bulk Growth of InSb 334 11.6 Structural Properties of InSb, InAsxSb1?x, and InBixSb1?x 340 11.7 Physical Properties of InSb, InAsxSb1?x, and InBixSb1?x . 346 11.8 Applications 357 11.9 Concluding Remarks and Future Outlook 359 References 12 Crystal Growth of Oxides by Optical Floating Zone Technique Hanna A. Dabkowska, Antoni B. Dabkowski 367 12.1 Historical Notes . 367 12.2 Optical Floating Zone Technique – Application for Oxides 368 12.3 Optical Floating Zone and Traveling Solvent Crystal Growth Techniques 369 12.4 Advantages and Limitations of the Floating Zone Techniques 370 12.5 Optical Floating Zone Furnaces . 371 12.6 Experimental Details of Ceramics and Rod Preparation for OFZT . 372 12.7 Stable Growth of Congruently and Incongruently Melting Oxides . 373 12.8 Constitutional Supercooling and Crystallization Front Stability . 375 12.9 Crystal Growth Termination and Cooling . 377 12.10 Characterization of Crystals Grown by the OFZ Technique . 377 12.11 Determination of Defects in Crystals – The Experimental Approach 380 12.12 Details of Conditions for Growth of Selected Oxide Single Crystals by OFZ and TSFZ Methods . 383 12.13 Conclusions . 386 References 386 13 Laser-Heated Pedestal Growth of Oxide Fibers Marcello R.B. Andreeta, Antonio Carlos Hernandes 393 13.1 Fiber-Pulling Research 394 13.2 The Laser-Heated Pedestal Growth Technique 399 13.3 Fundamentals . 402 13.4 Fiber Growth Aspects . 409 13.5 Conclusions . 418 References 419 14 Synthesis of Refractory Materials by Skull Melting Technique Vyacheslav V. Osiko, Mikhail A. Borik, Elena E. Lomonova 433 14.1 Overview . 433 14.2 Techniques for Growth of Single Crystals in a Cold Crucible 435 14.3 Growth of Single Crystals Based on Zirconium Dioxide . 443 14.4 Glass Synthesis by Skull Melting in a Cold Crucible 465 14.5 Conclusion 469 References 469Contents XXI 15 Crystal Growth of Laser Host Fluorides and Oxides Hongjun Li, Jun Xu . 479 15.1 Crystal Growth of Laser Fluorides and Oxides from Melt . 479 15.2 Laser Crystal Defects 487 15.3 Crystal Growth Techniques Characterization 501 References 503 16 Shaped Crystal Growth Vitali A. Tatartchenko . 509 16.1 Definitions and Scope of Discussion: SCG by CST 510 16.2 DSC – Basis of SCG by CST 512 16.3 SA and SCG by CZT 517 16.4 SA and SCG by VT . 519 16.5 SA and SCG by FZT 522 16.6 TPS Capillary Shaping . 522 16.7 TPS Sapphire Growth . 539 16.8 TPS Silicon Growth . 546 16.9 TPS Metals Growth . 551 16.10 TPS Peculiarities 552 References 552 Part C Solution Growth of Crystals 17 Bulk Single Crystals Grown from Solution on Earth and in Microgravity Mohan D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, Donald O. Frazier . 559 17.1 Crystallization: Nucleation and Growth Kinetics 561 17.2 Low-Temperature Solution Growth 566 17.3 Solution Growth by Temperature Lowering . 567 17.4 Triglycine Sulfate Crystal Growth: A Case Study 574 17.5 Solution Growth of Triglycine Sulfate Crystals in Microgravity . 582 17.6 Protein Crystal Growth . 592 17.7 Concluding Remarks 594 References 594 18 Hydrothermal Growth of Polyscale Crystals Kullaiah Byrappa . 599 18.1 History of Hydrothermal Growth of Crystals . 603 18.2 Thermodynamic Basis of the Hydrothermal Growth of Crystals . 606 18.3 Apparatus Used in the Hydrothermal Growth of Crystals 615 18.4 Hydrothermal Growth of Some Selected Crystals 620 18.5 Hydrothermal Growth of Fine Crystals . 634 18.6 Hydrothermal Growth of Nanocrystals 637 18.7 Concluding Remarks 640 18.A Appendix 641 References 646 19 Hydrothermal and Ammonothermal Growth of ZnO and GaN Michael J. Callahan, Qi-Sheng Chen . 655 19.1 Overview of Hydrothermal and Ammonothermal Growth of Large Crystals 657 19.2 Requirements for Growth of Large, Low-Defect Crystals . 