Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Sensor and Detection Materials الإثنين 14 يناير 2019, 11:29 am | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Sensor and Detection Materials من سلسلة علم المواد المتقدمة Advanced Material Series Ashutosh Tiwari and Mustafa M. Demir
ويتناول الموضوعات الأتية :
Contents Preface xv Part 1: Principals and Prospective 1 1 Advances in Sensors’ Nanotechnology 3 Ida Tiwari and Manorama Singh 1.1 Introduction 3 1.2 What is Nanotechnology? 4 1.3 Signifcance of Nanotechnology 5 1.4 Synthesis of Nanostructure 5 1.5 Advancements in Sensors’ Research Based on Nanotechnology 5 1.6 Use of Nanoparticles 7 1.7 Use of Nanowires and Nanotubes 8 1.8 Use of Porous Silicon 11 1.9 Use of Self-Assembled Nanostructures 12 1.10 Receptor-Ligand Nanoarrays 12 1.11 Characterization of Nanostructures and Nanomaterials 13 1.12 Commercialization E?orts 14 1.13 Future Perspectives 14 References 15 2 Construction of Nanostructures: A Basic Concept Synthesis and T eir Applications 19 Rizwan Wahab, Farheen Khan, Nagendra K. Kaushik, Javed Musarrat and Abdulaziz A.Al-Khedhairy 2.1 Introduction 20 2.1.1 Importance of Nanomaterials 20 2.1.2 Synthetic Methods 21 2.2 Formation of Zinc Oxide Quantum Dots (ZnO-QDs) and Teir Applications 24vi Contents 2.3 Needle-Shaped Zinc Oxide Nanostructures and Teir Growth Mechanism 30 2.4 Flower-Shaped Zinc Oxide Nanostructures and Teir Growth Mechanism 37 2.5 Construction of Mixed Shaped Zinc Oxide Nanostructures and T eir Growth Mechanicsm 47 2.6 Summary and Future Directions 56 References 57 3 Te Role of the Shape in the Design of New Nanoparticles 61 G. Mayeli Estrada-Villegas and Emilio Bucio 3.1 Introduction 62 3.1.1 Te Importance of Shape and Size in the Design of New Nanoparticles 62 3.2 Te Importance of Shape as Nanocarries 63 3.2.1 Targeting and Shape 65 3.3 In?uence of Shape on Biological Process 65 3.3.1 Biodistribution 65 3.3.2 Phagocytosis 66 3.3.3 Citotoxicity 67 3.4 Di?erent Shapes of Polymeric Nanoparticles 67 3.4.1 Synthesis 67 3.4.2 Classifcation by Synthesis Method 67 3.4.3 Classifcation by Initial Shape 69 3.5 Di?erent Shapes of Non-Polymeric Nanoparticles 71 3.5.1 Gold Nanorods 71 3.5.2 Carbon Nanotubes 72 3.5.3 Fullerenes 73 3.6 Di?erent Shapes of Polymeric Nanoparticles: Examples 74 3.6.1 Hexagonal Form 74 3.6.2 Toroidal 75 3.6.3 Conical 75 3.6.4 Ellipsoids 75 3.6.5 Disks 76 3.7 Another Type of Nanoparticles 76 3.7.1 Electrospun 76 3.7.2 Vesicles 78 Acknowledgments 80 References 80Contents vii 4 Molecularly Imprinted Polymer as Advanced Material for Development of Enantioselective Sensing Devices 87 Mahavir Prasad Tiwari and Bhim Bali Prasad 4.1 Introduction 88 4.2 Molecularly Imprinted Chiral Polymers 90 4.3 MIP-Based Chiral Sensing Devices 91 4.3.1 Electrochemical Chiral Sensor 92 4.3.2 Optical Chiral Sensors 100 4.3.3 Piezoelectric Chiral Sensing Devices 102 4.4 Conclusion 105 References 105 5 Role of Microwave Sintering in the Preparation of Ferrites for High Frequency Applications 111 S. Bharadwaj and S.R. Murthy 5.1 Microwaves in General 112 5.2 Microwave-Material Interactions 114 5.3 Microwave Sintering 115 5.4 Microwave Equipment 118 5.5 Kitchen Microwave Oven Basic Principle 122 5.6 Microwave Sintering of Ferrites 126 5.7 Microwave Sintering of Garnets 137 5.8 Microwave Sintering of Nanocomposites 138 References 140 Part 2: New Materials and Methods 147 6 Mesoporous Silica: Making “Sense” of Sensors 149 Surender Duhan and Vijay K. Tomer 149 6.1 Introduction to Sensors 150 6.2 Fundamentals of Humidity Sensors 153 6.3 Types of Humidity Sensors 154 6.4 Humidity Sensing Materials 156 6.5 Issues with Traditional Materials in Sensing Technology 158 6.6 Introduction to Mesoporous Silica 159 6.7 M41S Materials 160 6.7.1 MCM-41 161 6.7.2 MCM-48 