Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Energy Materials الخميس 10 يناير 2019, 10:39 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Energy Materials من سلسلة علم المواد المتقدمة Advanced Material Series Ashutosh Tiwari and Sergiy Valyukh
ويتناول الموضوعات الأتية :
Contents Preface xv 1 Non-imaging Focusing Heliostat 1 Kok-Keong Chong 1.1 Introduction 1 1.2 The Principle of Non-imaging Focusing Heliostat (NIFH) 3 1.2.1 Primary Tracking (Global Movement for Heliostat Frame) 3 1.2.2 Secondary Tracking (Local Movement for Slave Mirrors) 9 1.3 Residual Aberration 10 1.3.1 Methodology 12 1.3.2 Optical Analysis of Residual Aberration 19 1.4 Optimization of Flux Distribution Pattern for Wide Range of Incident Angle 29 1.5 First Prototype of Non-imaging Focusing Heliostat (NIFH) 35 1.5.1 Heliostat Structure 36 1.5.2 Heliostat Arm 38 1.5.3 Pedestal 39 1.5.4 Mirror and Unit Frame 40 1.5.5 Hardware and Software Control System 40 1.5.6 Optical Alignment of Prototype Heliostat 41 1.5.7 High Temperature Solar Furnace System 46 1.6 Second Prototype of Non-imaging Focusing Heliostat (NIFH) 52 1.6.1 Introduction 52 1.6.2 Mechanical Design and Control System of Second Prototype 53vi Contents 1.6.3 High Temperature Potato Skin Vaporization Experiment 56 1.7 Conclusion 64 Acknowledgement 65 References 65 2 State-of-the-Art of Nanostructures in Solar Energy Research 69 Suresh Sagadevan 2.1 Introduction 70 2.2 Motivations for Solar Energy 71 2.2.1 Importance of Solar Energy 71 2.2.2 Solar Energy and Its Economy 74 2.2.3 Technologies Based on Solar Energy 75 2.2.4 Photovoltaic Systems 76 2.3 Nanostructures and Different Synthesis Techniques 77 2.3.1 Classification of Nanomaterials 78 2.3.2 Synthesis and Processing of Nanomaterials 79 2.4 Nanomaterials for Solar Cells Applications 81 2.4.1 CdTe, CdSe and CdS Thin-Film PV Devices 82 2.4.2 Nanoparticles/Quantum Dot Solar Cells and PV Devices 82 2.4.3 Iron Disulfide Pyrite, CuInS2 and Cu2ZnSnS4 84 2.4.4 Organic Solar Cells and Nanowire Solar Cells 85 2.4.5 Polycrystalline Thin-Film Solar Cells 86 2.5 Advanced Nanostructures for Technological Applications 87 2.5.1 Nanocones Used as Inexpensive Solar Cells 88 2.5.2 Core/Shell Nanoparticles towards PV Applications 89 2.5.3 Silicon PV Devices 90 2.5.4 III-V Semiconductors 91 2.6 Theory and Future Trends in Solar Cells 92 2.6.1 Theoretical Formulation of the Solar Cell 93 2.6.2 The Third Generation Solar Cells 96 2.7 Conclusion 97 References 97Contents vii 3 Metal Oxide Semiconductors and Their Nanocomposites Application towards Photovoltaic and Photocatalytic 105 Sadia Ameen, M. Shaheer Akhtar, Hyung-Kee Seo and Hyung Shik Shin 3.1 Introduction 106 3.2 Metal Oxide Nanostructures for Photovoltaic Applications 108 3.3 TiO 2Nanomaterials and Nanocomposites for the Application of DSSC and Heterostructure Devices 109 3.3.1 Fabrication of DSSCs with TiO 2 Nanorods (NRs) Based Photoanode 109 3.3.2 Fabrication of DSSCs with TiO 2Nanocomposite Based Photoanode 116 3.3.3 TiO 2 Nanocomposite for the Heterostructure Devices 118 3.4 ZnO Nanomaterials and Nanocomposites for the Application of DSSC