661 19.3 Physical and Mathematical Models . 666 19.4 Process Simulations . 669 19.5 Hydrothermal Growth of ZnO Crystals . 674 19.6 Ammonothermal GaN 681 19.7 Conclusion 685 References 685 20 Stoichiometry and Domain Structure of KTP-Type Nonlinear Optical Crystals Michael Roth . 691 20.1 Background 691 20.2 Stoichiometry and Ferroelectric Phase Transitions . 697 20.3 Growth-Induced Ferroelectric Domains 703 20.4 Artificial Domain Structures 708 20.5 Nonlinear Optical Crystals 713 References 716 21 High-Temperature Solution Growth: Application to Laser and Nonlinear Optical Crystals Joan J. Carvajal, Maria Cinta Pujol, Francesc D?az 725 21.1 Basics . 726 21.2 High-Temperature Solution Growth . 731 21.3 Growth of Bulk Laser and NLO Single Crystals by the TSSG Method 736 21.4 Liquid-Phase Epitaxy: Growth of Epitaxial Films of Laser and NLO Materials . 746 References 752 22 Growth and Characterization of KDP and Its Analogs Sheng-Lai Wang, Xun Sun, Xu-Tang Tao 759 22.1 Background 759 22.2 Mechanism and Kinetics of Crystallization 761 22.3 Growth Techniques for Single Crystals . 769 22.4 Effect of Growth Conditions on Defects of Crystals . 776 22.5 Inves Part D Crystal Growth from Vapor 23 Growth and Characterization of Silicon Carbide Crystals Govindhan Dhanaraj, Balaji Raghothamachar, Michael Dudley . 797 23.1 Silicon Carbide – Background and History 797 23.2 Vapor Growth 799 23.3 High-Temperature Solution Growth . 801 23.4 Industrial Bulk Growth by Seed Sublimation . 802 23.5 Structural Defects and Their Configurations . 805 23.6 Concluding Remarks 816 References 817 24 AlN Bulk Crystal Growth by Physical Vapor Transport Rafael Dalmau, Zlatko Sitar 821 24.1 PVT Crystal Growth . 822 24.2 High-Temperature Materials Compatibility . 825 24.3 Self-Seeded Growth of AlN Bulk Crystals . 827 24.4 Seeded Growth of AlN Bulk Crystals 829 24.5 Characterization of High-Quality Bulk Crystals . 832 24.6 Conclusions and Outlook 839 References 839 25 Growth of Single-Crystal Organic Semiconductors Christian Kloc, Theo Siegrist, Jens Pflaum 845 25.1 Basics . 845 25.2 Theory of Nucleation and Crystal Growth 847 25.3 Organic Materials of Interest for Semiconducting Single Crystals 848 25.4 Pregrowth Purification . 850 25.5 Crystal Growth . 854 25.6 Quality of Organic Semiconducting Single Crystals . 862 25.7 Organic Single-Crystalline Field-Effect Transistors . 863 25.8 Conclusions . 864 References 865 26 Growth of III-Nitrides with Halide Vapor Phase Epitaxy (HVPE) Carl Hemmingsson, Bo Monemar, Yoshinao Kumagai, Akinori Koukitu . 869 26.1 Growth Chemistry and Thermodynamics . 869 26.2 HVPE Growth Equipment 872 26.3 Substrates and Templates for Bulk GaN Growth . 875 26.4 Substrate Removal Techniques . 879 26.5 Doping Techniques for GaN in HVPE 882 26.6 Defect Densities, Dislocations, and Residual Impurities . 883 26.7 Some Important Properties of HVPE-Grown Bulk GaN Material . 887 26.8 Growth of AlN by HVPE: Some Preliminary Results . 888 26.9 Growth of InN by HVPE: Some Preliminary Results . 890 References 891XXIV Contents 27 Growth of Semiconductor Single Crystals from Vapor Phase Ramasamy Dhanasekaran . 897 27.1 Classifications of Vapor Growth 899 27.2 Chemical Vapor Transport – Transport Kinetics 901 27.3 Thermodynamic Considerations . 905 27.4 Growth of II–VI Compound Semiconductors by CVT 912 27.5 Growth of Nanomaterial from Vapor Phase . 916 27.6 Growth of I–III–VI2 Compounds 917 27.7 Growth of GaN by VPE 925 27.8 Conclusion 929 References 930 Part E Epitaxial Growth and Thin Films 28 Epitaxial Growth of Silicon Carbide by Chemical Vapor Deposition Ishwara B. Bhat 939 28.1 Polytypes of Silicon Carbide . 