كتاب Physics for Scientists and Engineers with Modern Physics
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Physics for Scientists and Engineers with Modern Physics

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Physics for Scientists and Engineers with Modern Physics  Empty
مُساهمةموضوع: كتاب Physics for Scientists and Engineers with Modern Physics    كتاب Physics for Scientists and Engineers with Modern Physics  Emptyالسبت 17 مارس 2018, 9:17 pm

أخوانى فى الله
أحضرت لكم كتاب
Physics for Scientists and Engineers with Modern Physics
Raymond A. Serway
Emeritus, James Madison University
John W. Jewett, Jr.
Emeritus, California State
Polytechnic University, Pomona
With contributions from Vahé Peroomian
University of Southern California

كتاب Physics for Scientists and Engineers with Modern Physics  P_f_s_12
و المحتوى كما يلي :


contents
About the Authors x
Preface xi
To the Student xxvi
P a R T 1
Mechanics 1
1 Physics and Measurement 2
1.1 Standards of Length, Mass, and Time 3
1.2 Modeling and Alternative Representations 6
1.3 Dimensional Analysis 10
1.4 Conversion of Units 12
1.5 Estimates and Order-of-Magnitude
Calculations 12
1.6 Significant Figures 13
2 Motion in one dimension 20
2.1 Position, Velocity, and Speed
of a Particle 21
2.2 Instantaneous Velocity and Speed 24
2.3 Analysis Model: Particle Under Constant
Velocity 27
2.4 The Analysis Model Approach to Problem
Solving 30
2.5 Acceleration 32
2.6 Motion Diagrams 36
2.7 Analysis Model: Particle
Under Constant Acceleration 37
2.8 Freely Falling Objects 41
2.9 Kinematic Equations Derived from
Calculus 44
3 Vectors 52
3.1 Coordinate Systems 53
3.2 Vector and Scalar Quantities 54
3.3 Basic Vector Arithmetic 55
3.4 Components of a Vector and Unit
Vectors 58
4 Motion in two dimensions 68
4.1 The Position, Velocity, and Acceleration
Vectors 69
4.2 Two-Dimensional Motion with Constant
Acceleration 71
4.3 Projectile Motion 74
4.4 Analysis Model: Particle in Uniform Circular
Motion 81
4.5 Tangential and Radial Acceleration 84
4.6 Relative Velocity and Relative Acceleration 85
5 the Laws of Motion 95
5.1 The Concept of Force 96
5.2 Newton’s First Law and Inertial Frames 97
5.3 Mass 99
5.4 Newton’s Second Law 99
5.5 The Gravitational Force and Weight 102
5.6 Newton’s Third Law 103
5.7 Analysis Models Using Newton’s
Second Law 105
5.8 Forces of Friction 114
6 Circular Motion and other Applications
of newton’s Laws 127
6.1 Extending the Particle in Uniform
Circular Motion Model 128
6.2 Nonuniform Circular Motion 133
6.3 Motion in Accelerated Frames 135
6.4 Motion in the Presence of Resistive
Forces 138
7 Energy of a System 150
7.1 Systems and Environments 151
7.2 Work Done by a Constant Force 151
7.3 The Scalar Product of Two Vectors 154
7.4 Work Done by a Varying Force 156
7.5 Kinetic Energy and the Work–Kinetic
Energy Theorem 161
7.6 Potential Energy of a System 165
7.7 Conservative and Nonconservative Forces 169
7.8 Relationship Between Conservative Forces and
Potential Energy 171
7.9 Energy Diagrams and Equilibrium of a
System 173
8 Conservation of Energy 181
8.1 Analysis Model: Nonisolated System
(Energy) 182
8.2 Analysis Model: Isolated System (Energy) 185
8.3 Situations Involving Kinetic Friction 191
8.4 Changes in Mechanical Energy
for Nonconservative Forces 196
8.5 Power 200
9 Linear Momentum and Collisions 210
9.1 Linear Momentum 211
9.2 Analysis Model: Isolated System
(Momentum) 213
9.3 Analysis Model: Nonisolated System
(Momentum) 215
9.4 Collisions in One Dimension 219
9.5 Collisions in Two Dimensions 227
vP a R T 2
oscillations and
Mechanical Waves 385
15 oscillatory Motion 386
15.1 Motion of an Object Attached to a Spring 387
15.2 Analysis Model: Particle in Simple Harmonic
Motion 388
15.3 Energy of the Simple Harmonic Oscillator 394
15.4 Comparing Simple Harmonic Motion with
Uniform Circular Motion 398
15.5 The Pendulum 400
15.6 Damped Oscillations 404
15.7 Forced Oscillations 405
16 Wave Motion 415
16.1 Propagation of a Disturbance 416
16.2 Analysis Model: Traveling Wave 419
16.3 The Speed of Waves on Strings 423
16.4 Rate of Energy Transfer by Sinusoidal
Waves on Strings 426
16.5 The Linear Wave Equation 428
16.6 Sound Waves 429
16.7 Speed of Sound Waves 431
16.8 Intensity of Sound Waves 433
16.9 The Doppler Effect 438
17 Superposition and Standing Waves 451
17.1 Analysis Model: Waves in Interference 452
17.2 Standing Waves 456
17.3 Boundary Effects: Reflection and
Transmission 459
17.4 Analysis Model: Waves Under Boundary
Conditions 461
17.5 Resonance 465
17.6 Standing Waves in Air Columns 466
17.7 Beats: Interference in Time 469
17.8 Nonsinusoidal Waveforms 472
P a R T 3
thermodynamics 481
18 temperature 482
18.1 Temperature and the Zeroth Law
of Thermodynamics 483
18.2 Thermometers and the Celsius
Temperature Scale 484
18.3 The Constant-Volume Gas Thermometer
and the Absolute Temperature Scale 485
18.4 Thermal Expansion of Solids and Liquids 488
18.5 Macroscopic Description of an Ideal Gas 492
9.6 The Center of Mass 230
9.7 Systems of Many Particles 234
9.8 Deformable Systems 237
9.9 Rocket Propulsion 239
10 Rotation of a Rigid object About
a Fixed Axis 249
10.1 Angular Position, Velocity, and Acceleration 250
10.2 Analysis Model: Rigid Object Under Constant
Angular Acceleration 252
10.3 Angular and Translational Quantities 254
10.4 Torque 257
10.5 Analysis Model: Rigid Object Under a Net
Torque 259
10.6 Calculation of Moments of Inertia 263
10.7 Rotational Kinetic Energy 267
10.8 Energy Considerations in Rotational
Motion 269
10.9 Rolling Motion of a Rigid Object 272
11 Angular Momentum 285
11.1 The Vector Product and Torque 286
11.2 Analysis Model: Nonisolated System (Angular
Momentum) 288
11.3 Angular Momentum of a Rotating Rigid
Object 293
11.4 Analysis Model: Isolated System (Angular
Momentum) 295
11.5 The Motion of Gyroscopes and Tops 301
12 Static Equilibrium and Elasticity 310
12.1 Analysis Model: Rigid Object in Equilibrium 311
12.2 More on the Center of Gravity 312
12.3 Examples of Rigid Objects in Static
Equilibrium 313
12.4 Elastic Properties of Solids 319
13 Universal Gravitation 332
13.1 Newton’s Law of Universal Gravitation 333
13.2 Free-Fall Acceleration and the Gravitational
Force 335
13.3 Analysis Model: Particle in a Field
(Gravitational) 336
13.4 Kepler’s Laws and the Motion of Planets 339
13.5 Gravitational Potential Energy 345
13.6 Energy Considerations in Planetary and Satellite
Motion 347
14 Fluid Mechanics 358
14.1 Pressure 359
14.2 Variation of Pressure with Depth 360
14.3 Pressure Measurements 364
14.4 Buoyant Forces and Archimedes’s Principle 365
14.5 Fluid Dynamics 368
14.6 Bernoulli’s Equation 371
14.7 Flow of Viscous Fluids in Pipes 375
14.8 Other Applications of Fluid Dynamics 377
vi Contents24.3 Electric Potential and Potential Energy Due to
Point Charges 642
24.4 Obtaining the Value of the Electric Field
from the Electric Potential 645
24.5 Electric Potential Due to Continuous
Charge Distributions 646
24.6 Conductors in Electrostatic Equilibrium 651
25 Capacitance and dielectrics 663
25.1 Definition of Capacitance 664
25.2 Calculating Capacitance 665
25.3 Combinations of Capacitors 668
25.4 Energy Stored in a Charged Capacitor 672
25.5 Capacitors with Dielectrics 676
25.6 Electric Dipole in an Electric Field 678
25.7 An Atomic Description of Dielectrics 681
26 Current and Resistance 691
26.1 Electric Current 692
26.2 Resistance 694
26.3 A Model for Electrical Conduction 699
26.4 Resistance and Temperature 701
26.5 Superconductors 702