and Heterostructure Devices 121 3.4.1 Fabrication of DSSCs with ZnO Nanotubes (NTs) Based Photoanode 121 3.4.2 Fabrication of DSSCs with Nanospikes Decorated ZnO Sheets Based Photoanode 125 3.4.3 Fabrication of DSSCs with ZnO Nanorods (NRs) and Nanoballs (NBs) Nanomaterial Based Photoanode 129 3.4.4 Fabrication of DSSCs with Spindle Shaped Sn-Doped ZnO Nanostructures Based Photoanode 132 3.4.5 Fabrication of DSSCs with Vertically Aligned ZnO Nanorods (NRs) and Graphene Oxide Nanocomposite Based Photoanode 135 3.4.6 ZnO Nanocomposite for the Heterostructures Devices 139 3.4.7 Fabrication of Heterostructure Device with Doped ZnO Nanocomposite 141 3.8 Metal Oxide Nanostructures and Nanocomposites for Photocatalytic Application 144 3.8.1 ZnO Flower Nanostructures for Photocatalytic Degradation of Crystal Violet (Cv)Dye 144 3.8.2 Advanced ZnO-Graphene Oxide Nanohybrid for the Photocatalytic Degradation of Crystal Violet (Cv)Dye 147viii Contents 3.8.3 Effective Nanocomposite of Polyaniline (PANI) and ZnO for the Photocatalytic Degradation of Methylene Blue (MB) Dye 150 3.8.4 Novel Poly(1-naphthylamine)/Zinc Oxide Nanocomposite for the Photocatalytic Degradation of Methylene Blue (MB) Dye 152 3.8.5 Nanocomposites of Poly(1-naphthylamine)/ SiO 2 and Poly(1-Naphthylamine)/TiO2 for the Photocatalytic Degradation of Methylene Blue (MB) Dye 155 3.9 Conclusions 157 3.10 Future Directions 158 References 159 4 Superionic Solids in Energy Device Applications 167 Angesh Chandra and Archana Chandra 4.1 Introduction 167 4.2 Classification of Superionic Solids 170 4.3 Ion Conduction in Superionic Solids 171 4.4 Important Models 173 4.4.1 Models for Crystalline/Polycrystalline Superionic Solids 173 4.4.2 Models for Glassy Superionic Solids 178 4.4.3 Models for Composite Superionic Solids 186 4.4.4 Models for Polymeric Superionic Solids 194 4.5 Applications 199 4.5.1 Solid-State Batteries 200 4.5.2 Fuel Cells 201 4.5.3 Super Capacitors 202 4.6 Conclusion 203 References 204 5 Polymer Nanocomposites: New Advanced Dielectric Materials for Energy Storage Applications 207 Vijay Kumar Thakur and Michael R. Kessler 5.1 Introduction 208 5.2 Dielectric Mechanism 209 5.2.1 Dielectric Permittivity, Loss and Breakdown 209 5.2.2 Polarization 212Contents ix 5.3 Dielectric Materials 213 5.4 Demand for New Materials: Polymer Composites 214 5.5 Polymer Nanocomposites: Concept and Electrical Properties 216 5.5.1 Polymer Nanocomposites for Dielectric Applications 217 5.6 Conclusion and Future Perspectives 245 References 247 6 Solid Electrolytes: Principles and Applications 259 S.W. Anwane 6.1 Introduction 260 6.2 Ionic Solids 262 6.2.1 Bonds in Ionic Solids 262 6.2.2 Structure of Ionic Solids 264 6.3 Classification of Solid Electrolytes 265 6.4 Criteria for High Ionic Conductivity and Mobility 266 6.5 Electrical Characterization of Solid Electrolyte 267 6.5.1 DC Polarization 267 6.5.2 Impedance Spectroscopy 269 6.6 Ionic Conductivity and Temperature 271 6.7 Concentration-Dependent Conductivity 274 6.8 Ionic Conductivity in Composite SE 275 6.9 Thermodynamics of Electrochemical System 278 6.10 Applications 280 