941 28.2 Defects in SiC . 942 28.3 Epitaxial Growth of Silicon Carbide . 944 28.4 Epitaxial Growth on Patterned Substrates . 952 28.5 Conclusions . 961 References 961 29 Liquid-Phase Electroepitaxy of Semiconductors Sadik Dost . 967 29.1 Background 967 29.2 Early Theoretical and Modeling Studies 971 29.3 Two-Dimensional Continuum Models . 977 29.4 LPEE Growth Under a Stationary Magnetic Field 978 29.5 Three-Dimensional Simulations . 981 29.6 High Growth Rates in LPEE: Electromagnetic Mobility 992 References 996 30 Epitaxial Lateral Overgrowth of Semiconductors Zbigniew R. Zytkiewicz . 999 30.1 Overview . 1000 30.2 Mechanism of Epitaxial Lateral Overgrowth from the Liquid Phase . 1002 30.3 Dislocations in ELO Layers 1011 30.4 Strain in ELO Layers . 1016 30.5 Recent Progress in Lateral Overgrowth of Semiconductor Structures . 1026 30.6 Conc 31 Liquid-Phase Epitaxy of Advanced Materials Christine F. Klemenz Rivenbark . 1041 31.1 Historical Development of LPE 1042 31.2 Fundamentals of LPE and Solution Growth . 1042 31.3 Requirements for Liquid-Phase Epitaxy 1044 31.4 Developing New Materials: On the Choice of the Epitaxial Deposition Method . 1044 31.5 LPE of High-Temperature Superconductors . 1046 31.6 LPE of Calcium Gallium Germanates 1055 31.7 Liquid-Phase Epitaxy of Nitrides 1059 31.8 Conclusions . 1063 References 1064 32 Molecular-Beam Epitaxial Growth of HgCdTe James W. Garland, Sivalingam Sivananthan . 1069 32.1 Overview . 1070 32.2 Theory of MBE Growth . 1073 32.3 Substrate Materials 1076 32.4 Design of the Growth Hardware . 1088 32.5 In situ Characterization Tools for Monitoring and Controlling the Growth . 1090 32.6 Nucleation and Growth Procedure 1101 32.7 Dopants and Dopant Activation 1104 32.8 Properties of HgCdTe Epilayers Grown by MBE . 1107 32.9 HgTe/CdTe Superlattices . 1112 32.10 Architectures of Advanced IR Detectors . 1115 32.11 IR Focal-Plane Arrays (FPAs) . 1118 32.12 Conclusions . 1119 References 1121 33 Metalorganic Vapor-Phase Epitaxy of Diluted Nitrides and Arsenide Quantum Dots Udo W. Pohl 1133 33.1 Principle of MOVPE . 1133 33.2 Diluted Nitride InGaAsN Quantum Wells 1137 33.3 InAs/GaAs Quantum Dots 1142 33.4 Concluding Remarks 1148 References 1148 34 Formation of SiGe Heterostructures and Their Properties Yasuhiro Shiraki, Akira Sakai 1153 34.1 Background 1153 34.2 Band Structures of Si/Ge Heterostructures . 1154 34.3 Growth Technologies . 1156 34.4 Surface Segregation . 1157 34.5 Critical Thickness . 1161 34.6 Mechanism of Strain Relaxation . 1163XXVI Contents 34.7 Formation of Relaxed SiGe Layers . 1165 34.8 Formation of Quantum Wells, Superlattices, and Quantum Wires . 1173 34.9 Dot Formation . 1177 34.10 Concluding Remarks and Future Prospects 1184 References 1184 35 Plasma Energetics in Pulsed Laser and Pulsed Electron Deposition Mikhail D. Strikovski, Jeonggoo Kim, Solomon H. Kolagani 1193 35.1 Energetic Condensation in Thin Film Deposition 1193 35.2 PLD and PED Techniques 1194 35.3 Transformations of Atomic Energy in PLD and PED . 1195 35.4 Optimization of Plasma Flux for Film Growth 1204 35.5 Conclusions . 1208 References 1209 Part F Modeling in Crystal Growth and Defects 36 Convection and Control in Melt Growth of Bulk Crystals Chung-Wen Lan 1215 36.1 Physical Laws for Transport Processes . 1217 36.2 Flow Structures in the Melt 1219 36.3 Flow Control by External Forces 1228 36.4 Outlook . 1238 References 1238 37 Vapor Growth of III Nitrides Dang Cai, Lili Zheng, Hui Zhang . 1243 37.1 Overview of Vapor Growth of III Nitrides . 1244 37.2 Mathematical Models for AlN/GaN Vapor Deposition 1248 37.3 Characteristics of AlN/GaN Vapor Deposition 1251 37.4 Modeling of GaN IVPE Growth – A Case Study 1258 37.5 Surface Evolution of GaN/AlN Film Growth from Vapor . 