162 6.8 SBA Materials 162 6.8.1 SBA-15 162 6.8.2 SBA-16 164viii Contents 6.9 Structure of SBA-15 164 6.10 Structure Directing Agents of SBA-15 165 6.11 Factors A?ecting Structural Properties and Morphology of SBA-15 169 6.12 Modifcation of Mesoporous Silica 174 6.13 Characterization Techniques for Mesoporous Materials 177 6.14 Humidity Sensing of SBA-15 184 6.15 Extended Family of Mesoporous Silica 185 6.16 Other Applications of SBA-15 188 6.17 Conclusion 190 References 191 7 Towards Improving the Functionalities of Porous TiO2-Au/Ag Based Materials 193 Monica Baia, Virginia Danciu, Zsolt Pap and Lucian Baia 7.1 Porous Nanostructures Based on Tio 2 and Au/Ag Nanoparticles for Environmental Applications 194 7.2 Morphological Particularities of the TiO2-based Aerogels 199 7.3 Designing the TiO2 Porous Nano-architectures for Multiple Applications 201 7.4 Evaluating the Photocatalytic Performances of the TiO 2-Au/Ag Porous Nanocomposites for Destroying Water Chemical Pollutants 208 7.5 Testing the E?ectiveness of the TiO2-Au/Ag Porous Nanocomposites for Sensing Water Chemical Pollutants by SERS 210 7.6 In-depth Investigations of the Most Efcient Multifunctional TiO 2-Au/Ag Porous Nanocomposites 216 7.7 Conclusions 221 Acknowledgments 223 References 223 8 Ferroelectric Glass-Ceramics 229 Viswanathan Kumar 8.1 Introduction 230 8.2 (Ba1-xSrx)TiO3 [BST] Glass-Ceramics 232 8.3 Glass-Ceramic System (1-y) BST: y (B2O3: x SiO2) 234 8.3.1 Preparation 234 8.3.2 Characterization of Glass-Ceramics 235Contents ix 8.4 Glass-Ceramic System (1-y) BST: y (BaO: Al2O3: 2SiO2) 245 8.4.1 Preparation 245 8.5 Comparision of the Two BST Glass-Ceramic Systems 254 8.6 Pb(Zr x Ti 1-x)TiO3[PZT] Glass-Ceramics 256 8.6.1 Introduction 256 8.6.2 Glass-Ceramic (1-y) PSZTM: y(xPbO.yB2O3.zSiO2) 256 8.6.3 Dielectric and Piezoelectric Characteristics of Glass-Ceramics 261 8.6.4 Comparision of the PZT-Based Glass-Ceramics 262 References 263 9 NASICON: Synthesis, Structure and Electrical Characterization 265 Umaru Ahmadu 9.1 Introduction 265 9.2 Teretical Survey of Superionic Conduction 268 9.3 NASICON Synthesis 271 9.3.1 Sol-Gel Method 271 9.3.2 Hydrothermal Method 272 9.3.3 Ion Exchange 272 9.3.4 Microwave Synthesis 272 9.3.5 Spark Plasma Sintering 273 9.3.6 Solid State Synthesis 273 9.4 NASICON Structure and Properties 273 9.5 Characterization Techniques 278 9.5.1 Electrical Conductivity 280 9.5.2 Impedance Teory and Modeling 283 9.5.3 Dielectric Relaxation 288 9.5.4 Nuclear Magnetic Resonance 289 9.6 Experimental Results 291 9.7 Problems, Applications, and Prospects 299 9.8 Conclusion 300 Acknowledgments 300 References 300 10 Ionic Liquids 309 Arnab De, Manika Dewan and Subho Mozumdar 10.1 Ionic Liquids: What Are Tey? 309 10.2 Historical Background 310 10.3 Classifcation of Ionic Liquids 311 10.3.1 Neutral Anions and Cations 313 10.3.2 Acidic Cations and Anions 313x Contents 10.3.3 Basic Cations and Anions 313 10.3.4 Amphoteric Anions 313 10.4 Properties of Ionic Liquids, Physical and Chemical 314 10.4.1 Melting Point and Liquidus Range; Tm 314 10.4.2 Glass Transition Temperature T g 315 10.4.3 Decomposition Temperature Td 316 10.4.4 Viscosity 316 10.4.5 Density 317 10.4.6 Surface Tension 318 10.4.7 Purity; Anionic Impurity 318 10.4.8 Solvent Properties of ILs 319 10.5 Synthesis Methods of Ionic Liquids 323 10.5.1 Anion 323 10.5.2 Cations 324 10.5.3 Synthesis 324 10.6 Characterization of Ionic Liquids 329 10.7 Major Applications of ILs 330 10.8 ILs in Organic Transformations 331 10.8.1 ILs as Solvents 332 10.8.2 ILs as Catalyst 334 10.9 ILs for Synthesis and Stabilization of Metal Nanoparticles 339 10.9.1 Synthesis of Metal Nanoparticles (M-NPs) in ILs 340 10.9.2 Stabilization of M-NPs Using ILs: DLVO Teory and Other E?ects 343 10.10 Challenges with Ionic