Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Engineering Electromagnetics الثلاثاء 03 مارس 2015, 1:54 am | |
|
أخوانى فى الله أحضرت لكم كتاب Engineering Electromagnetics Eighth Edition William H. Hayt, Jr. Late Emeritus Professor Purdue University John A. Buck Georgia Institute of Technology
و المحتوى كما يلي :
Brief Contents Preface xii 1 Vector Analysis 1 2 Coulomb’s Law and Electric Field Intensity 26 3 Electric Flux Density, Gauss’s Law, and Divergence 48 4 Energy and Potential 75 5 Conductors and Dielectrics 109 6 Capacitance 143 7 The Steady Magnetic Field 180 8 Magnetic Forces, Materials, and Inductance 230 9 Time-Varying Fields and Maxwell’s Equations 277 10 Transmission Lines 301 11 The Uniform Plane Wave 367 12 Plane Wave Reflection and Dispersion 406 13 Guided Waves 453 14 Electromagnetic Radiation and Antennas 511 Appendix A Vector Analysis 553 Appendix B Units 557 Appendix C Material Constants 562 Appendix D The Uniqueness Theorem 565 Appendix E Origins of the Complex Permittivity 567 Appendix F Answers to Odd-Numbered Problems 574 Index 580 CONTENTS Preface xii Chapter 1 Vector Analysis 1 1.1 Scalars and Vectors 1 1.2 Vector Algebra 2 1.3 The Rectangular Coordinate System 3 1.4 Vector Components and Unit Vectors 5 1.5 The Vector Field 8 1.6 The Dot Product 9 1.7 The Cross Product 11 1.8 Other Coordinate Systems: Circular Cylindrical Coordinates 13 1.9 The Spherical Coordinate System 18 References 22 Chapter 1 Problems 22 Chapter 2 Coulomb’s Law and Electric Field Intensity 26 2.1 The Experimental Law of Coulomb 26 2.2 Electric Field Intensity 29 2.3 Field Arising from a Continuous Volume Charge Distribution 33 2.4 Field of a Line Charge 35 2.5 Field of a Sheet of Charge 39 2.6 Streamlines and Sketches of Fields 41 References 44 Chapter 2 Problems 44 Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence 48 3.1 Electric Flux Density 48 3.2 Gauss’s Law 52 3.3 Application of Gauss’s Law: Some Symmetrical Charge Distributions 56 3.4 Application of Gauss’s Law: Differential Volume Element 61 3.5 Divergence and Maxwell’s First Equation 64 3.6 The Vector Operator ∇ and the Divergence Theorem 67 References 70 Chapter 3 Problems 71 Chapter 4 Energy and Potential 75 4.1 Energy Expended in Moving a Point Charge in an Electric Field 76 4.2 The Line Integral 77 4.3 Definition of Potential Difference and Potential 82 4.4 The Potential Field of a Point Charge 84 4.5 The Potential Field of a System of Charges: Conservative Property 86 4.6 Potential Gradient 90 4.7 The Electric Dipole 95 4.8 Energy Density in the Electrostatic Field 100 References 104 Chapter 4 Problems 105 viContents vii Chapter 5 Conductors and Dielectrics 109 5.1 Current and Current Density 110 5.2 Continuity of Current 111 5.3 Metallic Conductors 114 5.4 Conductor Properties and Boundary Conditions 119 5.5 The Method of Images 124 5.6 Semiconductors 126 5.7 The Nature of Dielectric Materials 127 5.8 Boundary Conditions for Perfect Dielectric Materials 133 References 137 Chapter 5 Problems 138 Chapter 6 Capacitance 143 6.1 Capacitance Defined 143 6.2 Parallel-Plate Capacitor 145 6.3 Several Capacitance Examples 147 6.4 Capacitance of a Two-Wire Line 150 6.5 Using Field Sketches to Estimate Capacitance in Two-Dimensional Problems 154 6.6 Poisson’s and Laplace’s Equations 160 6.7 Examples of the Solution of Laplace’s Equation 162 6.8 Example of the Solution of Poisson’s Equation: the p-n Junction Capacitance 169 References 172 Chapter 6 Problems 173 Chapter 7 The Steady Magnetic Field 180 7.1 Biot-Savart Law 180 7.2 Amp`ere’s Circuital Law 188 7.3 Curl 195 7.4 Stokes’ Theorem 202 7.5 Magnetic Flux and Magnetic Flux Density 207 7.6 The