Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Reaction Injection Molding الثلاثاء 10 سبتمبر 2019, 10:56 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Reaction Injection Molding Polymer Chemistry and Engineering Jiri E. Kresta, EDITOR University ofDetroit Based on a symposium sponsored by the Division of Polymeric Materials Science and Engineering at the 186th Meeting of the American Chemical Society, Washington, D.C.
و المحتوى كما يلي :
Future of RIM Development in the U S 1 RIM and RRIM Development in Japan 11 Studies of the Formation and Properties 31 RIM Urethanes StructureProperty Relationships 55 The Effect of Hard Segment Content on a Cross 63 The Effect of Annealing on the Thermal Properties 77 Experimental Studies of Phase Separation 95 Thermal Stability 119 High Modulus IsocyanurateUrethane RIM Elastomers 1 65 164 Potential of Crown EtherAssisted Anionic Polymer 181 Recent Chemical and Reinforcement Development 209 Fiber Glass Reinforced Reaction Injection Molding 219 Refining of the RRIM Process Materials 231 Metering and Mixing of RIM Reactants 243 Simulation of Cavity Filling and Curing in RIM 263 Computer Analysis of RIM Moldability from 279 Polyamide RIM Systems 133 The Catalysis of the Polycyclotrimerization 147 Index Author Index Alberino, L. Μ., 3,125 Alfonso, Giovanni Carlo, 163 Barksby, N. 83 Blackwell, John, 53 Camargo, R. Ε., 27 Chiappori, Carmen, 163 C o r n e l l , M. C , 15 Cross, M. M . , 97 Damusis, A . , 65 Dunn, D . , 83 Gabbert, J . D . , 135 G i r g i s , M i k h a i l , Granger, R., 279 Hedrick, R. M . , 135 Kaye, Α., 83,97 Kresta, J . E . , 111 Lee, Chun Dong, 53 L i n , T. B . , 65 Lloyd, E. T. , 15 Lockwood, R. J . , 125 Macdonald, Christine E . , 53 Macosko, C. W., 27 McClellan, T. R., 3 Menges, G . , 237 Meyer, Louis W., 195 Mrotzek, W., 237 M i l l i e r , Η., 237 Plevyak, Joseph E . , 213 Quay, Jeffrey R., 53 Razore, Sandro, 163 Regelman, D. F . , 125 Russo, Saverio, 163 Sadr, Α., 279 Schneider F r i t z W. 259 Stepto, R. F. T., 83,97 T i r r e l l , Μ., 27 Turner, Robert B . , 53 van der Loos, J . L . M . , 181 van Geenen, Α. Α., 181 Vergnaud, J . M . , 279 Wellinghoff, S. T., 27 Wohl, M. H . , 135 Wongkamolsesh, K . , 111 Subject Index A Acetylcaprolactam, 138 Acyllactam(s), 142 nylon copolymer formation, 144 reaction with primary amines, 139f structure, 138 Adiabatic reaction(s), 67 Adiabatic reactor data, urethane elastomers, 71-73f Adipoylbiscaprolactam, 138 After-mixers, 247-48 Agglomeration(s), i n s t r a i g h t - l i n e dependence deviations, 65 Alkene(s), r e a c t i v i t y toward isocyanates, 126 Alkoxyacetylene(s), formation of ketene aminals, 133 Amine(s), primary, reaction with acyllactams, 139f 3-Aminopropyl triethoxysilane, 140 Amorphous systems, polyurethane elastomers, 33 Anionic polymerization, caprolactams, 136-38 i n i t i a t i o n , 138 thermal i n i t i a t i o n , 137f termination reaction, 136 Annular cone and plate, 100-102 Annular vs. truncated cones, 101f Aromatic diisocyanate(s), RIM elastomers, 81 Arrhenius equation, second-order reaction, 67 Automotive industry, operating e f f i c i e n c i e s , 18 Automotive RIM, 4t 295296 REACTION INJECTION MOLDING Β Barbituric acid derivative(s), formation, 128 Base-catalyzed polymerization of lactam(s), 136 Baseball bats, f o a m - f i l l i ng equipment, 264f,265f Benzoyl chloride, effect on t i n catalysts, 116 Bimodal d i s t r i b u t o r ( s ) , high, rationale, 42 Bisacyllactam, structure, 142 Bis(4-morpholino)ethylene, 133 reaction with MDI, 129 Block copolymer(s) nylon, 142-58 See also Nylon