1274 37.6 Concluding Remarks 1275 References 1276 38 Continuum-Scale Quantitative Defect Dynamics in Growing Czochralski Silicon Crystals Milind S. Kulkarni 1281 38.1 The Discovery of Microdefects . 1283 38.2 Defect Dynamics in the Absence of Impurities . 1284 38.3 Czochralski Defect Dynamics in the Presence of Oxygen . 1304 38.4 Czochralski Defect Dynamics in the Presence of Nitrogen . 1313 38.5 The Lateral Incorporation of Vacancies in Czochralski Silicon Crystals 1321 38.6 Conclusions . 1328 References 1332Contents XXVII 39 Models for Stress and Dislocation Generation in Melt Based Compound Crystal Growth Vishwanath (Vish) Prasad, Srinivas Pendurti . 1335 39.1 Overview . 1335 39.2 Crystal Growth Processes 1336 39.3 Dislocations in Semiconductors Materials . 1337 39.4 Models for Dislocation Generation 1339 39.5 Diamond Structure of the Crystal 1343 39.6 Deformation Behavior of Semiconductors . 1346 39.7 Application of the Haasen Model to Crystal Growth . 1350 39.8 An Alternative Model . 1351 39.9 Model Summary and Numerical Implementation 1360 39.10 Numerical Results 1362 39.11 Summary 1374 References 1375 40 Mass and Heat Transport in BS and EFG Systems Thomas F. George, Stefan Balint, Liliana Braescu 1379 40.1 Model-Based Prediction of the Impurity Distribution – Vertical BS System . 1380 40.2 Model-Based Prediction of the Impurity Distribution – EFG System 1389 References 1400 Part G Defects Characterization and Techniques 41 Crystalline Layer Structures with X-Ray Diffractometry Paul F. Fewster 1405 41.1 X-Ray Diffractometry . 1406 41.2 Basic Direct X-Ray Diffraction Analysis from Layered Structures 1407 41.3 Instrumental and Theoretical Considerations 1412 41.4 Examples of Analysis from Low to High Complexity . 1413 41.5 Rapid Analysis . 1419 41.6 Wafer Micromapping . 1420 41.7 The Future 1421 References 1422 42 X-Ray Topography Techniques for Defect Characterization of Crystals Balaji Raghothamachar, Michael Dudley, Govindhan Dhanaraj . 1425 42.1 Basic Principles of X-Ray Topography . 1426 42.2 Historical Development of the X-Ray Topography Technique 1428 42.3 X-Ray Topography Techniques and Geometry . 1430 42.4 Theoretical Background for X-Ray Topography 1435 42.5 Mechanisms for Contrast on X-Ray Topographs 42.6 Analysis of Defects on X-Ray Topographs 1445 42.7 Current Application Status and Development 1449 References 1450 43 Defect-Selective Etching of Semiconductors Jan L. Weyher, John J. Kelly 1453 43.1 Wet Etching of Semiconductors: Mechanisms 1454 43.2 Wet Etching of Semiconductors: Morphology and Defect Selectivity 1459 43.3 Defect-Selective Etching Methods 1461 References 1473 44 Transmission Electron Microscopy Characterization of Crystals Jie Bai, Shixin Wang, Lu-Min Wang, Michael Dudley . 1477 44.1 Theoretical Basis of TEM Characterization of Defects 1477 44.2 Selected Examples of Application of TEM to Semiconductor Systems . 1493 44.3 Concluding Remarks: Current Application Status and Development 1514 References 1515 45 Electron Paramagnetic Resonance Characterization of Point Defects Mary E. Zvanut 1521 45.1 Electronic Paramagnetic Resonance . 1522 45.2 EPR Analysis 1524 45.3 Scope of EPR Technique . 1534 45.4 Supplementary Instrumentation and Supportive Techniques . 1538 45.5 Summary and Final Thoughts . 1545 References 1546 46 Defect Characterization in Semiconductors with Positron Annihilation Spectroscopy Filip Tuomisto 1551 46.1 Positron Annihilation Spectroscopy 1552 46.2 Identification of Point Defects and Their Charge States 1560 46.3 Defects, Doping, and Electrical Compensation . 