Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Fundamentals of Heat and Mass Transfer الجمعة 04 أغسطس 2017, 10:37 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Fundamentals of Heat and Mass Transfer Inrropcra , Dewhl , Bergman , L.avine
و المحتوى كما يلي :
Contents Symbols Chapter I Introduction 1 Li What and How? 1.2 Physical Origins and Rate Equations 1.2.1 Conduction 3 1.2.2 Convection 6 1.2.3 Radiation 9 1.2.4 Relationship to Thermodynamics 12 1.3 the Conservation of Energy Requirement 1.3. 1 Conservation of Energy for a Control Volume 13 1.3.2 the Surface Energy Balance 25 L .3.3 Application of the Conservation Laws: Methodology 28 1.4 Analysis of Heat Transfer Problems: Methodology Chapter 4 Two-dimei 1.5 Relevance of Heat Transfer 1.6 Units and Dimensions 1.7 Summary References Problems Chapter 2 Introduction to Conduction 57 2.1 the Conduction Rate Equation 2.2 the Thermal Properties of Matter 2.2. 1 Thermal Conductivity 60 2.2.2 Other Relevant Properties 67 2.3 the Heat Diffusion Equation 2.4 Boundary and Initial Conditions 2.5 Summary References Problems Chapter 3 One-dimensional,steady-state Conduction 95 3.1 the Plane Wall 3.1.1 Temperature Distribution 96 3.1.2 Thermal Resistance 98 3.1.3 the Composite Wall 99 3.1.4 Contact Resistance 101 An Alternative Conduction Analysis Radial Systems 3.3. 1 the Cylinder 116 3.3.2 the Sphere 122 Summary of One-dimensional Conduction Results Conduction With Thermal Energy Generation 3.5.1 the Plane Wall 127 3.5.2 Radial Systems 132 3.5.3 Application of Resistance Concepts 137 Heat Transfer From Extended Surfaces 3.6.1 a General Conduction Analysis 139 3.6.2 Fins of Uniform Cross-sectional Area 141 3.6.3 Fin Performance 147 3.6.4 Fins of Nonuniform Cross-sectional Area 150 3.6.5 Overall Surface Efficiency 153 The Bioheat Equation Summary References Problems 96 Chapter 5 Transient Chapter 4 Two-dimensional 9 Steady-state Conduction 4.1 Alternative Approaches 4.2 the Method of Separation of Variables 4.3 the Conduction Shape Factor and the Dimensionless Conduction Heat Rate 4.4 Finite-difference Equations 4.4.1 the Nodal Network 213 4.4.2 Finite-difference Form of the Heat Equation 214 4.4.3 the Energy Balance Method 215 4.5 Solving the Finite-difference Equations 4.5. 1 the Matrix Inversion Method 222 4.5.2 Gauss-seidel Iteration 223 4.5.3 Some Precautions 229 4.6 Summary References Problems 4s.1 the Graphical Method 4s.1.1 Methodology of Constructing a Flux Plot W-l 4s.1.2 Determination of the Heat Transfer Rate W-2 45.1.3 the Conduction Shape Factor W-3 References Problems Chapter 5 Transient Conduction 255 5.1 the Lumped Capacitance Method Validity of the Lumped Capacitance Method General Lumped Capacitance Analysis Spatial Effects The Plane Wall With Convection 5.5. 1 Exact Solution 272 5.5.2 Approximate Solution 273 5.5.3 Total Energy Transfer 274 5.5.4 Additional Considerations 275 Radial Systems With Convection 5.6. 1 Exact Solutions 276 5.6.2 Approximate Solutions 277 5.6.3 Total Energy Transfer 277 5.6.4 Additional Considerations 278 The Semi-infinite Solid Objects With Constant Surface Temperatures or Surface Heat Fluxes 5.8.1 Constant Temperature Boundary Conditions 290 5.8.2 Constant Heat Flux Boundary Conditions 292 5.8.3 Approximate Solutions 293 Periodic Heating 5.10 Finite-difference Methods 5.10.1 Discretization of the Heat Equation: the Explicit Method 302 5.10.2 Discretization of the Heat Equation: the Implicit Method 3 Jo 5.11 Summary References Problems 55.1 Graphical Representation of One-dimensional, Transient Conduction in the Plane Wall, Long Cylinder, and Sphere 55.2 Analytical Solution of Multidimensional Effects References Problems 302 Chapter 4 External Chapter 6 Introduction to Convection 347 6.1 the Convection Boundary Layers 348 6.1.1 the Velocity Boundary Layer 348 6.1.2 the Thermal Boundary Layer 349 6.1.3 the Concentration Boundary Layer 350 6.1 .4 Significance of the Boundary Layers 352 Local and Average Convection Coefficients 6.2.1 Heat Transfer 352 6.2.2 Mass Transfer 353 6.2.3 the Problem of Convection 355 Laminar and Turbulent Flow 6.3.1 Laminar and Turbulent Velocity Boundary Layers 359 6.