block copolymers dynamic modulus curves, 147f effect of polyol content heat sag values, 149 moisture effect, 149 polyether effects on impact strength/stiffness, 147f prepolymer formation, 142 properties, 144-4 5 reaction exotherm, 156f v i s c o s i t y comparison, 155f phase mixing effects, 45 Body panel(s), polyurethane-RRIM, thickness, 18 1,4-Butanediol, 68 n-Butanol effect, DBTDL, IR spectra, 116 C Calcined clay, 140 Caprolactam(s), 154 acyllactam-initlated polymerization, 137f anionic polymerization, 136-38 i n i t i a t i o n , 138 thermal, 137f termination reaction, 136 polymerization, 135 preferred catalyst, 144 reaction with isocyanates, 138 Caprolactam magnesium bromide, preferred catalyst, 144 Carbamoyl chloride, effect on t i n catalysts, 116 CaSi03—See Wollastonite C a t a l y s i s , 111 polyurethane elastomers, 45 Chopped Integral strands heat sag effect, 234,235t notched Izod impact strength, effect, 232,233t Chopped integral strands—Continued packing fraction, 99f reinforcement f l e x u r a l modulus, 231t,232 surface quality, 229 Class A surface d e f i n i t i o n , 229 obtaining, 21 Clogging effects, s o l i d f i l l e d systems, avoidance, 266 Compression molding, estimated c a p i t a l , 21t Cone and plate viscometer(s) annular, 100-102 displaced, 100 shear rate, highest attainable, 105 v i s c o s i t y determination, 102 Cone and plate viscometry, 100-105 Consumer application(s) 4,5t physical decay, temperature effects, 76-80 density and p l a s t i c i z e r effects, 78 Crystalline aggregate(s), formation, 81 CSG—See Chopped strand glass Cure cycle, time reduction, 279 C y l i n d r i c a l mold, flow front p r o f i l e s , 253f D DAO—See 1,4-Dlazo 2,2,2 octane Dashboard—See Fascia DBTDL—See D i b u t y l t i n dilaurate Densitometer scans, MDI, 57,58f Diazo 2,2,2 octane, catalysis of isocyanate groups, 113t D i b u t y l t i n dilaurate catalysis of isocyanate groups, 113t dissociation, l a u r i c acid effects, 1l8f interaction with carbamoyl chloride, IR spectra, 119f IR spectra, 115f n-butanol effect, 1l6,117f ligand exchange, 114-16 specific conductance, 117f structure characteristics, 114 urethane reaction, catalysis mechanism, 1l8f D i f f e r e n t i a l scanning calorimetry polyurethane elastomers, 32,38,40f,4lf urethane elastomers, 75,80 Diisocyanate(s), aromatic, RIM elastomers, 81INDEX 297 Direct gate, 240f Direct gating, 239 Displaced cone and plate, 100 DSC—See D i f f e r e n t i a l scanning calorimetry Dynamic mechanical spectroscopy, polyurethane elastomers, 32 Ε Economic 'advantage (s ), 15 Efficient mixing, achieving, 88 EG—See Ethylene glycol Elastomer properties, hard segments, 130t,131t Enamine(s), r e a c t i v i t y , 126 Energy balance equation, 67 Engineering p l a s t i c ( s ) , development, 8t Engineering rubber(s), features Epoxy formulations, processing equipment, 269,271 Epoxy RIM material(s), 9 Equipment, 259-78 flow diagram, 85f operation, 84-89 special needs, 9 usage, 5t Ethoxyacetylene, ketene aminals, formation, 133 Ethylene g l y c o l , 56 External mold release, application time, 216 F Fan gate, 242 IKV version, 240-47 method, 241 narrow, 244f Fascia, RIM use, 15-17 Fiber glass reinforcements, i n urethanes, 225-36 F i l l e d polyurethane(s), 95 F i l l i n g pattern method, 250-57 Film gating, 241 F i r - t r e e mixer, 249f Fixture (s), 20t Flaked glass, disadvantage, 228 Flow, pressure drop, 243 Foaming, use, 150 Fox's equation, 47 Free pour impingement mixing head, 271,274 cross section, 275f Fringed micelle c r y s t a l l i t e ( s ) , formation, 65-66 G