6.10.1 Solid-State Batteries 280 6.10.2 Sensors 284 6.10.3 SO 2 Sensor Kinetics and Thermodynamics 286 6.12 Conclusion 291 References 291 7 Advanced Electronics: Looking beyond Silicon 295 Surender Duhan and Vijay Tomer 7.1 Introduction 296 7.1.1 Silicon Era 296 7.1.2 Moore’s Law 298 7.2 Limitations of Silicon-Based Technology 299 7.2.1 Speed, Density and Design Complexity 299 7.2.2 Power Consumption and Heat Dissipation 299 7.2.3 Cost Concern 300x Contents 7.3 Need for Carbon-Based Electronics Technology 300 7.4 Carbon Family 303 7.4.1 Carbon Nanotube 304 7.4.2 Graphene 307 7.5 Electronic Structure of Graphene and CNT 309 7.6 Synthesis of CNTs 311 7.6.1 Arc Discharge Method 311 7.6.2 Pyrolysis of Hydrocarbons 311 7.6.3 Laser Vaporization 312 7.6.4 Electrolysis 312 7.6.5 Solar Vaporization 312 7.7 Carbon Nanotube Devices 313 7.7.1 Nanotube-Based FET Transistors CNTFET 313 7.7.2 CNT Interconnect 314 7.7.3 Carbon Nanotube Sensor of Polar Molecules 315 7.7.4 Carbon Nanotube Crossbar Arrays for Random Access Memory 316 7.8 Advantages of CNT-Based Devices 317 7.8.1 Ballistic Transport 317 7.8.2 Flexible Device 317 7.8.3 Low Power Dissipation 318 7.8.4 Low Cost 318 7.9 Issues with Carbon-Based Electronics 319 7.10 Conclusion 322 References 323 8 Ab-Initio Determination of Pressure-Dependent Electronic and Optical Properties of Lead Sulfi de for Energy Applications 327 Pooja B and G. Sharma 8.1 Introduction 327 8.2 Computational Details 328 8.3 Results and Discussion 329 8.3.1 Phase Transition and Structural Parameters 329 8.3.2 Pressure Dependent Electronic Properties 333 8.3.3 Pressure-Dependent Dielectric Constant 340 8.4 Conclusions 340 Acknowledgements 342 References 342Contents xi 9 Radiation Damage in GaN-Based Materials and Devices 345 S.J. Pearton, Richard Deist, Alexander Y. Polyakov, Fan Ren, Lu Liu and Jihyun Kim 9.1 Introduction 346 9.2 Fundamental Studies of Radiation Defects in GaN and Related Materials 347 9.2.1 Threshold Displacement Energy: Theory and Experiment 347 9.2.2 Radiation Defects in GaN: Defects Levels, Effects on Charge Carriers Concentration, Mobility, Lifetime of Charge Carriers, Thermal Stability of Defects 349 9.3 Radiation Effects in Other III-Nitrides 366 9.4 Radiation Effects in GaN Schottky Diodes, in AlGaN/GaN and GaN/InGaN Heterojunctions and Quantum Wells 370 9.5 Radiation Effects in GaN-Based Devices 374 9.6 Prospects of Radiation Technology for GaN 376 9.7 Summary and Conclusions 379 Acknowledgments 380 References 380 10 Antiferroelectric Liquid Crystals: Smart Materials for Future Displays 389 Manoj Bhushan Pandey, Roman Dabrowski and Ravindra Dhar 10.1 Introduction 390 10.1.1 Molecular Packing in Liquid Crystalline Phases 391 10.2 Theories of Antiferroelectricity in Liquid Crystals 398 10.3 Molecular Structure Design/Synthesis of AFLC Materials 402 10.4 Macroscopic Characterization and Physical Properties of AFLCs 404 10.4.1 Experimental Techniques 404 10.4.2 Dielectric Parameters of AFLCs 410 10.4.3 Switching and Electro-Optic Parameters 419 10.5 Conclusion and Future Scope 425 Acknowledgements 426 References 426xii Contents 11 