26.6 Electrical Power 703
27 direct-Current Circuits 713
27.1 Electromotive Force 714
27.2 Resistors in Series and Parallel 716
27.3 Kirchhoff’s Rules 723
27.4 RC Circuits 726
27.5 Household Wiring and Electrical Safety 732
28 Magnetic Fields 742
28.1 Analysis Model: Particle in a Field
(Magnetic) 743
28.2 Motion of a Charged Particle in a Uniform
Magnetic Field 748
28.3 Applications Involving Charged Particles
Moving in a Magnetic Field 752
28.4 Magnetic Force Acting on a CurrentCarrying Conductor 755
28.5 Torque on a Current Loop in a Uniform
Magnetic Field 757
28.6 The Hall Effect 761
29 Sources of the Magnetic Field 771
29.1 The Biot–Savart Law 772
29.2 The Magnetic Force Between Two
Parallel Conductors 777
29.3 Ampère’s Law 779
29.4 The Magnetic Field of a Solenoid 782
29.5 Gauss’s Law in Magnetism 784
29.6 Magnetism in Matter 786
30 Faraday’s Law 797
30.1 Faraday’s Law of Induction 798
30.2 Motional emf 801
30.3 Lenz’s Law 805
19 the First Law of thermodynamics 501
19.1 Heat and Internal Energy 502
19.2 Specific Heat and Calorimetry 505
19.3 Latent Heat 509
19.4 Work in Thermodynamic Processes 513
19.5 The First Law of Thermodynamics 514
19.6 Energy Transfer Mechanisms in Thermal
Processes 518
20 the Kinetic theory of Gases 533
20.1 Molecular Model of an Ideal Gas 534
20.2 Molar Specific Heat of an Ideal Gas 539
20.3 The Equipartition of Energy 542
20.4 Adiabatic Processes for an Ideal Gas 545
20.5 Distribution of Molecular Speeds 547
21 Heat Engines, Entropy, and the Second Law
of thermodynamics 556
21.1 Heat Engines and the Second Law
of Thermodynamics 557
21.2 Heat Pumps and Refrigerators 559
21.3 Reversible and Irreversible Processes 562
21.4 The Carnot Engine 563
21.5 Gasoline and Diesel Engines 567
21.6 Entropy 570
21.7 Entropy in Thermodynamic Systems 572
21.8 Entropy and the Second Law 578
P a R T 4
Electricity and
Magnetism 587
22 Electric Fields 588
22.1 Properties of Electric Charges 589
22.2 Charging Objects by Induction 591
22.3 Coulomb’s Law 593
22.4 Analysis Model: Particle in a Field (Electric) 598
22.5 Electric Field Lines 603
22.6 Motion of a Charged Particle in a Uniform
Electric Field 605
23 Continuous Charge distributions
and Gauss’s Law 615
23.1 Electric Field of a Continuous Charge
Distribution 616
23.2 Electric Flux 620
23.3 Gauss’s Law 623
23.4 Application of Gauss’s Law to Various
Charge Distributions 625
24 Electric Potential 636
24.1 Electric Potential and Potential Difference 637
24.2 Potential Difference in a Uniform Electric
Field 639
Contents vii36 Wave optics 962
36.1 Young’s Double-Slit Experiment 963
36.2 Analysis Model: Waves in Interference 965
36.3 Intensity Distribution of the Double-Slit
Interference Pattern 968
36.4 Change of Phase Due to Reflection 969
36.5 Interference in Thin Films 970
36.6 The Michelson Interferometer 973
37 diffraction Patterns and Polarization 983
37.1 Introduction to Diffraction Patterns 984
37.2 Diffraction Patterns from Narrow Slits 985
37.3 Resolution of Single-Slit and Circular
Apertures 988
37.4 The Diffraction Grating 992
37.5 Diffraction of X-Rays by Crystals 996
37.6 Polarization of Light Waves 998
P a R T 6
Modern Physics 1011
38 Relativity 1012
38.1 The Principle of Galilean Relativity 1013
38.2 The Michelson–Morley Experiment 1016
38.3 Einstein’s Principle of Relativity 1018
38.4 Consequences of the Special Theory
of Relativity 1019
38.5 The Lorentz Transformation Equations 1030
38.6 The Lorentz Velocity Transformation
Equations 1031
38.7 Relativistic Linear Momentum 1034
38.8 Relativistic Energy 1035
38.9 The General Theory of Relativity 1039
39 introduction to Quantum Physics 1048
39.1 Blackbody Radiation and Planck’s
Hypothesis 1049
39.2 The Photoelectric Effect 1055
39.3 The Compton Effect 1061
39.4 The Nature of Electromagnetic Waves 1063
39.5 The Wave Properties of Particles 1064
39.6 A New Model: The Quantum Particle 1067
39.7 The Double-Slit Experiment Revisited 1070
39.8 The Uncertainty Principle 1071
40 Quantum Mechanics 1079
40.1 The Wave Function 1079
40.2 Analysis Model: Quantum Particle Under
Boundary Conditions 1084
40.3 The Schrödinger Equation 1089
40.4 A Particle in a Well of Finite Height 1091
40.5 Tunneling Through a Potential Energy
Barrier 1093
40.6 Applications of Tunneling 1095
40.7 The Simple Harmonic Oscillator 1096
30.4 The General Form of Faraday’s Law 808
30.5 Generators and Motors 810
30.6 Eddy Currents 814
31 inductance 824
31.1 Self-Induction and Inductance 825
31.2 RL Circuits 827
31.3 Energy in a Magnetic Field 830
31.4 Mutual Inductance 832
31.5 Oscillations in an LC Circuit 834
31.6 The RLC Circuit 837
32 Alternating-Current Circuits 847
32.1 AC Sources 848
32.2 Resistors in an AC Circuit 848
32.3 Inductors in an AC Circuit 851
32.4 Capacitors in an AC Circuit 854
32.5 The RLC Series Circuit 856
32.6 Power in an AC Circuit 859
32.7 Resonance in a Series RLC Circuit 861
32.8 The Transformer and Power Transmission 863
33 Electromagnetic Waves 873
33.1 Displacement Current and the General
Form of Ampère’s Law 874
33.2 Maxwell’s Equations and Hertz’s
Discoveries 876
33.3 Plane Electromagnetic Waves 878
33.4 Energy Carried by Electromagnetic
Waves 882
33.5 Momentum and Radiation Pressure 884
33.6 Production of Electromagnetic Waves
by an Antenna 886
33.7 The Spectrum of Electromagnetic Waves 887
P a R T 5
Light and optics 897
34 the nature of Light and the Principles
of Ray optics 898
34.1 The Nature of Light 899
34.2 The Ray Approximation in Ray Optics 901
34.3 Analysis Model: Wave Under Reflection 902
34.4 Analysis Model: Wave Under Refraction 905
34.5 Huygens’s Principle 911
34.6 Dispersion 912
34.7 Total Internal Reflection 914
35 image Formation 925
35.1 Images Formed by Flat Mirrors 926
35.2 Images Formed by Spherical Mirrors 928
35.3 Images Formed by Refraction 935
35.4 Images Formed by Thin Lenses 939
35.5 Lens Aberrations 947
35.6 Optical Instruments 947
viii Contents44.2 Positrons and Other Antiparticles 1227
44.3 Mesons and the Beginning of Particle
Physics 1229
44.4 Classification of Particles 1231
44.5 Conservation Laws 1233
44.6 Strange Particles and Strangeness 1236
44.7 Finding Patterns in the Particles 1238
44.8 Quarks 1240
44.9 Multicolored Quarks 1242
44.10 The Standard Model 1244
44.11 The Cosmic Connection 1246
44.12 Problems and Perspectives 1251
Appendices
A tables A-1
Table A.1 Conversion Factors A-1
Table A.2 Symbols, Dimensions, and Units of Physical
Quantities A-2
B Mathematics Review A-4
B.1 Scientific Notation A-4
B.2 Algebra A-5
B.3 Geometry A-10
B.4 Trigonometry A-11
B.5 Series Expansions A-13
B.6 Differential Calculus A-13
B.7 Integral Calculus A-16
B.8 Propagation of Uncertainty A-20
C Periodic table of the Elements A-22
D Si Units A-24
D.1 SI Units A-24
D.2 Some Derived SI Units A-24
Answers to Quick Quizzes and odd-numbered
Problems A-25
index i-1
41 Atomic Physics 1105
41.1 Atomic Spectra of Gases 1106
41.2 Early Models of the Atom 1107
41.3 Bohr’s Model of the Hydrogen Atom 1109
41.4 The Quantum Model of the Hydrogen
Atom 1114
41.5 The Wave Functions for Hydrogen 1117
41.6 Physical Interpretation of the Quantum
Numbers 1120
41.7 The Exclusion Principle and the Periodic
Table 1126
41.8 More on Atomic Spectra: Visible and X-Ray 1130
41.9 Spontaneous and Stimulated Transitions 1133
41.10 Lasers 1135
42 Molecules and Solids 1144
42.1 Molecular Bonds 1145
42.2 Energy States and Spectra of Molecules 1148
42.3 Bonding in Solids 1156
42.4 Free-Electron Theory of Metals 1158
42.5 Band Theory of Solids 1160