Gel permeation chromatography, polyurethane elastomers, 32 Glass f i b e r ( s ) , 97-110 packing f r a c t i o n , 98-100 Glass fibe r s l u r r i e s , shear thinning, 102 Glass flakes, 226 reinforcement, surface quality, 229 GPC—See Gel permeation chromatography Growth, 5,15 H Hagen-Poisseuille p r i n c i p l e , 251 Hammer-milled glass—See M i l l e d glass fibers and material type, 7t chain extender, 54 content, d e f i n i t i o n , 29 percentage vs. elastomer properties, 130t,131t polyurethane elastomers, 27,28f variations and use, 6 Hard segment polymer(s), properties, 7t HDI—See 1,6-Hexamethylene diisocyante High-polydispersity r a t i o ( s ) , rationale, 42 High-shear RRIM viscometer, 105-8 HMG—See M i l l e d glass fibers Hot process equipment, 272f I Impact strength, chopped integral strands, 232 Impingement injection mixing, 238 Impingement mixing, 12f equipment, 259-61 maximum operational pressure, 261 Reynolds number, 88 IMR—See Internal mold release, 22 Incompatible polyols, i n polyurethanes, 86t Industrial consumer application(s), 4,5t Injection molding, estimated c a p i t a l , 21t Interior trim foam, market usage, 4 Internal mold release, 22 agent, requirements, 217 economic advantages, 216 multiple stream, 222298 REACTION INJECTION MOLDING Internal mold release—Continued need, 216 nylon system, 157 RRIM, 23t technology, 23 Intersegmented interactions, absence, 47 Isocyanate(s) electron density, 112 polarized complexes, formation, 113 reaction with caprolactams, 138 reaction with organotin catalysts, 112 r e a c t i v i t y with alkenes, 126 Isocyanurate, urethane modified, 9 fiber length effects, 12t J J-car f a s c i a , molding with IMR, 218,220 Κ Ketene acetals formation of ketene aminals, 133 structure, 128 Ketene aminal(s) moisture effects, 127 preparation, 133 r e a c t i v i t y , 126 RIM polymerizations, 129-32 structure, 126 Ketene aminal-isocyanate(s), 125-34 specific reaction, 126-28 Krauss-Maffel head, 88 L Lactam(s), base catalyzed polymerization, 136 Lauryl lactam, 154 Loss tangent, polyurethanes, 93»94f Low-pressure casting, 150 nylon systems, 160-61 M Market(s), automotive, 3-4 MDI—See Modified diphenylmethane 4,4*-diisocyanate M i l l e d glass f i b e r s , 226 bulk volume determination, 98 length requirement, 228 as reinforcement, flexural modulus, 229,231t tensile strength, effect, 232 Mineral reinforcement, 140 Mixing efficiency predicting, 260 achieving, 88 impingement, 238 Mixing head, 263f free pour impingement, 271,274 cross section, 275f i n d u s t r i a l application, 262 open molds, 274 small s i z e , 261-62 Modified diphenylmethane 4,41-diisocyanate characteristics, 56 densitometer scans, 57,58f d i f f e r e n t i a l scanning calorimetry, 56 dynamic mechanical data, 56,63f reaction, 129 X-ray d i f f r a c t i o n , 56 , 57,58f, 59f Modified diphenylmethane 4,4,-diisocyanate/ethylene g l y c o l , X-ray d i f f r a c t i o n , 54,55f Mold(s) c y l i n d r i c a l , flow front profiles, 253f design, problems, 250 nylon systems, 159-60 M o l d f i l l i n g a i r entrapment, 240f avoiding, 245,247,257 f i l l i n g pattern method, 251 flow management, 239-47 island geometry, 245 polyurethane, 237-58 process, 11 Molecular weight determination, polyurethane 0 elastomers, 38,41f,42,43f Ν Narrow fan gate, 244f NCO group—See Isocyanates Nonautomotive market(s), 4 Nucleation, internal release agents, 217 Nylon(s), v s . urethanes, 154-58 Nylon 6, 9,135-62 melting point, 135 particulate reinforcement, 140 RIM, 138-42 Nylon block copolymer(s), 142-58 adsorption effects, 151f dynamic