Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Materials for Agriculture, Food, and Environmental Safety الإثنين 14 يناير 2019, 10:25 am | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Materials for Agriculture, Food, and Environmental Safety من سلسلة علم المواد المتقدمة Advanced Material Series Ashutosh Tiwari and Mikael Syvajarvi
ويتناول الموضوعات الأتية :
Contents Preface xv Part 1: Fundamental Methodologies 1 1 Layered Double Hydroxides and the Environment: An Overview 3 Amita Jaiswal, Ravindra Kumar Gautam and Mahesh Chandra Chattopadhyaya 1.1 Introduction 4 1.2 Structure of Layered Double Hydroxides 4 1.3 Properties of Layered Double Hydroxides 6 1.4 Synthesis of Layered Double Hydroxides 7 1.4.1 Co-precipitation Method 7 1.4.2 Hydrothermal Synthesis 8 1.4.3 Urea Hydrolysis Method 9 1.4.4 Sol-Gel Method 9 1.4.5 Ion-Exchange Method 9 1.4.6 Rehydration Method 10 1.4.7 Miscellaneous Methods 10 1.5 Characterization of Layered Double Hydroxides 11 1.5.1 X-ray Di?raction 11 1.5.2 Fourier Transform Infrared Spectroscopy 11 1.5.3 Termogravimetric Analysis and Di?erential Termal Analysis 12 1.5.4 Other Techniques 12 1.6 Applications of Layered Double Hydroxides 13 1.6.1 Catalytic Applications 14 1.6.2 Agricultural Applications 15 1.6.3 Pharmaceutical Applications 15 1.6.4 Industrial Applications 16vi Contents 1.6.5 Environmental Applications 16 1.7 Conclusions 19 Acknowledgements 19 References 20 2 Improvement of the Corrosion Resistance of Aluminium Alloys Applying Di?erent Types of Silanes 27 Anca-Iulia Stoica, Norica Carmen Godja, Andje Stankovi?, Matthias P?lzler, Erich Kny and Christoph Kleber 2.1 Introduction 28 2.2 Silanes for Surface Treatment 31 2.2.1 Classifcation of Silanes 32 2.2.2 Surface Treatment and Silane Chemistry 34 2.2.3 Experimental Procedure 37 2.3 Materials, Methods and Experimentals 40 2.3.1 Materials 40 2.3.2 Preparation of Silane Solutions 41 2.3.3 Silane Treatment 41 2.4 Surface Analytics 42 2.5 Results and Discussion 43 2.5.1 Contact Angle 43 2.5.2 Characterization with SEM/EDX – FIB 46 2.5.3 Electrochemical Impedance Spectroscopy (EIS) Tests 50 2.5.4 Salt Spray Test 53 2.5.5 FTIR Spectroscopy 55 2.6 Conclusions 56 Acknowledgements 57 References 57 3 New Generation Material for the Removal of Arsenic from Water 61 Dinesh Kumar and Vaishali Tomar 3.1 Introduction 62 3.1.1 Properties of Arsenic [3–6] 62 3.1.2 World Health Organization Guidelines 63 3.1.3 Toxicity 63 3.1.4 Technologies 64 3.1.5 Adsorption Process 65 3.1.6 New Generation Materials 76Contents vii 3.2 Arsenic Desorption/Sorbent Regeneration 76 3.2.1 Cost Evaluation 77 3.3 Conclusions 78 Acknowledgement 79 References 79 4 Prediction and Optimization of Heavy Clay Products Quality 87 Milica Arsenovi?, Lato Pezo, Lidija Man?i? and Zagorka Radojevi? 