42.6 Electrical Conduction in Metals, Insulators,
and Semiconductors 1162
42.7 Semiconductor Devices 1165
43 nuclear Physics 1177
43.1 Some Properties of Nuclei 1178
43.2 Nuclear Binding Energy 1182
43.3 Nuclear Models 1184
43.4 Radioactivity 1187
43.5 The Decay Processes 1190
43.6 Natural Radioactivity 1200
43.7 Nuclear Reactions 1200
43.8 Nuclear Fission 1202
43.9 Nuclear Reactors 1204
43.10 Nuclear Fusion 1207
43.11 Biological Radiation Damage 1211
43.12 Uses of Radiation from the Nucleus 1213
43.13 Nuclear Magnetic Resonance and Magnetic
Resonance Imaging 1215
44 Particle Physics and Cosmology 1225
44.1 Field Particles for the Fundamental
Forces in Nature 1226
Contents ix
Locator note: boldface indicates a definition;
italics indicates a figure; t indicates a table; n
indicates a footnote
Absolute pressure, 365
Absolute temperature scales, 485, 485–487,
486, 486, 487
Absolute uncertainty, A-20
Absorption spectroscopy, 1106
Absorptivity of radiation, 523
Academy of Natural Science, 825
Accelerated frames, circular motion in,
135–138, 136, 137
Acceleration (Sa)
angular (Sa), 250–252
average angular, 251
centripetal, 82–84, 128, 128
constant, with motion in two dimensions,
71–74
dimensions and units of, 10t
free-fall, 41–44, 43, 335–336, 335t
instantaneous angular, 251
in Newton’s first law of motion, 98
nonconstant, 388
overview, 32–36
particle under constant, 37–41, 38
radial, 84, 84–85
relative, 85–88
rigid object under constant angular,
252–254, 253
of simple harmonic oscillator, 390n, 391,
391–392
tangential, 84, 84–85
tangential and angular relationship, 255
of two connected objects with friction,
118, 118–119
vectors for, 70
Acceleration-time graph, 35
Accelerator, particle beam in, 773. See also
Particle physics and cosmology
Accommodation, in eye focusing, 949
Action force, 103
Activity of radioactive material (decay rate),
1188–1190
Adaptive optics, 992
Addition
associative law of, 56, 56
commutative law of, 56, 56
of vectors, 55–56, 61, 70
Adiabatic process
free expansion of gas, 562, 562–563, 574,
577–578
for ideal gas, 545–547, 546
overview, 516–517, 524
Agua Caliente Solar Project (AZ), 1167
Ahlborn, B., 565n
Air bags, in collision tests, 218, 218
Air columns, standing waves in, 466–469,
467, 469
Air conditioners, 55962
Air-standard diesel cycle, 583, 583
Air-water boundary, critical angle (of
incidence) for, 915–916, 916
A Large Ion Collider Experiment (ALICE
project), 1242
Algebra, A-5–A-10
Algebraic symbols for quantities, 10n, 15
Alkali metal elements, 1129–1130
Allowed transitions, selection rules for, 1131
Alpha decay, in radioactivity, 1095, 1095,
1191, 1191–1195, 1192t–1193t,
1195, 1200t
Alternating-current (AC) circuits, 847–872.
See also Current and resistance
AC sources, 848, 848
capacitors in, 854, 854–856, 855
inductors in, 851, 851–853, 852, 853
phasors, 849, 849–850, 852, 852, 854, 854
power in, 859–861
resistors in, 848, 848–851, 849, 850
RLC series circuits
overview, 856, 856–859, 857, 858
resonance in, 861–863, 862
storyline on, 847–848
transformers and power transmission,
863–866, 864, 864, 865
Alternating-current (AC) generators, 811,
811–813, 812
Alternative representations in problem
solving, 8–9
Alzheimer’s disease, PET scans for,
1229, 1229
American Wire Gauge (AWG) system, 708
Amorphous solids, 1144
Ampere (A, SI base unit of current), 692,
694–695
Ampère, Andre-Marie, 779, 779
Ampère-Maxwell law, 875
Ampère’s law
general form of, 874, 874–875, 875
magnetic field of ideal solenoid from, 783
overview, 779, 779–782, 779n, 780, 781
Amplitude of motion, 389, 389, 406, 406
Amplitude (A) of waves, 420, 423, 457
Analysis models
analysis step in, 31
boundary effects, 461, 461–465,
463, 464
definition of, 7
isolated system (angular momentum),
295–300, 296, 298, 299
isolated system (energy), 185–191
free fall, 187, 187–188, 188
overview, 185–187, 186
pulleys, 188–190, 189, 190
spring-loaded popgun, 190, 190–191
isolated system (momentum), 213–215,
214
nonisolated system (angular momentum),
288–293, 290, 292
nonisolated system (energy), 182,
182–185, 184
nonisolated system (momentum),
215–219, 217, 217, 218, 219
particle in a field (electric), 598, 598–603,
599, 601, 602, 603
particle in a field (gravitational),
336–339, 338
particle in a field (magnetic), 743,
743–748, 744, 746, 747t, 748
particle in equilibrium, 105–107
particle in simple harmonic motion,
388–394, 389, 391, 392
particle in uniform circular motion, 83
particle under constant acceleration,
37–41
particle under constant velocity, 27–30
particle under net force, 106–114, 749
problem solving, 30–32
quantum particle under boundary
conditions, 1084, 1084–1089,
1085, 1089
rigid object in equilibrium, 311, 311–312,
312
rigid object under constant angular
acceleration, 252–254, 253
rigid object under net torque, 259,
259–263, 261, 262, 263
traveling wave, 419, 419–423, 420, 422, 423
waves in interference, 452–456, 453, 454,
455, 965, 965–968, 966, 966
wave under reflection, 902, 902–905, 903,
904, 905
wave under refraction
angle of refraction for glass, 908–909
index of refraction, 906–908, 907, 907t
light through prism, 910, 910
light through slab, 909–910, 910
overview, 905, 905–907, 906, 908, 908
Anderson, Carl, 1228, 1230
Angle of deviation (d), 910, 910, 913
Angle of divergence, 1135
Angle of incidence, 902, 914, 915
Angle of reflection, 902
Angle of refraction, 905, 908–909
Angular acceleration (Sa)
average, 251
instantaneous, 251
overview, 250–252
rigid object under constant, 252–254, 253
tangential acceleration and, 255
Angular and translational quantities in
rotational motion, 254–257, 255,
256
Angular frequency (v), 389, 392, 401,
421, 423
Angular magnification, 951
Angular momentum (L
S
), 285–309
ground-state, of atom, 1112
gyroscopes and tops, motion of, 301, 301
isolated system (angular momentum),
analysis model of, 295–300, 296,
298, 299
Index
I-1nonisolated system (angular momentum),
analysis model of, 288–293,
290, 292
quantized orbital, 786, 786
of rotating rigid object, 293, 293–295, 294
in rotational motion, 212n
spin, 1125, 1125n
storyline on, 285–286
vector product and torque, 286, 286–288
Angular position (u), 250, 250–252
Angular speed (v)
average, 251
constant, 399–400
instantaneous, 251
translational speed and, 82–83
Angular velocity (Sv), 250–252
Angular wave number (k), 421
Anomalous trichromats, in color blindness,
950
Antenna, for electromagnetic wave
production, 886–887, 887
Antiderivatives, in calculus, 44
Antilogarithms, A-9
Antinodes, 457–458
Antiparticles
antineutrino, 1196, 1230, 1230n
antineutron, 1228
antiproton, 1228
antiquarks, 1240, 1240t
of electrons, positrons as, 1187
overview, 1227, 1227–1229, 1228, 1229
Apex angle of prism (F), 910, 910
Apollo 11 moon landing, 904, 904, 918
Apollo astronauts, 1137
Arago, Dominique-François-Jean, 984
Archimedes’s principle, 365, 365–368
Area (A)
dimensions and units of, 10t
of geometric shapes, A-10, A-10t
integration to determine, 45
Arfeuille, Walter, 176
Aristarchus of Samos, 339n
Aristotle, 41, 208
Arithmetic, for vectors, 55–58
Art forgeries, neutron activation analysis to
identify, 1214
Artificial kidney machines, 768
Artificial radioactivity, 1200
Ashpole, Ian, 380
Associative law of addition, 56, 56
Asymmetrical nature of potential energy
curve, 488n
ATLAS (A Toroidal LHC Apparatus), 1245
Atmosphere, of Earth
atmospheric blurring for telescopes and,
991–992, 992
carbon dioxide levels in, 1155, 1155
temperature of, 523
Atmospheres, law of, 554