modulus curves, I47f effect of polyol content, 145tINDEX 299 Nylon block copolymer(s)—Continued heat resistance, 146,149 heat sag values, 149 heat sag/flexural modulus, 149t immersion growth data, 153f moisture effect, 149 molding processes, 150 morphology, 146 polyether effects on impact strength/stiffness, 147f prepolymer formation, 142 properties, 144-4 5 reactions, 142-44 exotherm, 156f r e l a t i v e humidity effects, 152f structure, 146 synthesis, 142 temperature modulus response, 149t use of polyol rubber blocks 150 v i s c o s i t y comparison, 155 Nylon processing, equipment Nylon system(s) equipment requirements, 158-60 gel times, 1 54 injection rates, 157 internal mold release, 157 low-pressure casting, 160-61 molds, 159-60 monomers, 154 0 Open molds, mixing head, 274 Organic-silicone hybrid technology— See Silicone-organic hybrid(s) Organotin catalyst(s) i n urethane systems, 111-21 reaction with isocyanates, 112-14 Orthoester(s), formation of ketene aminals, 133 Ovens, hot process equipment, 273f Ρ Packing fraction c a l c u l a t i o n , 98 chopped strand glass reinforcement, 99f as function of weight averages, 101f P a i n t a b i l i t y , internal release agents, 217 P a r t i c l e cone(s), d i f f i c u l t i e s , 100 Particulate reinforcement, 140 PC a l l o y c a p i t a l , 22t hourly labor cost, 20,21t PEDA—See Polyether diamine Phase separation premature, 46 segmented polyurethane(s), 95 Phase-separation studies, 27-52 Phenyl-Isocyanate diadduct, structure, 127 Physical cross-links decay, temperature effects, 76-80 density and p l a s t i c i z e r effects, 78 Plant(s), t y p i c a l , 17 Plaque thickness, 89 P l a s t i c i z e r ( s ) , effect of c r o s s - l i n k s , 76,79 Polyamide(s) particulate reinforcement, 140 preparation, 129 solution derived, preparation, 133 Polyether, structure, 142 PolymerIzation Polyol(s ) and polyurethanes, t e n s i l e properties, 93t characteristics, 30 high-shear rate data, 108 incompatible, i n polyurethanes, 86t molecular weight Increases, 46 rheology, 97-110 Polyol rubber block (s), use i n nylon block copolymers, 150 Polyurethane(s) amine additive effects, 53-64 amorphous systems, 33 glass t r a n s i t i o n temperatures, 48t block composition, 53 c r y s t a l l i n e systems, 45-47 d i f f e r e n t i a l scanning calorimetry, 32,38,40f,4lf dynamic mechanical spectra, 32,33 dynamic mechanical temperature behavior, 93-95 f i l l e d , 95 f l e x u r a l modulus-temperature behavior, 90,92f,93 foam molding, m o l d - f i l l i n g operation, 255 gel permeation chromatography, 32 hard-segment composition, 27, 28f incompatible polyols, 86t mechanical properties, 33 m o l d f i l l i n g , 237-58 molecular weight determination, 38,41f,42,43f noncrystalline systems, 47-49 reinforced RIM c a p i t a l , 22t hourly labor costs, 211 thickness for body panels, 18300 REACTION INJECTION MOLDING Polyurethane (s ) —Continued RIM, 15-26 production, 29,32 segmented, phase separation, 95 tensile properties, 42,93t tensile stress-strain, 90,91f t r a n s i t i o n a l behavior, 93/f94f u n f i l l e d , 89-90 wide angle X-ray scattering, 32,38,39f Premature phase separation, 46 Pressure recording, reinforced RIM, 107f Process efficiency, 18 Process energy cost comparison, 19t Processing, s o l i d - f i l l e d system, 262, 266-67 Productivity, I8t PU—See Polyurethane(s) PU-RIM—See Polyurethane (s) Q Quartz, 140 R Reinforced RIM, 11 automotive, 4t flow rate, 105 internal mold release, 23t pipe diagram, 23Of pressure recording, 107f volume recording, 107f Reinforced RIM