Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Semiconductor Physics and Devices - Basic Principles Fourth Edition الأحد 08 أبريل 2018, 11:09 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Semiconductor Physics and Devices - Basic Principles Fourth Edition Donald A. Neamen University of New Mexico
ويتناول الموضوعات الأتية :
CONTENTS Preface x Prologue - Semiconductors and the Integrated Circuit xvii P A R T I - Semiconductor Material Properties C H A P T E R 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials 1 1.2 Types of Solids 2 1.3 Space Lattices 3 1.3.1 Primitive and Unit Cell 3 1.3.2 Basic Crystal Structures 4 1.3.3 Crystal Planes and Miller Indices 6 1.3.4 Directions in Crystals 9 1.4 The Diamond Structure 10 1.5 Atomic Bonding 12 *1.6 Imperfections and Impurities in Solids 14 1.6.1 Imperfections in Solids 14 1.6.2 Impurities in Solids 16 *1.7 Growth of Semiconductor Materials 17 1.7.1 Growth from a Melt 17 1.7.2 Epitaxial Growth 19 1.8 Summary 20 Problems 21 C H A P T E R 2 Introduction to Quantum Mechanics 25 2.0 Preview 25 2.1 Principles of Quantum Mechanics 26 2.1.1 Energy Quanta 26 2.1.2 Wave–Particle Duality 27 2.1.3 The Uncertainty Principle 30 2.2 Schrodinger’s Wave Equation 31 2.2.1 The Wave Equation 31 2.2.2 Physical Meaning of the Wave Function 32 2.2.3 Boundary Conditions 33 2.3 Applications of Schrodinger’s Wave Equation 34 2.3.1 Electron in Free Space 35 2.3.2 The Infi nite Potential Well 36 2.3.3 The Step Potential Function 39 2.3.4 The Potential Barrier and Tunneling 44 2.4 Extensions of the Wave Theory to Atoms 46 2.4.1 The One-Electron Atom 46 2.4.2 The Periodic Table 50 2.5 Summary 51 Problems 52 C H A P T E R 3 Introduction to the Quantum Theory of Solids 58 3.0 Preview 58 3.1 Allowed and Forbidden Energy Bands 59 3.1.1 Formation of Energy Bands 59 *3.1.2 The Kronig–Penney Model 63 3.1.3 The k-Space Diagram 67 3.2 Electrical Conduction in Solids 72 3.2.1 The Energy Band and the Bond Model 72 3.2.2 Drift Current 74 3.2.3 Electron Effective Mass 75 3.2.4 Concept of the Hole 78 3.2.5 Metals, Insulators, and Semiconductors 80 3.3 Extension to Three Dimensions 83 3.3.1 The k-Space Diagrams of Si and GaAs 83 3.3.2 Additional Effective Mass Concepts 85Contents v 4.7 Summary 147 Problems 149 C H A P T E R 5 Carrier Transport Phenomena 156 5.0 Preview 156 5.1 Carrier Drift 157 5.1.1 Drift Current Density 157 5.1.2 Mobility Effects 159 5.1.3 Conductivity 164 5.1.4 Velocity Saturation 169 5.2 Carrier Diffusion 172 5.2.1 Diffusion Current Density 172 5.2.2 Total Current Density 175 5.3 Graded Impurity Distribution 176 5.3.1 Induced Electric Field 176 5.3.2 The Einstein Relation 178 *5.4 The Hall Effect 180 5.5 Summary 183 Problems 184 C H A P T E R 6 Nonequilibrium Excess Carriers in Semiconductors 192 6.0 Preview 192 6.1 Carrier Generation and Recombination 193 6.1.1 The Semiconductor in Equilibrium 193 6.1.2 Excess Carrier Generation and Recombination 194 6.2 Characteristics of Excess Carriers 198 6.2.1 Continuity Equations 198 6.2.2 Time-Dependent Diffusion Equations 199 6.3 Ambipolar Transport 201 6.3.1 Derivation of the Ambipolar Transport Equation 201 6.3.2 Limits of Extrinsic Doping and Low Injection 203 6.3.3 Applications of the Ambipolar Transport Equation 206 6.3.4 Dielectric Relaxation Time Constant 214 *6.3.5 Haynes–Shockley Experiment 216 3.4 Density of States Function 85 3.4.1 Mathematical Derivation 85 3.4.2 Extension to Semiconductors 88 