Atomic emissions, 1072–1073
Atomic mass unit, 1179
Atomic number (Z), 1112, 1178, 1182
Atomic orbitals, 1127, 1127t
Atomic physics, 1105–1143
atom, models of, 1107, 1107–1108, 1108
Bohr’s model of hydrogen atom, 1109,
1109–1114, 1110, 1111
exclusion principle and periodic table,
1126, 1126–1130, 1127t, 1128, 1128,
1129, 1130
gases, atomic spectra of, 1106, 1106–1107,
1107
lasers, 1135–1137, 1136
quantum model of hydrogen atom, 1114,
1114–1117, 1115, 1116t
quantum numbers
orbital (,), 1120
orbital magnetic (m,), 1120–1123,
1121, 1122
principal (n), 1115
spin magnetic (ms), 1123, 1123–1126,
1124, 1125, 1126t
spontaneous and stimulated transitions,
1133–1134, 1134
storyline on, 1105
visible and x-ray spectra, 1130, 1130–1133,
1131, 1132, 1133
wave functions for hydrogen, 1117,
1117–1120, 1118, 1119
Atomic shells, 1116, 1116t
Atomic spectroscopy, 994–995
Atomic subshells, 1116, 1116t
Atoms. See also Atomic physics; Hydrogen
magnetic moments of, 786, 786–787,
787
models of, 1107, 1107–1108, 1108
Attractive force, 589, 589, 590
Atwood machine, 112, 112–113, 271–272,
272
AU (astronomical unit), 342
Audible sound waves, 429
Automobiles, fuel-cell-powered, 1
Average acceleration (ax,avg), 32, 35–36, 70
Average angular acceleration (a), 251
Average angular speed (v
avg
), 251
Average coefficient of linear expansion (a),
488, 488–489, 489, 489t
Average coefficient of volume expansion (b),
489, 489t
Average current (I
avg
), 692
Average force, 535n
Average kinetic energy per molecule, 537
Average power (P
avg
), 201, 860–862
Average speed (v
avg
), 22–23
Average velocity (vx,avg), 22–23, 69, 70
Avogadro’s number (NA), 492–493
AWG (American Wire Gauge) system,
708, 708t
Axis of rotation. See Rotational motion
Back emf, 825
Background radiation, 1212
Bainbridge mass spectrometer, 753
Balboa State Park (San Diego), 468
Balmer, Johann Jacob, 1107
Balmer series (emission spectrum of
hydrogen), 1106, 1107, 1107,
1111, 1111
Band theory of solids, 1160–1162, 1161, 1161
Banked roadways, 131, 131–132
Bar charts for energy, 168, 169, 200
Bardeen, John, 703, 1168
Barrier height, 1093
Barrier penetration, 1093
Baryon number, 1233–1234
Baryon particles, 1233, 1238, 1238–1239,
1239, 1242, 1242t
Basal metabolic rate (BMR), 530
Base number of logarithms, A-9
Batteries, 714–716
Battery charger, wireless, 833, 833
Bay of Fundy (Nova Scotia, Canada), 477
BCS theory of superconductivity, 703
Beat frequency, 471, 471
Beats: interference in time, 469–471,
470, 471
Becquerel, Antoine-Henri, 1177, 1187
Bednorz, J. Georg, 703
Bell, Alexander Graham, 436n
Bell Laboratories, 1247
Bernard, W. H., 191n
Bernoulli, Daniel, 371, 371
Bernoulli’s principle, 371–375, 373, 377
Beta decay, in radioactivity, 1195–1198,
1196, 1197, 1200t
Betatron, 823
Betelgeuse (star), 1050
Bethe, Hans, 1222
Big Bang theory of Universe creation, 1246
Big Ben (London, UK), 281, 281, 283, 304
Binding energy, 1145, 1182, 1182–1184,
1183
Biological radiation damage, 1211–1213,
1212t
Biot, Jean-Baptiste, 772
Biot-Savart law, 772, 772–776, 773, 774,
775, 776
Blackbody radiation, 523, 1049, 1049–1055,
1050, 1051, 1052, 1053
Black holes, 350, 350
Blueshift, in wavelength, 1029
Blu-ray Discs, 981
BMR (basal metabolic rate), 530
Bohr, Niels, 791, 1109, 1109, 1184
Bohr model of hydrogen atom
correspondence principle in, 1112–1113
description of, 1109, 1109–1112,
1110, 1111
electronic transitions in, 1113–1114
electron in circular path in, 144
quantum model of hydrogen atom versus,
1117–1118
Bohr radius (a0), 1110, 1117
Boltzmann, Ludwig, 548
Boltzmann distribution law, 547, 1052
Boltzmann’s constant (kB), 493, 712, 1050
Bonaparte, Napoleon, arsenic poisoning
of, 1214
Bonds
bond energy, 502
covalent molecular, 1146–1147, 1147
in covalent solids, 1157, 1157
in DNA (deoxyribonucleic acid)
molecules, 1148, 1148
hydrogen molecular, 1147–1148, 1148
ionic molecular, 1145–1146, 1146
in ionic solids, 1156, 1156
in metallic solids, 1157–1158, 1158
in metals, 1157–1158, 1158
overview, 1145, 1145
potential energy in molecular, 1145
van der Waals, 1147, 1243
Bose-Einstein condensates, 1144
Angular momentum (continued)
I-2 IndexBosons. See also Particle physics and cosmology
gauge, 1226
Higgs, 1245
integral spin of, 1226n
weak force mediated by W and Z, 1227
Bottom type of quark (b), 1241
Boundary effects, 459, 459–460, 460, 461,
463, 464
Boyle, Willard S., 1060
Brachytherapy (radiation “seeds” implanted
in cancerous tissue), 1214
Brackett series, in hydrogen spectra, 1107
Bragg, W. L., 997
Bragg’s law, 997
Brahe, Tycho, 339
Braking radiation (bremsstrahlung), 1131
Braking systems, eddy currents and, 815
Brattain, Walter, 1168
Bremsstrahlung (x-rays from slowing down
of electrons; braking radiation),
1131, 1131
Brewster, David, 1000
Brewster’s angle, 1000
Brewster’s law, 1000
Bright fringes, in wave optics, 986
British thermal unit (Btu), 503
Broglie, Louis de, 1064–1065, 1071
Brookhaven National Laboratory, 1239,
1241, 1242
Buckminsterfullerene, 1157
Bulk modulus, 320, 320t, 321–322
Bumpers, in collision tests, 219
Bunsen, Robert, 724
Buoyant forces, 365–368, 366
Calculus
differential, A-13–A-16
instantaneous velocity derived from, 25
integral, A-16–A-19
kinematic equations from, 44–45
Calories, as heat unit, 503
Calorimetry, 504–508, 505t, 507, 507
Cameras, 947, 947–948, 1059
Cancer, detection of and therapies for, 1214,
1215, 1225
Candela (cd, unit of luminous density), 3
Capacitance (C), 663–690
calculating, 665–668, 666, 667, 668
capacitors in alternating-current circuits,
854, 854–856, 855
capacitors with dielectrics, 676–678, 677,
677t
combinations of capacitors, 668, 668–672,
669, 670, 671
definition of, 664, 664–665, 665
dielectrics, atomic description of, 681,
681–683, 682, 683
displacement current in capacitors, 875,
875
electric dipole in electric field, 678,
678–680, 679, 680
energy stored in charged capacitors,
672–676, 673, 674
storyline on, 663–664
Capacitor(s), 664
Carbon dating by radioactivity decay,
1198–1199
Carbon dioxide lasers, 1136–1137
Carbon monoxide (CO) molecule,
1150–1153
Carnot, Sadi, 563
Carnot cycle in Carnot engine
description of, 563, 563–567, 564, 565
entropy change in, 575–576
Carnot’s theorem, 563
Cartesian coordinate system, 53, 53, 54, 71
Categorization, in analysis models, 31
Cavendish, Sir Henry, 333
Cavendish balance, 353
Cavendish Laboratory, University of
Cambridge, 753
Cavity within conductor, 654, 654–655
CCD (charge-coupled device), 948, 1060
Cell separator, lasers used with, 1137
Celsius temperature scale, 484–485,
485, 487
Center of gravity, 312–313, 313
Center of mass, 230–234, 231, 232, 233
Centers for Disease Control and Prevention
(CDC), 1215
Central maximum, in diffraction
patterns, 984
Centrifugal force, 137
Centripetal acceleration, 82–84, 128, 128
Cerenkov effect, 448
Cerenkov radiation, 1047
CERN (Conseil Européen pour la
Recherche Nucléaire, changed to
European Laboratory for Particle
Physics), 1011, 1022, 1227n,
1242, 1245
Cesium-133 atom, in time standard, 5
Cesium fountain atomic clock, 4
Chadwick, James, 1223
Chain rule of differential calculus, A-14
Challenger space shuttle tragedy of 1986,
1230
Chamberlain, Owen, 1228
Change of phase from reflection, 969,
969–970, 970
Characteristic x-rays, 1131–1132
Charanka Solar Park (India), 1167
Charge, electric. See Electric fields
Charge, of nucleus, 1179
Charge-coupled device (CCD), 948, 1060
Charge density, 616–617, 681–682
Charge on spheres, as example of
Coulomb’s law, 597, 597–598
Charmed type of quark (c), 1241
Charon (moon of Pluto), 992, 992