1565 46.4 Point Defects and Growth Conditions . 1569 46.5 Summary 1576 References 1576 Part H Special Topics in Crystal Growth 47 Protein Crystal Growth Methods Andrea E. Gutiérrez-Quezada, Roberto Arregu?n-Espinosa, Abel Moreno 1583 47.1 Properties of Biomacromolecular Solutions . 1584 47.2 Transport Phenomena and Crystallization . 1587 47.3 Classic Methods of Crystal Growth . 1587 47.4 Protein Crystallization by Diffusion-Controlled Methods 1588Contents XXIX 47.5 New Trends in Crystal Growth (Crystal Quality Enhancement) . 1591 47.6 2-D Characterization via Atomic Force Microscopy (Case Study) . 1595 47.7 3-D Characterization via X-Ray Diffraction and Related Methods . 1598 References 1599 48 Crystallization from Gels S. Narayana Kalkura, Subramanian Natarajan . 1607 48.1 Gel Growth in Crystal Deposition Diseases . 1608 48.2 Experimental Methods . 1609 48.3 Pattern Formation in Gel Systems . 1610 48.4 Crystals Grown Using Gel Technique . 1611 48.5 Application in Crystal Deposition Diseases 1614 48.6 Crystal-Deposition-Related Diseases 1616 48.7 Calcium Oxalate . 1617 48.8 Calcium Phosphates 1619 48.9 Hydroxyapatite (HAP) . 1620 48.10 Dicalcium Phosphate Dihydrate (DCPD) . 1620 48.11 Calcium Sulfate . 1623 48.12 Uric Acid and Monosodium Urate Monohydrate . 1623 48.13 L-Cystine 1624 48.14 L-Tyrosine, Hippuric Acid, and Ciprofloxacin . 1625 48.15 Atherosclerosis and Gallstones . 1625 48.16 Crystallization of Hormones: Progesterone and Testosterone . 1628 48.17 Pancreatitis . 1628 48.18 Conclusions . 1629 References 1630 49 Crystal Growth and Ion Exchange in Titanium Silicates Aaron J. Celestian, John B. Parise, Abraham Clearfield . 1637 49.1 X-Ray Methods 1637 49.2 Equipment for Time-Resolved Experiments 1642 49.3 Detectors 1642 49.4 Software . 1644 49.5 Types of In Situ Cells 1645 49.6 In-Situ Studies of Titanium Silicates (Na-TS) with Sitinakite Topology . 1649 49.7 Discussion of In Situ Studies . 1658 49.8 Summary 1660 References 1660 50 Single-Crystal Scintillation Materials Martin Nikl, Anna Vedda, Valentin V. Laguta 1663 50.1 Background 1663 50.2 Scintillation Materials 1670 50.3 Future Prospects 1689 50.4 Conclusions . 1691 References 1691XXX Contents 51 Silicon Solar Cells: Materials, Devices, and Manufacturing Mohan Narayanan, Ted Ciszek 1701 51.1 Silicon Photovoltaics 1701 51.2 Crystal Growth Technologies for Silicon Photovoltaics 1704 51.3 Cell Fabrication Technologies . 1711 51.4 Summary and Discussion . 1715 References 1716 52 Wafer Manufacturing and Slicing Using Wiresaw Imin Kao, Chunhui Chung, Roosevelt Moreno Rodriguez 1719 52.1 From Crystal Ingots to Prime Wafers . 1721 52.2 Slicing: The First Postgrowth Process in Wafer Manufacturing 1726 52.3 Modern Wiresaw in Wafer Slicing . 1730 52.4 Conclusions and Further Reading . 1733 References 1733 Acknowledgements . 1737 About the Authors . 1741 Detailed Contents 1759 Subject Index.
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا منه وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Springer Handbook of Crystal Growth رابط مباشر لتنزيل كتاب Springer Handbook of Crystal Growth
عدل سابقا من قبل Admin في السبت 21 يوليو 2018, 8:18 pm عدل 1 مرات |
|
محمد محمد أحمد مهندس فعال جدا جدا
عدد المساهمات : 654 التقييم : 694 تاريخ التسجيل : 14/11/2012 العمر : 32 الدولة : EGYPT العمل : Student الجامعة : Menoufia
| موضوع: رد: كتاب Springer Handbook of Crystal Growth الجمعة 08 أغسطس 2014, 5:17 pm | |
| |
|
Admin مدير المنتدى
عدد المساهمات : 18984 التقييم : 35458 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رد: كتاب Springer Handbook of Crystal Growth السبت 09 أغسطس 2014, 2:48 am | |
|
- محمد محمد أحمد كتب:
- جزاك الله خيرا
جزانا الله وإياك خيراً |
|