3.5 Statistical Mechanics 91 3.5.1 Statistical Laws 91 3.5.2 The Fermi–Dirac Probability Function 91 3.5.3 The Distribution Function and the Fermi Energy 93 3.6 Summary 98 Problems 100 C H A P T E R 4 The Semiconductor in Equilibrium 106 4.0 Preview 106 4.1 Charge Carriers in Semiconductors 107 4.1.1 Equilibrium Distribution of Electrons and Holes 107 4.1.2 The n0 and p0 Equations 109 4.1.3 The Intrinsic Carrier Concentration 113 4.1.4 The Intrinsic Fermi-Level Position 116 4.2 Dopant Atoms and Energy Levels 118 4.2.1 Qualitative Description 118 4.2.2 Ionization Energy 120 4.2.3 Group III–V Semiconductors 122 4.3 The Extrinsic Semiconductor 123 4.3.1 Equilibrium Distribution of Electrons and Holes 123 4.3.2 The n0 p0 Product 127 *4.3.3 The Fermi–Dirac Integral 128 4.3.4 Degenerate and Nondegenerate Semiconductors 130 4.4 Statistics of Donors and Acceptors 131 4.4.1 Probability Function 131 4.4.2 Complete Ionization and Freeze-Out 132 4.5 Charge Neutrality 135 4.5.1 Compensated Semiconductors 135 4.5.2 Equilibrium Electron and Hole Concentrations 136 4.6 Position of Fermi Energy Level 141 4.6.1 Mathematical Derivation 142 4.6.2 Variation of EF with Doping Concentration and Temperature 144 4.6.3 Relevance of the Fermi Energy 145vi Contents 8.1.4 Minority Carrier Distribution 283 8.1.5 Ideal pn Junction Current 286 8.1.6 Summary of Physics 290 8.1.7 Temperature Effects 292 8.1.8 The “Short” Diode 293 8.2 Generation–Recombination Currents and High-Injection Levels 295 8.2.1 Generation–Recombination Currents 296 8.2.2 High-Level Injection 302 8.3 Small-Signal Model of the pn Junction 304 8.3.1 Diffusion Resistance 305 8.3.2 Small-Signal Admittance 306 8.3.3 Equivalent Circuit 313 *8.4 Charge Storage and Diode Transients 314 8.4.1 The Turn-off Transient 315 8.4.2 The Turn-on Transient 317 *8.5 The Tunnel Diode 318 8.6 Summary 321 Problems 323 C H A P T E R 9 Metal–Semiconductor and Semiconductor Heterojunctions 331 9.0 Preview 331 9.1 The Schottky Barrier Diode 332 9.1.1 Qualitative Characteristics 332 9.1.2 Ideal Junction Properties 334 9.1.3 Nonideal Effects on the Barrier Height 338 9.1.4 Current–Voltage Relationship 342 9.1.5 Comparison of the Schottky Barrier Diode and the pn Junction Diode 345 9.2 Metal–Semiconductor Ohmic Contacts 349 9.2.1 Ideal Nonrectifying Barrier 349 9.2.2 Tunneling Barrier 351 9.2.3 Specifi c Contact Resistance 352 9.3 Heterojunctions 354 9.3.1 Heterojunction Materials 354 9.3.2 Energy-Band Diagrams 354 9.3.3 Two-Dimensional Electron Gas 356 *9.3.4 Equilibrium Electrostatics 358 *9.3.5 Current–Voltage Characteristics 363 6.4 Quasi-Fermi Energy Levels 219 *6.5 Excess Carrier Lifetime 221 6.5.1 Shockley–Read–Hall Theory of Recombination 221 6.5.2 Limits of Extrinsic Doping and Low Injection 225 *6.6 Surface Effects 227 6.6.1 Surface States 227 6.6.2 Surface Recombination Velocity 229 6.7 Summary 231 Problems 233 P A R T II - Fundamental Semiconductor Devices C H A P T E R 7 The pn Junction 241 7.0 Preview 241 7.1 Basic Structure of the pn Junction 242 7.2 Zero Applied Bias 243 7.2.1 Built-in Potential Barrier 243 7.2.2 Electric Field 246 7.2.3 Space Charge Width 249 7.3 Reverse Applied Bias 251 7.3.1 Space Charge Width and Electric Field 251 7.3.2 Junction Capacitance 254 7.3.3 One-Sided Junctions 256 7.4 Junction Breakdown 258 *7.5 Nonuniformly Doped Junctions 262 7.5.1 Linearly Graded Junctions 263 7.5.2 Hyperabrupt Junctions 265 7.6 Summary 267 Problems 269 C H