Chernobyl nuclear power plant accident
(Ukraine, 1986), 1206
Chip (integrated circuit), 1170
Choice, entropy and, 570–571
Chromatic aberrations in lenses, 947, 947
Chu, Steven, 1143
Circuit diagrams, 668
Circuit symbols, 668
Circular aperture and single-slit resolution,
988–992, 989, 990, 992
Circular current loop, magnetic field on
axis of, 775, 775–776, 776
Circular motion, 127–149
in accelerated frames, 135–138
with constant angular speed, 399–400
nonuniform, 133–135
particle in uniform, 81, 81–83
particle in uniform (extended model),
128–133
with resistive forces present, 138–143
storyline on, 127–128
uniform, 81, 81–83, 398, 398–400, 399
Classical mechanics, 1
Clausius, Rudolf, 560n
Clausius statement of the second law of
thermodynamics, 560, 579
Climate change, 1155
Closed surface, electric flux through, 622,
622, 622–623
Closed Universe, 1249
CMS (Compact Muon Solenoid), 1011,
1245
Coaxial cable, 698–699, 832, 832
COBE (Cosmic Background Explorer)
satellite, 1248
Coefficient of kinetic friction (mk), 115, 117,
117–118
Coefficient of performance (COP), for heat
pumps, 560–561, 566
Coefficient of static friction (ms), 114,
115, 116t
Coefficients, 26n
Cohen-Tannoudji, Claude, 1143
Coherent light sources, 964, 995, 1135
Collective model of nucleus, 1187
Colliders (colliding-beam accelerators),
1245
Collisions. See also Linear momentum
disk and stick, 299, 299–300, 300t
in one dimension, 219–227
ballistic pendulum, 224–225, 225
elastic, 220–222
inelastic, 220
overview, 219–220, 220
perfectly inelastic, 220
stress reliever device, 223, 223–224
two-body, with spring, 226, 226–227
in two dimensions, 227–230
Color, wavelengths of visible light
corresponding to, 888, 888t
Color blindness, 950
Color charge, quark property of, 1242–1243
Color force, between quarks, 1243
Colors, angles of deviation of, 913
Columbia University, 1229
Coma Cluster of galaxies, 1250
Comet Halley, 341
Commutative law, 56, 56, 154n
Compact Muon Solenoid (CMS) Detector
(CERN), 1011, 1245
Compass needles, 743, 743, 745
Complementarity, principle of, 1064
Complex numbers, 1081n
Composition resistor, 695
Compound microscope, 952, 952
Compression ratio, for gasoline engines,
569
Compton, Arthur Holly, 146, 1061, 1061
Compton effect in quantum physics, 1061,
1061–1063, 1063
Compton shift equation, 1062
Compton wavelength of electrons, 1062
Concave spherical mirrors, 928, 928–930,
929, 930, 933–934
Index I-3Conceptualization, in analysis models,
30–31
Condensation, latent heat of, 509n
Condensed matter physics, 1144
Condition for pure rolling motion, 271, 271
Condon, E. U., 1195
Conduction
electrical, 699–701
thermal, 519, 519–521, 520, 577–578, 692
Conduction band, 1163
Conduction current, 874, 874
Conductivity (s), 695, 700
Conductors
current-carrying, in magnetic fields, 755,
755–757, 756
in electrostatic equilibrium, 651, 651–655,
652, 653, 654
magnetic field between two parallel, 777,
777–778, 778
magnetic field surrounding thin, straight,
773–774, 774
overview, 591
Cones and rods, in eyes, 949
Conical pendulum, 129, 129
Conservation laws for particle physics,
1233–1236, 1234
Conservation of angular momentum, 295n.
See also Angular momentum
Conservation of baryon number, 1233
Conservation of electric charge, 590–591
Conservation of electron lepton number,
1235
Conservation of energy equation, 184. See
also Energy, conservation of
Conservation of momentum, 217. See also
Linear momentum
Conservation of muon lepton number, 1236
Conservation of strangeness, 1237
Conservation of tau lepton number, 1236
Conservative field, 642
Conservative forces
nonconservative forces and, 169–171, 170,
170, 171, 171
overview, 637
potential energy and, 171–173
Constant acceleration model
with motion in two dimensions, 71–74
particle under, 37–41
Constant angular speed, 399–400
Constant positive velocity, 36, 37
Constant velocity, particle under, 27–30
Constructive interference, 452, 453, 964,
964–966, 965, 1067
Contact force, 96, 96, 338
Continuity for fluids, equation of, 370
Continuous charge distributions, 615–635.
See also Electric fields
electric field of, 616, 616–620, 618,
619, 620
electric flux (FE) and, 620–623, 621, 621,
622, 623
electric potential due to, 646, 646–651,
648, 649, 650
Gauss’s law
application of, 625–629, 626, 627,
628, 629
overview, 623, 623–625, 624
storyline on, 615–616
Convection, as energy transfer mechanism,
522–523
Converging thin lenses, 943, 943–944
Conversion factors, A-1–A-2
Conversion of units, 12
Convex spherical mirrors, 930–931, 931,
935, 935
Cooper, Gordon, 1043
Cooper, L. N., 703
Coordinate systems, 53–54
COP (coefficient of performance), for heat
pumps, 560–561, 566
Copernicus, Nicolaus, 41, 339
Copper, Hall effect for, 762
Coriolis force, 136
Cornu, Marie, 870
Correspondence principle, of Bohr,
1112–1113
Cosmic Background Explorer (COBE)
satellite, 1248
Cosmic rays, 752
Cosmology. See Particle physics and
cosmology
Coulomb (C, unit of electric charge), 593
Coulomb, Charles, 593
Coulomb constant (ke), 593
Coulomb repulsive force
between alpha particle and nucleus, 1095
fusion reactions hindered by, 1208
in liquid-drop model, 1184
nuclear stability and, 1182, 1182–1183,
1183
size and structure of nuclei determined
by, 1179–1181, 1180
Coulomb’s law, 593–598
in capacitance determination, 664n
charge on spheres example, 597, 597–598
conservative force between charges in,
637
hydrogen atom example, 594–595, 595
overview, 592, 592–594, 594t
resultant force example, 595, 595–596
zero, as net force value, 596, 596–597
Covalent molecular bonds, 1146–1147, 1147
Covalent solids, 1157, 1157
Crest, of waves, 417
Critical angle (of incidence), 915–916
Critical density, universe fate and, 1249,
1249–1250
Critically damped motion, 839
Critical systems, 405
Cross product, 286, 286
CT scans, for medical diagnosis, 1177, 1213,
1225
Cubic zirconia versus diamond, 915
Curie, Marie, 1187
Curie, Pierre, 1187
Curie temperatures for ferromagnetic
substances, 788, 788t
Current (I)
conduction, 874, 874
displacement, 874, 874–875, 875
in inductor in AC circuit, 852
in phase with voltage, 849
Current and resistance, 691–712. See also
Alternating-current circuits;
Direct-current circuits; Faraday’s
law of induction
current, overview of, 692, 692–694, 693
electrical conduction model, 699–701
electrical power, 703, 703–706, 705
resistance, overview of, 694–699, 695,
695, 696, 696t, 697, 697t, 698
storyline on, 691–692
superconductors, 702, 702–703, 702t
temperature and, 701, 701–702
Current-carrying wire, magnetic field
created by, 780, 780–781
Current density (J), 694, 700
Curvature of spacetime, 1040–1041
Curved wire, magnetic field due to,
774–775, 775
Curzon, F. L., 565n
Curzon-Ahlborn efficiency of engines, 565n
Cutoff frequency (fc), in photoelectric
effect, 1056
Cutoff wavelength, in photoelectric effect,
1059
Cyclic process, on PV diagram, 515, 515
Cyclotron, 750, 754, 754–755
Cylinder
as symmetry for capacitor, 667, 667
as symmetry for charge distribution,
627–628, 628
Daedalus and Icarus, myth of, 529
Damped oscillations, 404, 404–405, 405,
838, 838t
Dark energy, 1251, 1251n
Dark fringes, in wave optics, 986–987
Dark matter, 350, 350–351, 351, 1250–1251
Daughter nucleus, in radioactive decay, 1191
Davisson, C. J., 1065
Davisson-Germer experiment, 1064–1065,
1070
Dead Sea Scrolls, carbon dating of, 1198
Death Valley (CA), 496
de Broglie, Louis, 1064
de Broglie wavelength, 1064, 1084
Debye, Peter, 1061
Decay constant, 1187
Decay rate, 1188
Deceleration, 34