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers 361 The Boundary Layer Equations 6.4.1 Boundary Layer Equations for Laminar Flow 365 Boundary Layer Similarity: the Normalized Boundary Layer Equations 6.5.1 Boundary Layer Similarity Parameters 368 6.5.2 Functional Form of the Solutions 368 Physical Significance of the Dimensionless Parameters Boundary Layer Analogies 6.7.1 the Heat and Mass Transfer Analogy 377 6.7.2 Evaporative Cooling 381 6.7.3 the Reynolds Analogy 384 The Convection Coefficients Summary References Problems Derivation of the Convection Transfer Equations 65.1.1 Conservation of Mass W-21 65.1.2 Newton’s Second Law of Motion W-22 65.1.3 Conservation of Energy W -26 6s.1.4 Conservation of Species W-28 References Problems 6.2 352 6.3 359 Chapter Interm Chapter 7 External Flow 401 317 7.1 the Empirical Method The Flat Plate in Parallel Flow 7.2. 1 Laminar Flow Over an Isothermal Plate: a Similarity Solution 405 7.2.2 Turbulent Flow Over an Isothermal Plate 410 7.2.3 Mixed Boundary Layer Conditions 411 1.2.4 Unheated Starting Length 412 7.2.5 Flat Plates With Constant Heat Flux Conditions 413 7.2.6 Limitations on Use of Convection Coefficients 414 Methodology for a Convection Calculation The Cylinder in Cross Flow 7.4.1 Flow Considerations 423 7.4.2 Convection Heat and Mass Transfer 425 The Sphere Flow Across Banks of Tubes Impinging Jets 7.7.1 Hydrodynamic and Geometric Considerations 447 7.7.2 Convection Heat and Mass Transfer 449 Packed Beds Summary References Problems Chapter U Internal Flow 8.1 Hydrodynamic Considerations 8.1.1 Flow Conditions 486 8.1.2 the Mean Velocity 487 8.1.3 Velocity Profile in the Fully Developed Region 488 8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow 490 Thermal Considerations 8.2.1 the Mean Temperature 492 8.2.2 Newton’s Law of Cooling 493 8.2.3 Fully Developed Conditions 493 The Energy Balance 8.3. 1 General Considerations 497 8.3.2 Constant Surface Heat Flux 498 8.3.3 Constant Surface Temperature 501 Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations 8.4. 1 the Fully Developed Region 505 8.4.2 the Entry Region 512 Convection Correlations: Turbulent Flow in Circular Tubes Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus Heat Transfer Enhancement 8.8 Microscale Internal Flow 8.8. 1 Flow Conditions in Microscale Internal Flow 524 8.8.2 Thermal Considerations in Microscale Internal Flow 525 8.9 Convection Mass Transfer 8.10 Summary References Problems Chapter 9 Free Convection 559 9.1 Physical Considerations 9.2 the Governing Equations 9.3 Similarity Considerations 9.4 Laminar Free Convection on a Vertical Surface 9.5 the Effects of Turbulence 9.6 Empirical Correlations: External Free Convection Flows 9.6.1 the Vertical Plate 571 9.6.2 Inclined and Horizontal Plates 574 9.6.3 the Long Horizontal Cylinder 579 9.6.4 Spheres 583 9.7 Free Convection Within Parallel Plate Channels 9.7. 1 Vertical Channels 585 9.7.2 Inclined Channels 587 9.8 Empirical Correlations: Enclosures 9.8.1 Rectangular Cavities 587 9.8.2 Concentric Cylinders 590 9.8.3 Concentric Spheres 591 9.9 Combined Free and Forced Convection 9.10 Convection Mass Transfer 9.11 Summary References Problems Chapte1 566 Heat L Chapter 10 Boiling and Condensation 619 Chaptl 10.1 Dimensionless Parameters in Boiling and Condensation Radii 10.2 Boiling Modes 10.3 Pool Boiling 10.3.1 the Boiling Curve 622 10.3.2 Modes of Pool Boiling 624 10.4 Pool Boiling Correlations 10.4. 