Scalar and Vector Magnetic Potentials 210 7.7 Derivation of the Steady-Magnetic-Field Laws 217 References 223 Chapter 7 Problems 223 Chapter 8 Magnetic Forces, Materials, and Inductance 230 8.1 Force on a Moving Charge 230 8.2 Force on a Differential Current Element 232 8.3 Force between Differential Current Elements 236 8.4 Force and Torque on a Closed Circuit 238 8.5 The Nature of Magnetic Materials 244 8.6 Magnetization and Permeability 247 8.7 Magnetic Boundary Conditions 252 8.8 The Magnetic Circuit 255 8.9 Potential Energy and Forces on Magnetic Materials 261 8.10 Inductance and Mutual Inductance 263 References 270 Chapter 8 Problems 270 Chapter 9 Time-Varying Fields and Maxwell’s Equations 277 9.1 Faraday’s Law 277 9.2 Displacement Current 284 9.3 Maxwell’s Equations in Point Form 288 9.4 Maxwell’s Equations in Integral Form 290 9.5 The Retarded Potentials 292 References 296 Chapter 9 Problems 296viii Contents Chapter 10 Transmission Lines 301 10.1 Physical Description of Transmission Line Propagation 302 10.2 The Transmission Line Equations 304 10.3 Lossless Propagation 306 10.4 Lossless Propagation of Sinusoidal Voltages 309 10.5 Complex Analysis of Sinusoidal Waves 311 10.6 Transmission Line Equations and Their Solutions in Phasor Form 313 10.7 Low-Loss Propagation 315 10.8 Power Transmission and The Use of Decibels in Loss Characterization 317 10.9 Wave Reflection at Discontinuities 320 10.10 Voltage Standing Wave Ratio 323 10.11 Transmission Lines of Finite Length 327 10.12 Some Transmission Line Examples 330 10.13 Graphical Methods: The Smith Chart 334 10.14 Transient Analysis 345 References 358 Chapter 10 Problems 358 Chapter 11 The Uniform Plane Wave 367 11.1 Wave Propagation in Free Space 367 11.2 Wave Propagation in Dielectrics 375 11.3 Poynting’s Theorem and Wave Power 384 11.4 Propagation in Good Conductors: Skin Effect 387 11.5 Wave Polarization 394 References 401 Chapter 11 Problems 401 Chapter 12 Plane Wave Reflection and Dispersion 406 12.1 Reflection of Uniform Plane Waves at Normal Incidence 406 12.2 Standing Wave Ratio 413 12.3 Wave Reflection from Multiple Interfaces 417 12.4 Plane Wave Propagation in General Directions 425 12.5 Plane Wave Reflection at Oblique Incidence Angles 428 12.6 Total Reflection and Total Transmission of Obliquely Incident Waves 434 12.7 Wave Propagation in Dispersive Media 437 12.8 Pulse Broadening in Dispersive Media 443 References 447 Chapter 12 Problems 448 Chapter 13 Guided Waves 453 13.1 Transmission Line Fields and Primary Constants 453 13.2 Basic Waveguide Operation 463 13.3 Plane Wave Analysis of the Parallel-Plate Waveguide 467 13.4 Parallel-Plate Guide Analysis Using the Wave Equation 476 13.5 Rectangular Waveguides 479 13.6 Planar Dielectric Waveguides 490 13.7 Optical Fiber 496 References 506 Chapter 13 Problems 506 Chapter 14 Electromagnetic Radiation and Antennas 511 14.1 Basic Radiation Principles: The Hertzian Dipole 511 14.2 Antenna Specifications 518 14.3 Magnetic Dipole 523 14.4 Thin Wire Antennas 525 14.5 Arrays of Two Elements 533 14.6 Uniform Linear Arrays 537 14.7 Antennas as Receivers 541 References 548 Chapter 14 Problems 548Contents ix Appendix A Vector Analysis 553 A.1 General Curvilinear Coordinates 553 A.2 Divergence, Gradient, and Curl in General Curvilinear Coordinates 554 A.3 Vector Identities 556 Appendix B Units 557 Appendix C Material Constants 562 Appendix D The Uniqueness Theorem 565 Appendix E Origins of the Complex Permittivity 567 Appendix F Answers to Odd-Numbered Problems 574 Index 580
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Engineering Electromagnetics رابط مباشر لتنزيل كتاب Engineering Electromagnetics
|
|