Decibels (dB), 436–437
Decimal places, 14
Defibrillator, 663, 663, 676
Definite integral, in calculus, 44, A-16, A-17,
A-19t
Deformable systems, 152, 237–239, 238
Delta (D) symbol, 22
Density (r)
of common substances, 361t
definition of, 6
of nucleus, 1180–1181
Depletion region, in junction diodes,
1165–1166
Depth, pressure variation with, 360–364
Derivative
in calculus, A-14
instantaneous velocity as, 25
second, acceleration as, 34
Derived quantities, 6, 10t
Destructive interference, 452, 453, 455, 964,
964–966, 965, 986
Deuterium (heavy water) fuel, for fusion
reactions, 1207
I-4 IndexDewar flask, 525, 525
Diamagnetism, 788–789, 789, 845
Diamond, cubic zirconia versus, 915
Diatomic molecules, 1146
Dielectric constant (k), 676–677, 677t
Dielectrics
atomic description of, 681, 681–683,
682, 683
capacitors with, 676–678, 677, 677t
Dielectric strength, 677, 677t
Diesel and gasoline engines, 567–569, 568
Differential calculus, A-13–A-16
Diffraction, intensity distribution from, 969
Diffraction patterns, 983–1010. See also Wave
optics
diffraction grating and, 992–996, 993,
994, 995, 1065
from narrow slits, 985, 985–988, 987, 988
overview, 984, 984
single-slit and circular aperture
resolution, 988–992, 989, 990, 992
storyline on, 983
in wave nature of particles, 1065
Diffraction of x-rays by crystals, 996,
996–997, 997
Diffuse reflection, 902
Digital micromirror device, in projection
equipment, 904, 904–905
Dimensional analysis, 10–11
Dimensions, A-2–A-3
Diodes
junction, 1165, 1165–1166, 1166
light-emitting and light-absorbing,
1166–1168, 1167
Diopters, in lens prescriptions, 950
Dipole, electric potential due to, 648, 648
Dipole antenna, 886–887
Dipole-dipole force, 1147
Dipole-induced dipole force, 1147
Dirac, Paul, 1125, 1227
Dirac sea (electrons in negative energy
states), 1227
Direct-current (DC) circuits, 713–741, 714.
See also Current and resistance
electrical safety, 733, 733–734, 734
electromotive force (emf, «), 714,
714–716, 716
household wiring, 732, 732–733, 733
Kirchhoff’s rules, 723, 723–726, 724, 725
RC circuits, 725–732
charging capacitors, 725–728, 727, 728,
729–730
discharging capacitors, 728–729, 729,
730–731
energy delivered to resistor in, 731–732
intermittent windshield wipers
example, 729
time constant, 728
resistors, 716–722
equivalent resistance, calculating, 721,
721
landscape lights example, 720, 720
in parallel, 718, 718–720, 720
in series, 716–718, 717, 718
three, in parallel, 722, 722
storyline on, 713–714
Direct-current (DC) generators, 810–811,
811
Disneyland, 127, 127
Disney World, 93
Disorder, entropy and, 571
Dispersion, 416n
Dispersion force, 1147
Dispersion of light, 912–914, 913, 914
Displacement (Dx). See also Superposition
and standing waves
approaching zero, 25n
as change in position, 21–22, 22, 25n
in definition of work, 152, 152–153, 153,
156–157, 157
potential energy function (U) and, 172n
unit-vector notation for, 61
as vector quantity, 54, 54–55
Displacement amplitude of waves, 430
Displacement antinode, 466
Displacement current, 874, 874–875, 875
Displacement node, 466
Displacement vector, 69, 69
Dissociation energy, 1146, 1146n
Distance, 22, 22
Distribution function, 547
Distributive law of multiplication, 155
Disturbance, propagation of, 416, 416–419,
417, 418
Divergence, angle of, 1135
Diverging mirror, 931
Diverging thin lenses, 944, 944–945
DNA (deoxyribonucleic acid) molecules,
hydrogen bonding in, 1148, 1148
Domains, in ferromagnetic materials,
787, 788
Donor atoms, in doped semiconductors,
1165
Doped semiconductors, 1164–1165, 1165
Doppler, Christian Johann, 438n
Doppler effect, 438, 438–443, 439, 440, 442,
443, 1029
Doppler shifts, 1248
Dot product, 154, 154n
Double rainbows, 913, 914
Double-reflected light ray, 903, 903
Double refraction, polarization of light
waves by, 1001, 1001–1002, 1002t
Double-slit experiment, 1070, 1070–1071
Double-slit interference pattern, intensity
distribution of, 968–969, 969
Down type of quark (d), 1240
Drag coefficient, 141
Drag force, 377
Drift velocity, 693–694, 700, 701n, 761
Drude, Paul, 699
Drude model of electrical conduction, 699–701
Dulong-Petit law, 1172
DVDs, as diffraction gratings, 993–994, 994
Earth
atmosphere carbon dioxide levels, 1155, 1155
atmospheric blurring for telescopes,
991–992, 992
centripetal acceleration of, 83
density of, 336
escape speed of, 350t, 549
as inertial frame, 98
kinetic energy of, 162t
magnetic field of, 743–745, 744
mass of, 5t
orbit of, 340, 350
ozone layer, 889
planetary data, 343t
Ear thermometer, 1053, 1053
Earthquake (Japan)-caused nuclear power
disaster (2011), 1206
Earthquakes, seismic waves from, 417
Eaton, Ashton, 77
Eccentricities, in planetary motion, 340,
340–341
Eddy currents, 814, 814–815, 865
Edison, Thomas, 865
EER (energy efficiency ratio) for air
conditioners, 584
Eightfold way (patterns in baryon particles),
1239
Einstein, Albert
energy equation of, 1231
general theory of relativity of, 1039–1041
gravitational waves predicted by, 975, 975
Michelson-Morley experiment and,
1016–1017
photoelectric effect model of, 1057–1058
Planck results rederived by, 1053
relativity principle of, 1018, 1018–1019,
1018n
special theory of relativity of, 1011
Elastic collisions, 220–222, 221
Elastic limit, 321
Elastic modulus, 320
Elastic potential energy, 167
Elastic properties of solids, 319–323
bulk modulus (B), 320, 320t, 321–322
prestressed concrete example, 322,
322–323
shear modulus (S), 320, 320t, 321
Young’s modulus (Y), 320–321, 320t
Electrical conduction
in insulators, 1162–1163
in metals, 1162, 1162
model of, 699–701
in semiconductors, 1163, 1163–1165,
1163t, 1164, 1165
Electrical power, 691, 691, 703, 703–706, 705
Electrical safety, 733, 733–734, 734, 800
Electrical transmission (TET), 183
Electric charges, magnetic fields from
moving, 772
Electric dipole moment, 678
Electric fields (E
S
), 588–615. See also
Continuous charge distributions;
Current and resistance
Coulomb’s law, 592, 592–598, 594t
charge on spheres example, 597,
597–598
hydrogen atom example, 594–595, 595
overview, 592–594
resultant force example, 595, 595–596
zero, as net force value, 596, 596–597
electric charge (q)
electric force and, 593–598
of electron, proton, and neutron, 594t
in particle in a field (electric) model,
598–603
properties, 589, 589–591, 590
smallest unit (e) of free, 593
electric dipole in, 678, 678–680, 679, 680
electric field lines, 603, 603–605, 604, 605
Index I-5electric potential for value of, 645–646,
646
induction to charge objects, 591–592, 592
motion of charged particles in uniform,
605–607, 606, 607
particle in electric field, analysis model
of, 598, 598–603, 599, 601, 602, 603
sinusoidal, 880–881, 881
storyline on, 588–589
Electric flux (FE). See also Gauss’s law
description of, 620–623, 621, 621,
622, 623
displacement current and, 875, 875–876
magnetic field differences from, 785, 785
Electric force, 590, 590
Electric guitar, 800, 800
Electric potential (UE), 636–662
conductors in electrostatic equilibrium,
651, 651–655, 652, 653, 654
continuous charge distributions as source
of, 646, 646–651, 648, 649, 650
electric field value from, 645–646, 646
of live wires, 732n
point charges as source of, 642, 642–645,
643
potential difference and
overview, 637–639, 638
in uniform electric field, 639–642,
640, 641
storyline on, 636–637
voltage drop as decrease in, 717n
Electric shock, 733, 733–734, 800
Electromagnetic blood pumps, 768
Electromagnetic force, 96, 1226–1227, 1227t
Electromagnetic radiation (TER), 183, 183n.