A P T E R 8 The pn Junction Diode 276 8.0 Preview 276 8.1 pn Junction Current 277 8.1.1 Qualitative Description of Charge Flow in a pn Junction 277 8.1.2 Ideal Current–Voltage Relationship 278 8.1.3 Boundary Conditions 279Contents vii 11.1.2 Channel Length Modulation 446 11.1.3 Mobility Variation 450 11.1.4 Velocity Saturation 452 11.1.5 Ballistic Transport 453 11.2 MOSFET Scaling 455 11.2.1 Constant-Field Scaling 455 11.2.2 Threshold Voltage - First Approximation 456 11.2.3 Generalized Scaling 457 11.3 Threshold Voltage Modifications 457 11.3.1 Short-Channel Effects 457 11.3.2 Narrow-Channel Effects 461 11.4 Additional Electrical Characteristics 464 11.4.1 Breakdown Voltage 464 *11.4.2 The Lightly Doped Drain Transistor 470 11.4.3 Threshold Adjustment by Ion Implantation 472 *11.5 Radiation and Hot-Electron Effects 475 11.5.1 Radiation-Induced Oxide Charge 475 11.5.2 Radiation-Induced Interface States 478 11.5.3 Hot-Electron Charging Effects 480 11.6 Summary 481 Problems 483 C H A P T E R 12 The Bipolar Transistor 491 12.0 Preview 491 12.1 The Bipolar Transistor Action 492 12.1.1 The Basic Principle of Operation 493 12.1.2 Simplifi ed Transistor Current Relation - Qualitative Discussion 495 12.1.3 The Modes of Operation 498 12.1.4 Amplification with Bipolar Transistors 500 12.2 Minority Carrier Distribution 501 12.2.1 Forward-Active Mode 502 12.2.2 Other Modes of Operation 508 12.3 Transistor Currents and Low-Frequency Common-Base Current Gain 509 12.3.1 Current Gain - Contributing Factors 509 12.3.2 Derivation of Transistor Current Components and Current Gain Factors 512 9.4 Summary 363 Problems 365 C H A P T E R 10 Fundamentals of the Metal–Oxide– Semiconductor Field-Effect Transistor 371 10.0 Preview 371 10.1 The Two-Terminal MOS Structure 372 10.1.1 Energy-Band Diagrams 372 10.1.2 Depletion Layer Thickness 376 10.1.3 Surface Charge Density 380 10.1.4 Work Function Differences 382 10.1.5 Flat-Band Voltage 385 10.1.6 Threshold Voltage 388 10.2 Capacitance–Voltage Characteristics 394 10.2.1 Ideal C–V Characteristics 394 10.2.2 Frequency Effects 399 10.2.3 Fixed Oxide and Interface Charge Effects 400 10.3 The Basic MOSFET Operation 403 10.3.1 MOSFET Structures 403 10.3.2 Current–Voltage Relationship - Concepts 404 *10.3.3 Current–Voltage Relationship - Mathematical Derivation 410 10.3.4 Transconductance 418 10.3.5 Substrate Bias Effects 419 10.4 Frequency Limitations 422 10.4.1 Small-Signal Equivalent Circuit 422 10.4.2 Frequency Limitation Factors and Cutoff Frequency 425 *10.5 The CMOS Technology 427 10.6 Summary 430 Problems 433 C H A P T E R 11 Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts 443 11.0 Preview 443 11.1 Nonideal Effects 444 11.1.1 Subthreshold Conduction 444viii Contents *13.3 Nonideal Effects 593 13.3.1 Channel Length Modulation 594 13.3.2 Velocity Saturation Effects 596 13.3.3 Subthreshold and Gate Current Effects 596 *13.4 Equivalent Circuit and Frequency Limitations 598 13.4.1 Small-Signal Equivalent Circuit 598 13.4.2 Frequency Limitation Factors and Cutoff Frequency 600 *13.5 High Electron Mobility Transistor 602 13.5.1 Quantum Well Structures 603 13.5.2 Transistor Performance 604 13.6 Summary 609 Problems 611 P A R T III - Specialized Semiconductor Devices C H A P T E R 14 Optical Devices 618 14.0 Preview 618 14.1 Optical Absorption 619 14.1.1 Photon Absorption Coeffi cient 619 14.1.2 Electron–Hole Pair Generation Rate 622 14.2 Solar Cells 624 14.2.1 The