4.1 Introduction 87 4.2 Materials and Methods 89 4.2.1 Raw Materials and Samples 89 4.2.2 Chemical and Technological Features 89 4.2.3 Second Order Polynomial Model and Analysis of Variance 90 4.2.4 Artifcial Neural Network Modeling 91 4.2.5 Fuzzy Synthetic Optimization 93 4.3 Results and Discussions 94 4.3.1 Correlation Analysis 94 4.3.2 Analysis of Variance and SOP Models 97 4.3.3 Neurons in the ANN Hidden Layer 102 4.3.4 Simulation of the ANNs 103 4.3.5 Sensitivity Analysis 110 4.3.6 Fuzzy Synthetic Optimization 113 4.4 Conclusions 117 Acknowledgement 118 References 118 5 Enhancement of Physical and Mechanical Properties of Sugar Palm Fiber via Vacuum Resin Impregnation 121 M.R. Ishak, Z. Leman, S.M. Sapuan, M.Z.A. Rahman and U.M.K. Anwar 5.1 Introduction 122 5.2 Experimental 123 5.2.1 Materials 123 5.2.2 Methods 124 5.3 Results and Discussion 125 5.3.1 Physical Properties of Impregnated Fiber 125 5.3.2 Tensile Properties of Impregnated Fibre 132viii Contents 5.4 Conclusions 138 Acknowledgments 139 References 139 6 Environmentally-Friendly Acrylates-Based Polymer Latices 145 Sweta Shukla and J.S.P. Rai 6.1 Introduction 146 6.1.1 Alkyds 146 6.1.2 Urethanes 147 6.1.3 Epoxies 147 6.1.4 Acrylics 148 6.2 Polymerization Techniques 154 6.2.1 Component of Emulsion Polymerization 155 6.2.2 Applications of Acrylic Polymers 168 References 170 Part 2: Inventive Nanotechnology 177 7 Nanoparticles for Trace Analysis of Toxins: Present and Future Scenario 179 Anupreet Kaur and Shivender Singh Saini 7.1 Introduction 179 7.2 Nanoremediation Using TiO2 Nanoparticles 180 7.3 Gold Nanoparticles for Nanoremediation 183 7.4 Zero-Valent Iron Nanoparticles 184 7.5 Silicon Oxide Nanoparticles for Nanoremediation 187 7.6 Other Materials for Nanoremediation 190 7.7 Conclusion 193 References 193 8 Recent Developments in Gold Nanomaterial Catalysts for Oxidation Reaction through Green and Sustainable Routes 197 Biswajit Chowdhury, Chiranjit Santra, Sandip Mandal and Rawesh Kumar 8.1 Introduction 198 8.1.1 Quantum Size E?ects 200 8.1.2 Charge Transfer between Gold and Metal Oxide Support 201 8.1.3 Formation of Reactive Gold–Metal Oxide Perimeter Interfaces 202Contents ix 8.2 Propylene Epoxidation Reaction 202 8.3 Reaction Mechanism 211 8.4 Glucose Oxidation 214 8.5 Alcohol Oxidation 225 8.5.1 Mechanism for Alcohol Oxidation Reaction 233 8.6 Conclusion 234 References 234 9 Nanosized Metal Oxide-Based Adsorbents for Heavy Metal Removal: A Review 243 Deepak Pathania and Pardeep Singh 9.1 Introduction 244 9.2 Nanosized Metal Oxide 246 9.2.1 Nano Ferric Oxides (NFeOs) 246 9.2.2 Nano Manganese Oxides (NMnOs) 249 9.2.3 Nano Titanium Oxides (NTOs) 250 9.2.4 Nano Zinc Oxides (NZnOs) 251 9.2.5 Nano Aluminum Oxides 252 9.3 Hybrid Adsorbents 253 9.3.1 Bentonite-Based Hybrid Nano-Metal Oxide Nanocomposites (B-NMOs) 253 9.3.2 Polymer-Supported Nano-Metal Oxide Nanocomposites (P-NMOs) 256 9.3.3 Zeolites-Supported Nano Metal Oxide Nanocomposites (P-NMOs) 256 9.3.4 Metal Oxides-Based Nanocomposites 257 9.4 Conclusion 258 References 258 10 Future Prospects of Phytosynthesized Transition Metal Nanoparticles as Novel Functional Agents for Textiles 265 Shahid-ul-Islam, Mohammad Shahid and Faqeer Mohammad 10.1 Introduction 266 10.2 Synthesis of Transition Metal Nanoparticle Using Various Plant Parts 266 10.2.1 Silver – Most Versatile Transition Metal Nanoparticle Synthesized by Using Plants 267 10.2.2 Synthesis of Gold Nanoparticles 276 10.2.3 Gold/Silver Bimetallic Nanoparticles 277 10.2.4 Palladium