See also Quantum mechanics;
Quantum physics
Electromagnetic waves, 873–896. See
also Faraday’s law of induction;
Magnetic fields
antenna production of, 886–887, 887
definition of, 1
displacement current and general form of
Ampère’s law, 874, 874–875, 875
electronic devices and, 797–798
energy carried by, 882–884, 883
Maxwell’s equations and Hertz’s
discoveries, 876–878, 877, 878
momentum and radiation pressure,
884–886
phase change from reflection, 970
plane, 878, 878–882, 879, 881
in quantum physics, 1063–1064
spectrum of, 887–889, 888, 888, 889, 889
storyline on, 873–874
Electromotive force (emf, «)
inducing, 800, 800–801, 812
motional, 801, 801–805, 802, 803, 805
overview, 714, 714–716, 716
self-induced («L), 825
Electron affinity, 1146
Electron capture, 1197, 1200t
Electron cloud, 1118
Electron-hole pairs, in intrinsic
semiconductors, 1163
Electron microscope, 90, 1066, 1066
Electron-positron annihilation, 1229
Electrons
bending beam of, 751, 751
charge and mass of, 594t
in early atomic models, 1107–1109
as leptons, 1233
linear momentum of, 1035
in magnetic fields, 748, 748
muon decay to, 1230
in photoelectric effect, 1055–1056
as photoelectrons, 1055n
positrons as antiparticles of, 1187
spin angular momentum for, 1125, 1125n
spin property of, 786–787, 787
transmission coefficient of, 1094
uncertainty principle and location of,
1072
wave nature of, 1064–1066
Electron spin resonance, 1216
Electron volt (eV, unit of energy), 638
Electrostatic equilibrium, 651, 651–655, 652,
653, 654
Electroweak theory, 1244
ELF (extremely low-frequency) waves, 893
Ellipses, 340, A-11
Emission spectroscopy, 1106, 1106
Emissivity of surface, 523
Endoscopes, lasers used with, 1137
Endothermic nuclear reactions, 1201
Energetically favorable conditions, for
molecules to form, 1146
Energy (E), 150–180. See also Atomic physics;
Energy transfer mechanisms;
Kinetic energy; Potential energy;
Thermodynamics, first law of
in AC circuit analysis, 859–861
binding, of molecules, 1145
conservative and nonconservative forces,
169–171, 170, 170, 171, 171
conservative forces and potential, 171–173
conversion factors for, A-2
dark, 1251
delivered to resistor, 731–732
dissociation, 1146
in electric fields, 672–674, 673
electromagnetic waves to carry, 882–884,
883
as electron affinity of atoms, 1146
energy diagrams and system equilibrium,
173, 173–174, 174
equipartition of, 538, 542–545, 543, 544,
545
Fermi, 1158–1160, 1160t, 1163n
fission, release of, 1203–1204
frequency, relation to, 1053
in inductors, 831
internal, 170, 502
ionization, 1111, 1130
kinetic, 161, 161–164, 162t, 163, 164
in magnetic fields, 830–832, 832
mass as form of, 1036
mysterious, of universe, 1251
nuclear binding, 1182, 1182–1184, 1183
photovoltaic solar cells for, 1167
in planetary and satellite motion, 347,
347–351, 348, 350, 350t, 351
potential, 165, 165–169, 168, 169
for power plants, 812–813
quantized, 1051
radiated by accelerated electric
charge, 878
radium decay and liberation of,
1194–1195
reaction (Q), 1201
relativistic, 1035–1039, 1036
rest (ER), 1036
equivalent for atomic mass unit, 1179
of proton, 1038–1039
for quarks and leptons, 1242t
of selected particles, 1179t
and total energy, 1037
in rotational motion, 269, 269–272, 270t,
271, 272
of simple harmonic oscillator, 394–397,
395, 396
sinusoidal waves on strings, transfer of,
426, 426–428
states of, in molecules
overview, 1148
rotational motion of molecules,
1148–1151, 1149
spectra of, 1153, 1153–1156, 1154, 1155
vibrational motion of molecules, 1151,
1151–1153, 1152
stored in charged capacitors, 672–676,
673, 674
storyline on, 150–151
system model of, 151
for work done
by constant force, 151–154, 152, 153,
154
by varying force, 156–161, 157, 158,
159, 160
of x-rays, 1133
Energy, conservation of, 181–209
isolated system (energy), analysis model
of, 185–191
free fall, 187, 187–188, 188
overview, 185–187, 186
pulleys, 188, 188–190, 189, 190
spring-loaded popgun, 190–191, 191
kinetic friction, 191–196, 192, 194
mechanical energy changes for
nonconservative forces, 196–200,
197, 198, 199, 200
nonisolated system (energy), analysis
model of, 182, 182–185, 184
power, 200–202, 201, 202
principle of, 163, 170
storyline on, 181–182
Energy efficiency ratio (EER) for air
conditioners, 584
Energy gap (E
g
) of material (energy
separation between valence and
conduction bands), 1163, 1163t
Energy-level diagrams, 545, 545, 548, 1051,
1051, 1051n
Energy quantization, 544–545, 545
Energy spreading, entropy change
and, 574
Energy transfer mechanisms
convection, 522–523
electrical transmission (TET), 183,
703–706
electromagnetic radiation (TER), 183,
523–524, 878–884
heat (Q), 182–183, 502–505
Electric fields (continued)
I-6 Indexhome insulation, 521–522, 521t, 522
matter transfer (TMT), 183, 522
mechanical waves (TMW), 182, 426–428,
433–438
overview, 182–185, 518–519
thermal conduction, 519, 519–521, 520
work (W), 151–161, 152, 182
Enlargement, magnification versus, 929
Entropy (S)
overview, 570, 570–572, 571, 571
in quantum systems, 1127
second law of thermodynamics and,
578–580, 579
in thermodynamic systems, 572–578,
575, 576
Environment, as surrounding system, 151
Equations
Bernoulli’s, 371–375
Brewster’s law, 1000
Compton shift, 1062
conservation of energy, 184
continuity for fluids, 370
Galilean transformation, 86, 1014,
1015–1016
Hagen-Poiseuille, 377
kinematic, 39, 44–45
lens-makers’, 940–941
linear wave, 428, 428–429
Lorentz transformation, 1030, 1030–1034,
1033
Malus’s law, 999
Maxwell’s, 876–878
mirror, 930
photoelectric effect, 1058
Raleigh-Jeans law, 1050
range, 76
rotational motion, 270t
Schrödinger, 1092
of state for ideal gas, 492–493
Stefan’s law, 1049
thin lens, 941
translational motion, 253t, 270t
Wien’s displacement law, 1050
Equilibrium, 310–331
center of gravity, 312–313, 313
electrostatic, 651, 651–655, 652, 653, 654
particle in (analysis model), 105–107,
117, 117
rigid object in (analysis model), 311,
311–312, 312
rigid objects in static, 313–319
horizontal beam, 315–317, 316
leaning ladder, 317, 317
seesaw, 314, 314–315
wheelchair on curb, 318, 318–319
storyline on, 310–311
of system, 173, 173–174
neutral, 173
stable, 173
unstable, 173
thermal, 513
Equilibrium position of system, 387, 387
Equipartition of energy, 538, 542–545, 543,
544, 545
Equipotential surface, 640
Equivalent capacitance, 671–672
Equivalent resistance, 717, 719, 721, 721, 864
Ergonomics, 593
Escape speed, 348, 348–350, 350t
Estimates, 12–13
Euler’s number (e, base of natural
logarithm), 140, 712
European Laboratory for Particle Physics.