viscometer correction factors, 106,108 high shear, 105-8 Resin transfer molding, 150 Reynolds number, calculating, 260 RIM basic p r i n c i p l e , 226 cycle, 2l4,215f equipment, 259^-78 flow diagram, 268f low capacity, 267,269 medium capacity, 267,269 estimated c a p i t a l , 21t hourly labor cost, 20 process, 227f processing, parameters used, 89t RIM-polyurethane(s), reaction systems, 84 Rotational casting, 150,154 RRIM—See Reinforced RIM Rubber injection temperature and rubber sheet thickness, 284 state of cure, 279-91 i n storage bulb, 282-84 Rubber—Continued temperature p r o f i l e s , 279-91 thermal properties, 282t Rubber vulcanization injection temperature and state of cure, 286 mathematical treatment, 280 midplane temperature, 284t as function of enthalpy, 288t numerical calculation, 281 rubber sheet thickness effect, 285f state of cure and cure time, 286t by sulfur , 280 S Second-order reaction adiabatic, 67 Arrhenius equation 67 Sheet-molding compound(s) c a p i t a l , 22t hourly labor cost, 20,21t tooling/fixtures, 20 Silicone(s) internal mold release technology, 213-24 tailormade, IMR agents, 219f Silicone-organic hybrid(s) internal mold release, 218-21 agents, 221-22 p a i n t a b i l i t y problems, 218 S102—See Quartz SMC—See Sheet-molding compound(s) S o l i d - f i l l e d systems efficient mixing, 266 processing, 262,266-67 Solvation effect, on d i b u t y l t i n dilaurate, 116 Sprue gate, 242,249f problems, 247 Storage bulb, temperature i n rubber vulcanization, 282-84 Straight-line dependence, effect of RIM composition, 74,76 Stress-strain, t e n s i l e , polyurethanes, 90,91f Structure-property relationship(s), polyurethane, 53-64,83-96 Τ Tensile elongation at break, with reinforcement, 234 Tensile elongation values, with reinforcement, 235 Tensile properties, polyurethane elastomers, 42INDEX 301 Tensile strength data, with reinforcement, 233t Thin section moldings, flow management, 240f Tin catalyst(s) a c t i v i t y , hydrolyzable chlorine effects, 116,120 r o l e i n isocyanate polarization, 114 Tool(s), 20t Torsion pendulum data, polyurethanes, 93,94f T r i e t h y l orthoacetate, 128 Trim waste, 18-19 Truncated vs. annular cones, 101f U u n f i l l e d polyurethane(s), 89-90 Urethane(s) adiabatic reactor data, 71-73 adiabatic temperature vs. r i g i d segments, 73f components, 69t c r o s s - l i n k s , temperature effects, 70 DSC, 75,80 fiber glass reinforcements, 225-36 milled glass, 228 gel times, 154 morphology, 65-82 physical properties, 70 p l a s t i c i z e r modification, 69,74t raw materials, 16 use for auto parts, 226 v i s c o s i t y comparison, 155f vs. nylon, 154-58 Urethane-modifled isocyanurate, fiber length effects, 12t Urethane reaction(s) adiabatic reaction k i n e t i c s , 68 c a t a l y s i s , mechanism, 111 d i b u t y l t i n dilaurate, catalysis mechanism, 1l8f noncatalyzed, 113 organotin c a t a l y s i s , 111-21 Urethane segmented block copolymer(s), 5 Urethane structural foam, market usage, 5t V vinylamine(s), r e a c t i v i t y , 126 Viscometry, cone and plate, 100-105 V i s c o s i t y , equation, 102 Volum recording reinforced RIM 107f W Wide angle X-ray scattering, 32 polyurethane elastomers, 38,39f Wollastonite, 140 X X-ray scattering modified diphenylmethane 4,4»-diisocyanate, 5 7 , 5 8 f , 5 9 f wide angle, polyurethane elastomers, 32,38,39f Production by Meg Marshall Indexing by Deborah Corson Jacket design by Pamela Lewis
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Reaction Injection Molding رابط مباشر لتنزيل كتاب Reaction Injection Molding
|
|