Nanoparticles 278 10.2.5 Synthesis of Other Transition Metal Nanoparticles 279x Contents 10.3 Proposed Mechanisms 279 10.4 Transition Metal Nanoparticles as Novel Antimicrobial Agents for Textile Modifcations 282 10.5 Concluding Remarks and Future Aspects 284 References 285 11 Functionalized Magnetic Nanoparticles for Heavy Metal Removal from Aqueous Solutions: Kinetics and Equilibrium Modeling 291 Ravindra Kumar Gautam, Amita Jaiswal and Mahesh Chandra Chattopadhyaya 11.1 Introduction 291 11.2 Sources of Heavy Metals in the Environment 292 11.3 Toxicity to Human Health and Ecosystems 299 11.4 Magnetic Nanoparticles 303 11.4.1 Properties of Magnetic Nanoparticles 303 11.5 Synthesis of Magnetic Nanoparticles 304 11.5.1 Co-precipitation 305 11.5.2 Hydrothermal Synthesis 307 11.5.4 Termal Decomposition 309 11.6 Magnetic Nanoparticles in Wastewater Treatment 310 11.6.1 Magnetic Nanoparticles as Nanosorbents for Heavy Metals 310 11.7 Modeling of Adsorption: Kinetic and Isotherm Models 316 11.7.1 Kinetic Studies in Adsorption of Heavy Metals 316 11.7.2 Equilibrium Modeling of Adsorption 319 11.8 Termodynamic Analysis 322 11.9 Metal Recovery and Regeneration of Magnetic Nanoparticles 323 11.10 Conclusions 324 Acknowledgements 325 References 325 12 Potential Application of Nanoparticles as Antipathogens 333 Pratima Chauhan, Mini Mishra and Deepika Gupta 12.1 Introduction 333 12.1.1 Types of Pathogens 334 12.1.2 Virulence 335 12.1.3 Transmission 335 12.2 Applications of Nanoparticles 336Contents xi 12.2.1 Nanoparticles in Drug Delivery 336 12.2.2 Role of Nanoparticles and Teir Potential Application in Food Packaging 337 12.2.3 Nanoparticles Used in Agriculture 337 12.2.4 Nanotechnology for the Health Sector 338 12.2.5 Nanoparticles Applicable in the Area of Textile Fibers 339 12.2.6 Nanoparticles Used in Water Treatment 340 12.3 Nanoparticles in Biology 340 12.4 Uses and Advantages of Nanoparticles in Medicine 341 12.5 Antibacterial Properties of Nanomaterials 342 12.5.1 Gold Nanoparticles 343 12.5.2 Magnesium Oxide Nanoparticles 343 12.5.3 Copper Oxide Nanoparticles 343 12.5.4 Titanium Dioxide Nanoparticles 344 12.5.5 Zinc Oxide Nanoparticles 344 12.6 Antiviral properties of Nanoparticles 345 12.6.1 Silver 345 12.6.2 Selenium Nanoclusters 345 12.6.3 Metal Oxides 346 12.6.4 N-phenyl- and N-benzoylthiourea Derivatives 346 12.6.5 FeO 4/C12 Nanostructures and 2-((4-ethylphenoxy) methyl)-N-(substituted-phenyl carbamothioyl)- benzamides 347 12.6.6 Graphene Nanosheets 347 12.6.7 Photoactivated Carbon Nanotube?Porphyrin Conjugates 348 12.7 Antifungal Activity 348 12.7.1 Silver 348 12.8 Mechanism of Action of Nanoparticle inside the Body 349 12.9 Detecting the Antipathogenicity of Nanoparticles on Microorganisms in Vitro 350 12.10 Types of Nanoparticles 351 12.11 Synthesis of Nanoparticles by Conventional Methods 351 12.11.1 Top-down approach 351 12.11.2 Bottom-up approach 352 12.12 Biological Synthesis of Nanoparticles 353 12.12.1 Extraction of Nanoparticles 355 12.13 Characterizations of Nanoparticles 355 12.14 Biocompatibility of Nanoparticles 356xii Contents 12.15 Toxic E?ects of Nanoparticles 356 12.15.1 Respiratory