Liquids 344 10.10.1 Cost/Economic Perspective 344 10.10.2 Green Aspects of ILs; Recyclability and Disposal 345 References 346 11 Dendrimers and Hyperbranched Polymers 369 Jyotishmoy Borah and Niranjan Karak 11.1 Introduction 369 11.2 Synthesis of Dendritic Polymers 372 11.2.1 Synthesis of Dendrimers 372 11.2.2 Synthesis of Hyperbranched Polymers 375 11.2.3 Monomers 375 11.2.4 General Techniques 383 11.2.5 Modifcation of Dendrimers and Hyperbranched Polymers 384Contents xi 11.3 Characterization 385 11.3.1 Structural Elucidation 386 11.4 Properties 391 11.4.1 Physical Properties 391 11.4.2 Rheological and Mechanical Properties 393 11.4.3 Chemical Properties 395 11.4.4 Termal Properties 395 11.4.5 Flame Retardant Behavior 398 11.5 Applications 398 11.6 Conclusion 403 References 404 Part 3: Advanced Structures and Properties 413 12 Teoretical Investigation of Superconducting State Parameters of Bulk Metallic Glasses 415 Aditya M. Vora 12.1 Introduction 415 12.2 Computational Methodology 417 12.2.1 Model Potential 417 12.2.2 Superconducting State Parameters (SSPs) 417 12.2.3 Local Field Correction Functions 420 12.3 Results and Discussion 421 12.4 Conclusions 434 References 434 13 Macroscopic Polarization and Termal Conductivity of Binary Wurtzite Nitrides 439 Bijaya Kumar Sahoo 13.1 Introduction 440 13.2 Te Macroscopic Polarization 441 13.3 E?ective Elastic Constant, C 44 442 13.4 Group Velocity of Phonons 443 13.5 Phonon Scattering Rates 444 13.6 Termal Conductivity of InN 445 13.7 Summary 449 References 450xii Contents 14 Experimental and Teoretical Background to Study Materials 453 Arnab De, Manika Dewan and Subho Mozumdar 14.1 Quasi-Elastic Light Scattering (Photon Correlation Spectroscopy)1 453 14.1.1 Instrument and Method Adopted for the Analysis of the Samples in the Present Work 455 14.2 Transmission Electron Microscopy (TEM) 456 14.2.1 Instrument and Method Adopted for the Analysis of the Samples in the Present Work 456 14.3 Scanning Electron Microscopy [2] 457 14.3.1 Instrument and Method Adopted for the Analysis of the Samples in the Present Work 458 14.4 X-ray Di?raction (XRD) 459 14.4.1 Instrument and Method Adopted for the Analysis of the Samples in the Present Work 461 14.5 UV-visible Spectroscopy 461 14.5.1 Instrument and Method Adopted for the Analysis of the Samples in the Present Work 462 14.6 FT-IR Spectroscopy 462 14.6.1 Instrument and Method Adopted for the Analysis of the Samples in the Present Work 462 14.7 NMR Spectroscopy 463 14.7.1 Instrument and Method Adopted for the Analysis of the Samples in the Present Work 463 14.8 Mass Spectrometry 464 14.8.1 Instrument and Method Adopted for the Analysis of the Samples in the Present Work 464 14.9 Vibrating Sample Magnetometer 465 14.9.1 Instrument and Method Adopted for the Analysis of the Samples in the Present Work 466 References 466 15 Graphene and Its Nanocomposites for Gas Sensing Applications 467 Parveen Saini, Tapas Kuila, Sanjit Saha and Naresh Chandra Murmu 15.1 Introduction 468 15.2 Principles of Chemical Sensing by Conducting Nanocomposite Materials 470 15.3 Synthesis of Graphene and Its Nanocomposites 472Contents xiii 15.4 Characterization of Graphene and Its Nanocomposites 473 15.5 Chemical Sensing of Graphene and Its Nanocomposites 477 15.5.1 Pristine Graphene-Based Sensor 478 15.5.2 Surface-Modifed Graphene Sensor 482 15.5.3 Graphene/Ionic Liquid Sensor 484 15.5.4 Graphene/Conducting Polymer Nanocomposite Sensor 485 15.5.5 Graphene/Nanometal Composite Sensor 487 15.5.6 Graphene/Metal Oxide Composite Sensor 488 15.6 Conclusion and Future Aspects 493 Acknowledgements 494 References 494 Index
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Sensor and Detection Materials رابط مباشر لتنزيل كتاب Advanced Sensor and Detection Materials
|
|