1 Nucleate Pool Boiling 627 10.4.2 Critical Heat Flux for Nucleate Pool Boiling 629 10.4.3 Minimum Heat Flux 629 10.4.4 Film Pool Boiling 630 10.4.5 Parametric Effects on Pool Boiling 627contents Xix 10.5 Forced Convection Boiling 10.5.1 External Forced Convection Boiling 637 10.5.2 Two-phase Flow 637 10.5.3 Two-phase Flow in Microchannels 640 10.6 Condensation: Physical Mechanisms 10.7 Laminar Film Condensation on a Vertical Plate 10.8 Turbulent Film Condensation 10.9 Film Condensation on Radial Systems 10.10 Film Condensation in Horizontal Tubes 10.11 Dropwise Condensation 10.12 Summary References Problems Chapter11 566 568 Heat Exchangers 669 571 11.1 Heat Exchanger Types 11.2 the Overall Heat Transfer Coefficient 11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference 11.3. 1 the Parallel-flow Heat Exchanger 676 11.3.2 the Counterflow Heat Exchanger 679 11.3.3 Special Operating Conditions 679 11.4 Heat Exchanger Analysis: the Effectiveness-ntu Method 11.4.1 Definitions 686 11.4.2 Effectiveness-ntu Relations 688 11.5 Heat Exchanger Design and Performance Calculations: Using the Effectiveness-ntu Method 11.6 Compact Heat Exchangers 11.7 Summary References Problems 11s.1 Log Mean Temperature Difference Method for Multipass And Cross-flow Heat Exchangers References Problems Chapter 12 620 Radiation: Processes and Properties 723 621 12.1 Fundamental Concepts 12.2 Radiation Intensity 12.2. 1 Mathematical Definitions 727 12.2.2 Radiation Intensity and Its Relation to Emission 728 12.2.3 Relation to Irradiation 733 12.2.4 Relation to Radiosity 735 12.3 Blackbody Radiation 12.3. 1 the Planck Distribution 737 12.3.2 Wien’s Displacement Law 736xx Contents 12.3.3 the Stefan-boltzmann Law 738 12.3.4 Band Emission 739 Emission From Real Surfaces Absorption, Reflection, and Transmission by Real Surfaces 12.5.1 Absorptivity 754 12.5.2 Reflectivity 755 12.5.3 Transmissivity 756 12.5.4 Special Considerations 757 Kirchhoff S Law The Gray Surface Environmental Radiation Summary References Problems Appendix Chapter 13 Thermoj Radiation Exchange Between Surfaces 811 Appendix 13.1 the View Factor Mathem 13.1. 1 the View Factor Integral 812 13.1.2 View Factor Relations 813 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure 13.2. 1 Net Radiation Exchange at a Surface 823 13.2.2 Radiation Exchange Between Surfaces 824 13.2.3 Blackbody Radiation Exchange 830 13.2.4 the Two-surface Enclosure 831 13.2.5 Radiation Shields 832 13.2.6 the Reradiating Surface 835 Multimode Heat Transfer Radiation Exchange With Participating Media 13.4. 1 Volumetric Absorption 843 13.4.2 Gaseous Emission and Absorption 843 Summary References Problems 13.2 822 Appendix Thermal General Appendix 849 Appendix Bounda Chapter 14 Diffusion Mass Transfer 879 Appendix An Inte± 14.1 Physical 14.1. 1 Physical Originsorigins and Rate 880 Equations for Parc 14.1.2 Mixture Composition 881 14.1.3 Fick’s Law of Diffusion 882 14.1.4 Mass Diffusivity 883 Mass Transfer in Nonstationary Media 14.2.1 Absolute and Diffusive Species Fluxes 885 14.2.2 Evaporation in a Column 888 The Stationary Medium Approximation 880 Index 14.2 885 14.3 893contents X X I 14.4 Conservation of Species for a Stationary Medium 14.4.1 Conservation of Species for a Control Volume 894 14.4.2 the Mass Diffusion Equation 894 14.4.3 Stationary Media With Specified Surface Concentrations 897 Boundary Conditions and Discontinuous Concentrations at Interfaces 14.5. 1 Evaporation and Sublimation 901 14.5.2 Solubility of Gases in Liquids and Solids 902 14.5.3 Catalytic Surface Reactions 905 Mass Diffusion With Homogeneous Chemical Reactions Transient Diffusion Summaryreferences Problems Appendix a Thennophysical Properties of Matter 927 811 Appendix B 812 Mathematical Relations and Functions 959 822 Appendix C Thermal Conditions Associated With Uniform Energy Generation in One-dimensional,steady-state Systems Osure 965 Appendix D The Convection Transfer Equations 973 839 842 D.l Conservation of Mass D.2 Newton ’s Second Law of Motion D.3 Conservation of Energy D.4 Conservation of Species Appendix E Boundary Layer Equations for Turbulent Flow Appendix F An Integral Laminar Boundary Layer Solution For Parallel Floiv Over a Flat Plate Index
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Heat and Mass Transfer رابط مباشر لتنزيل كتاب Fundamentals of Heat and Mass Transfer
|
|