Polyetheretherketone (PEEK) Membrane for Fuel Cell Applications 433 Tungabidya Maharana, Alekha Kumar Sutar, Nibedita Nath, Anita Routaray, Yuvraj Singh Negi and Bikash Mohanty 11.1 Introduction 434 11.1.1 What is Fuel Cell? 436 11.2 PEEK Overview 442 11.2.1 Applications of PEEK 443 11.2.2 Why PEEK is Used as Fuel Cell Membrane 445 11.3 PEEK as Fuel Cell Membrane 446 11.4 Modified PEEK as Fuel Cell Membrane 452 11.4.1 Sulphonated PEEK as Fuel Cell Membrane 453 11.5 Evaluation of Cell Performance 459 11.6 Market Size 459 11.7 Conclusion and Future Prospects 460 Acknowledgement 461 References 461 12 Vanadate Phosphors for Energy Efficient Lighting 465 K. N. Shinde and Roshani Singh 12.1 Introduction 465 12.2 Some Well-Known Vanadate Phosphors 466 12.3 Our Approach 469 12.4 Experimental Details 469 12.5 Results and Discussion of M 3–3x/2(VO4)2:xEu (0.01 ? x ? 0.09 for M = Ca and 0 ? x ? 0.3 for M = Sr,Ba) Phosphors 470 12.5.1 X-ray Diffraction Pattern of M 3–3x/2(VO4)2:xEu Phosphor 470 12.5.2 Surface Morphology of M 3–3x/2(VO4)2:xEu Phosphor 474 12.5.3 Photoluminescence Properties of M 3–3x/2(VO4)2: Phosphor 476 12.6 Effect of Annealing Temperature on M 3–3x/2(VO4)2:xEu (x = 0.05 for M = Ca, x = 0.1 for M = Sr and x = 0.3 for M = Ba) Phosphors 484 12.6.1 X-ray Diffraction Pattern of M 3–3x/2(VO4)2:xEu phosphor 484Contents xiii 12.6.2 Surface Morphology of M3–3x/2(VO4)2:xEu phosphor 486 12.6.3 Photoluminescence Properties of M 3–3x/2(VO4)2:xEu phosphor 488 12.7 Conclusions 494 References 496 13 Molecular Computation on Functionalized Solid Substrates 499 Prakash Chandra Mondal 13.1 Introduction 500 13.2 Molecular Logic Gate on 3D Substrates 504 13.3 Molecular Logic Gates and Circuits on 2D Substrates 507 13.3.1 Monolayer-Based System 507 13.4 Combinatorial and Sequential Logic Gates and Circuits using Os-polypyridyl Complex on SiO × Substrates 514 13.5 Multiple Redox States and Logic Devices 520 13.6 Concluding Remarks 523 Acknowledgements 523 References 525 14 Ionic Liquid Stabilized Metal NPs and Their Role as Potent Catalyst 529 Kamlesh Kumari, Prashant Singh and Gopal K.Mehrotra 14.1 Introduction 530 14.2 Applications of Metal Nanoparticles 531 14.3 Shape of Particles 532 14.4 Aggregation of Particles 533 14.5 Synthesis of Metal Nanoparticles 533 14.6 Stability against Oxidation 534 14.7 Stabilization of Metal Nanoparticles in Ionic Liquid 535 14.8 Applications of Metal NPs as Potent Catalyst in Organic Synthesis 540 14.8 Conclusion 544 References 544xiv Contents 15 There’s Plenty of Room in the Field of Zeolite-Y Enslaved Nanohybrid Materials as Eco-Friendly Catalysts: Selected Catalytic Reactions 555 C.K. Modi and Parthiv M. Trivedi 15.1 Introduction 556 15.2 Types of Zeolites 557 15.3 Methodology 559 15.4 Characterization Techniques 561 15.5 Exploration of Zeolite-Y Enslaved Nanohybrid Materials 562 15.5.1 Catalytic Liquid-Phase Hydroxylation of Phenol 565 15.5.2 Catalytic Liquid-Phase Oxidation of Cyclohexane 571 15.6 Conclusions 576 References 579 Index 58
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Energy Materials رابط مباشر لتنزيل كتاب Advanced Energy Materials
|
|