pn Junction Solar Cell 624 14.2.2 Conversion Effi ciency and Solar Concentration 627 14.2.3 Nonuniform Absorption Effects 628 14.2.4 The Heterojunction Solar Cell 629 14.2.5 Amorphous Silicon Solar Cells 630 14.3 Photodetectors 633 14.3.1 Photoconductor 633 14.3.2 Photodiode 635 14.3.3 PIN Photodiode 640 14.3.4 Avalanche Photodiode 641 14.3.5 Phototransistor 642 14.4 Photoluminescence and Electroluminescence 643 14.4.1 Basic Transitions 644 14.4.2 Luminescent Efficiency 645 14.4.3 Materials 646 12.3.3 Summary 517 12.3.4 Example Calculations of the Gain Factors 517 12.4 Nonideal Effects 522 12.4.1 Base Width Modulation 522 12.4.2 High Injection 524 12.4.3 Emitter Bandgap Narrowing 526 12.4.4 Current Crowding 528 *12.4.5 Nonuniform Base Doping 530 12.4.6 Breakdown Voltage 531 12.5 Equivalent Circuit Models 536 *12.5.1 Ebers–Moll Model 537 12.5.2 Gummel–Poon Model 540 12.5.3 Hybrid-Pi Model 541 12.6 Frequency Limitations 545 12.6.1 Time-Delay Factors 545 12.6.2 Transistor Cutoff Frequency 546 12.7 Large-Signal Switching 549 12.7.1 Switching Characteristics 549 12.7.2 The Schottky-Clamped Transistor 551 *12.8 Other Bipolar Transistor Structures 552 12.8.1 Polysilicon Emitter BJT 552 12.8.2 Silicon–Germanium Base Transistor 554 12.8.3 Heterojunction Bipolar Transistors 556 12.9 Summary 558 Problems 560 C H A P T E R 13 The Junction Field-Effect Transistor 571 13.0 Preview 571 13.1 JFET Concepts 572 13.1.1 Basic pn JFET Operation 572 13.1.2 Basic MESFET Operation 576 13.2 The Device Characteristics 578 13.2.1 Internal Pinchoff Voltage, Pinchoff Voltage, and Drain-to-Source Saturation Voltage 578 13.2.2 Ideal DC Current–Voltage Relationship - Depletion Mode JFET 582 13.2.3 Transconductance 587 13.2.4 The MESFET 588Contents ix 15.6.3 SCR Turn-Off 697 15.6.4 Device Structures 697 15.7 Summary 701 Problems 703 A P P E N D I X A Selected List of Symbols 707 A P P E N D I X B System of Units, Conversion Factors, and General Constants 715 A P P E N D I X C The Periodic Table 719 A P P E N D I X D Unit of Energy - The Electron Volt 720 A P P E N D I X E “Derivation” of Schrodinger’s Wave Equation 722 A P P E N D I X F Effective Mass Concepts 724 A P P E N D I X G The Error Function 729 A P P E N D I X H Answers to Selected Problems 730 Index 738 14.5 Light Emitting Diodes 648 14.5.1 Generation of Light 648 14.5.2 Internal Quantum Efficiency 649 14.5.3 External Quantum Efficiency 650 14.5.4 LED Devices 652 14.6 Laser Diodes 654 14.6.1 Stimulated Emission and Population Inversion 655 14.6.2 Optical Cavity 657 14.6.3 Threshold Current 658 14.6.4 Device Structures and Characteristics 660 14.7 Summary 661 Problems 664 C H A P T E R 15 Semiconductor Microwave and Power Devices 670 15.0 Preview 670 15.1 Tunnel Diode 671 15.2 Gunn Diode 672 15.3 Impatt Diode 675 15.4 Power Bipolar Transistors 677 15.4.1 Vertical Power Transistor Structure 677 15.4.2 Power Transistor Characteristics 678 15.4.3 Darlington Pair Configuration 682 15.5 Power MOSFETs 684 15.5.1 Power Transistor Structures 684 15.5.2 Power MOSFET Characteristics 685 15.5.3 Parasitic BJT 689 15.6 The Thyristor 691 15.6.1 The Basic Characteristics 691 15.6.2 Triggering the SCR 694
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا منه وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Semiconductor Physics and Devices - Basic Principles Fourth Edition رابط مباشر لتنزيل كتاب Semiconductor Physics and Devices - Basic Principles Fourth Edition
|
|