System 357 12.15.2 Translocation of nanoparticle to the Blood Stream and Central Nervous System 358 12.15.3 Gastrointestinal Tract and Skin 358 12.16 Conclusion 359 References 360 13 Gas Barrier Properties of Biopolymer-based Nanocomposites: Application in Food Packaging 369 Sarat Kumar Swain 13.1 Introduction 370 13.2 Experimental 372 13.3 Objective 372 13.4 Background of Food Packaging 373 13.4.1 Oxygen Penetration 373 13.4.2 Antimicrobial Systems 374 13.4.3 Detection of Gases Produced by Food Spoilage 375 13.4.4 Di?erent Fillers for Nanocomposites 376 13.5 Conclusion 382 References 382 14 Application of Zero-valent Iron Nanoparticles for Environmental Clean Up 385 Ritu Singh and Virendra Misra 14.1 Introduction 386 14.2 Zero-Valent Iron Nanoparticles: A Versatile Tool for Environmental Clean Up 388 14.2.1 Iron Chemistry 388 14.2.2 Synthesis 389 14.2.3 Structure 390 14.2.4 Environmental Application 390 14.3 Reduction Mechanisms and Pathways 406 14.4 Pilot- and Field-Scale Studies 408 14.5 Transport of nFe0 in Environment 410 14.6 Integrated Approach 411 14.7 Challenges Ahead 412 14.7.1 Toxicity 412 14.7.2 Fate and Behavior in Environment 413 14.8 Concluding Remarks 413 References 414Contents xiii 15 Typical Synthesis and Environmental Application of Novel TiO 2 Nanoparticles 421 Tanmay Kumar Ghorai 15.1 Introduction 421 15.2 Use of Di?erent Dyes 424 15.2.1 Methyl Orange Degradation (MO) 424 15.2.2 Rhodamine B (RB) 425 15.2.3 Tymol Blue (TB) 425 15.2.4 Bromocresol Green (BG) 426 15.3 Synthetic Methods for Novel Titania Photocatalysts 427 15.3.1 Photocatalytic Reactor 429 15.3.2 Sol-Gel Method 430 15.4 Novel Chemical Synthesis Routes 438 15.4.1 Fe(III)-Doped TiO2 Nanophotocatalyst 439 15.4.2 Metal Molybdate Incorporated Titanium Dioxide Photocatalyst 441 15.4.3 Metal Molybdate Doped Bismuth Titanate (NMBT) Nanocomposites 441 References 445 16 Zinc Oxide Nanowire Films: Solution Growth, Defect States and Electrical Conductivity 453 Ajay Kushwaha and M. Aslam 16.1 Introduction 453 16.2 Solution Growth of ZnO Nanowire Films 456 16.2.1 Low Temperature Hydrothermal Growth 457 16.2.2 Alternative Solution Growth Methods 463 16.3 Defects and Photoluminescence Properties of ZnO 465 16.3.1 Defects in ZnO 465 16.3.2 Photoluminescence of ZnO Nanowire 467 16.4 Role of Defect States in Electrical Conductivity of ZnO 469 16.4.1 Defect States Responsible for N-Type Conductivity 469 16.4.2 Defect States Responsible for P-Type Conductivity 471 16.5 Defects a nd Electrical Conductivity of ZnO Nanowire Films 471 16.5.1 Electrical Conductivity of Nanowire Film in Dark 474 16.5.2 Defect-Induced Photoconductivity in Nanowire Films 476xiv Contents 16.5.3 Surface Modifcation and Optoelectrical Properties of ZnO Nanowires 477 16.6 ZnO Nanowires for Energy Conversion Devices 478 16.6.1 Photovoltaic Applications 479 16.6.2 Water Splitting/Solar Hydrogen Generation 480 16.6.3 Piezoelectric Nanogenerators 481 References 483 Index
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Materials for Agriculture, Food, and Environmental Safety رابط مباشر لتنزيل كتاب Advanced Materials for Agriculture, Food, and Environmental Safety
|
|