See CERN
European Space Agency, 1248
Evaporation, 550
Event horizon, of black holes, 350
Exchange particles, 1226. See also Particle
physics and cosmology
Excimer lasers, 1136
Exclusion principle, 1126–1130, 1127t, 1128
for electrons in Dirac sea, 1227
for fermions, 1242–1243
periodic table and, 1128, 1128–1130,
1129, 1130
Exoplanets, 890–891, 891t
Exothermic nuclear reactions, 1201
Expanding universe, evidence for,
1248–1249
Expectation values, 1081–1082, 1082n,
1087–1088
Explorer VIII satellite, 354
Exponents, 26n, A-4, A-6–A-7
Extraterrestrial magnetic fields, Zeeman
effect to measure, 1122
Extremely low-frequency (ELF) waves, 893
Extrinsic semiconductors, 1165
Eyes, 948, 948–950, 949, 950, 990, 990–991
Factoring equations, A-7
Fahrenheit, Daniel, 496
Fahrenheit temperature scale, 487
Fairchild Camera and Instrument, Inc., 1170
Falling objects, motion of, 41–44, 43
Farad (F, unit of capacitance), 664
Faraday, Michael, 587, 664, 772, 797, 798
Faraday cage, 654
Faraday disk, 818
Faraday’s law of induction, 797–823. See also
Inductance
Ampère-Maxwell law and, 876
eddy currents, 814, 814–815
general form of, 808, 808–810, 809
generators and motors, 810–814, 811,
811, 812
Lenz’s law, 805–808, 806, 807, 808, 813
motional emf, 801, 801–805, 802, 803, 805
overview, 798, 798–801, 799, 799, 800
plane electromagnetic waves predicted by,
878–879
storyline on, 797–798
Far point, in eye focusing, 949
Farsightedness (hyperopia), 949–950
Fermat, Pierre de, 924
Fermat’s principle, 924
Fermi, Enrico, 18, 1196, 1202, 1205
Fermi-Dirac distribution function,
1158, 1158
Fermi energy (EF), 1158–1160, 1160t,
1162–1163, 1163n
Fermi National Accelerator Laboratory
(Fermilab), 1045, 1233, 1241, 1245
Fermion particles, 1242
Ferris wheel, circular motion of, 132,
132–133
Ferromagnetism, 787–788, 788, 788t
Feynman, Richard P., 609, 1230
Feynman diagrams, 1230, 1231, 1243
Fictitious force, 135–136, 136
Field-effect transistor, 1168
Field forces, 96, 96, 183n, 338
Field particles, 1226. See also Particle physics
and cosmology
Finalization, in analysis models, 31–32
Fission fragments, 1203
Fixed axis. See Rotational motion
Fizeau, Armand H. L., 900, 900–901, 918
Flat mirrors, 926, 926–928, 927, 928
Flat refracting surfaces, 937, 937
Flat Universe, 1249, 1251
Flavors of quarks, 1240
Floating objects, buoyant force on, 367, 367
Flow calorimeter, 530
Fluid, 358
Fluid mechanics, 358–384
Bernoulli’s equation, 371–375
buoyant forces and Archimedes’s
principle, 365–368
fluid dynamics, 368–371, 377–378
pressure
measurement of, 359, 359, 364–365
overview, 359–360
variation with depth, 360–364
storyline on, 358
viscous fluids flowing in pipes, 375–377,
376, 376, 376t
Fluorodeoxyglucose, 1177
Focal length (f), 930, 930, 940–941, 941
Focal point, 930, 930–931, 941
Focus, of ellipse, 340
Focus point, focal point versus, 931
Food preservation, radiation for, 1215, 1215
Forbidden transitions, 1130
Force ( F
S
). See also Torque
acceleration proportional to, 34
attractive, 589, 589, 590
buoyant, 139n, 365–368, 366, 366
centrifugal, 137
centripetal acceleration from, 128
color, between quarks, 1243
concept of, 96–97
conservative
between charges described by
Coulomb’s law, 637
nonconservative and, 169–171, 170, 170,
171, 171
potential energy and, 171–173
contact, 338
conversion factors for, A-1
Coriolis, 136
on dam, 363–364, 364
dipole-dipole, 1147
dipole-induced dipole, 1147
dispersion, 1147
drag, 377
electric, 590, 590
electromagnetic, 1226–1227, 1227t
fictitious, 135–137, 136, 137
field, 338
friction, 114–119
fundamental, particle physics in,
1226–1227, 1227t
gravitational, 42, 96, 102–103, 102–103,
335–336, 1226–1227, 1227t
Index I-7impulse of net, 216, 217
kinetic friction, 115–118, 116, 116
lift, 377
Lorentz, 752, 876
magnetic, 745–746, 746
in molecular model of ideal gas, 535
newton (N), as SI unit of, 100
nuclear, 1181, 1226–1227, 1227t, 1231
particle under net force model, 106, 106
pressure versus, 359
radial, 134, 134
repulsive, 589, 589, 590, 790
repulsive magnetic, 790
resistive, 138–143, 139, 139–141
restoring, 387
resultant, in Coulomb’s law, 595, 595–596
retarding, 404–405
strong, 1231, 1242
tangential, 134, 134
vectors and, 97, 97
weak, 96, 1226–1227, 1227t
work done by constant, 151–154, 152,
153, 154
work done by varying, 156–161, 157, 158,
159, 160
zero as net value of, 596, 596–597
Force constant, 158, 160
Forced convection, 522
Forced oscillations, 405–407, 406, 407
Ford, W. K., 351n
Fourier, Jean Baptiste Joseph, 472n
Fourier series, 472
Fourier’s theorem, 472–473
Fourier transform infrared (FTIR)
spectroscopy, 974–975
Fractional uncertainty, A-20
Frames of reference, 86, 86, 98
Franklin, Benjamin, 590
Fraunhofer diffraction pattern, 985, 985
Free-body diagrams, 104, 107, 109, 112, 113
Free-electron theory of metals, 591n, 1158,
1158–1160, 1159, 1160t
Free expansion, entropy change in, 576–577
Free-fall acceleration (g), 42, 335–336, 335t
Free space, permeability of (m0), 772
Free space, permittivity of (e0), 593
French Academy of Science, 984
Frequency (f)
angular (v), 389
beat, 470, 471
cutoff, in photoelectric effect, 1056
energy relation to, 1053
fundamental, 462
natural, 467–468
of particles, 1064
pitch versus, 472
resonance (v0), 406, 465–466, 861–862
of simple harmonic oscillator, 390, 392
of sound, 436–437, 437
of tuning fork, 469
of waves, 420, 423
Fresnel, Augustin, 984
Fresnel diffraction pattern, 985n
Fresnel lens, 943, 943
Friction
forces of, 114–119, 115
kinetic, 115, 115, 191–196, 192, 194
rolling, 273
static, 114, 115
Fringes
in wave optics, 986–987
in Young double-slit experiment,
963, 963
Frisch, Otto, 1202
FTIR (Fourier transform infrared)
spectroscopy, 974–975
Fuel cells, automobiles powered by, 1
Fuel elements, of uranium, 1205
Fukushima I nuclear power plant
(Japan), 1206
Fulcrum, 314
Fuller, R. Buckminster, 1157
Functions, in calculus, A-14
Fundamental forces, 96, 1226–1227, 1227t
Fundamental frequency, 462
Fundamental quantities, 6
Furnace Creek Ranch, Death Valley (CA),
496
Fusion, latent heat of (L
f), 509, 510t
Fusion, nuclear, 1207–1211, 1208, 1209, 1210
Gabor, Dennis, 995
Galaxy clusters, 351
Galilean relativity, 1013, 1013–1016,
1014, 1015
Galilean transformation equations
overview, 86
space-time, 1014
velocity, 1015–1016
Galilei, Galileo, 20, 41, 41–42, 147, 899
Gamma decay, in radioactivity, 1199,
1199–1200, 1200t
Gamma rays, 889
Gases
atomic spectra of, 1106, 1106–


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Physics for Scientists and Engineers with Modern Physics
رابط مباشر لتنزيل كتاب Physics for Scientists and Engineers with Modern Physics
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Physics for Scientists and Engineers with Modern Physics
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Physics for Scientists and Engineers with Modern Physics
» كتاب Mathematical Handbook for Scientists and Engineers
» كتاب Probability and Statistics for Engineers and Scientists
» كتاب Probability and Statistics for Engineers and Scientists
» طلب كتاب chemistry for scientists and engineers pdf (Teh Fu Yen)

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: