كتاب How to Make Injection Molds
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب How to Make Injection Molds

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب How to Make Injection Molds  Empty
مُساهمةموضوع: كتاب How to Make Injection Molds    كتاب How to Make Injection Molds  Emptyالإثنين 13 أبريل 2020, 12:04 am

أخوانى فى الله
أحضرت لكم كتاب
How to Make Injection Molds
Third Edition
Georg Menges , Walter Michaeli , Paul Mohren  

كتاب How to Make Injection Molds  H_t_m_11
و المحتوى كما يلي :


Chapter 1 Prof. Dr. F. Klocke
A. Karden
Chapter 2 Prof. Dr. A. Biihrig Polaczek
Prof. Dr. F. Klocke
A. Karden
Dr. M. Langen
Prof. Dr. E. Schmachtenberg
Dr. M. Polifke
Chapter 3 Prof. Dr. H. Schluter
Dr. V. Romberg-Forkert
Chapter 4 P. Niggemeier
Chapter 5 Dr. F. Ehrig
Chapter 6 J. Berthold
Dr. C. Brockmann
C. P. Cuttat
Dr. F. Ehrig
C. Hopmann
C. Ronnewinkel
Chapter 7 Dr. A. Rogalla
Chapter 8 Dr. F. Ehrig
A. Spennemann
Dr. J. Zachert
Chapter 9 P. Niggemeier
Chapter 11 Dr. F. Ehrig
Chapter 12 Dr. M. Stommel
Chapter 13 Dr. N. Kudlik
Chapter 14 Dr. P. FiIz
H. Genoske
Dr. A. Biswas
Dr. K. Schlesinger
Chapter 15 Dr. A. Feldhaus
Chapter 16 Dr. H. Recker
Dr. O. Schnerr-Haselbarth
Chapter 18 R Gorbach
Chapter 20 Dr. A. Rogalla
C. Brockmann
E. Henze vii
Contents
Preface to the 3rd Edition v
The Following Contributors Helped to Revise and Update
This New Edition . vi
1. Materials for Injection Molds 1
1.1 Steels 2
1.1.1 Summary . 2
1.1.2 Case-Hardening Steels . 6
1.1.3 Nitriding Steels 7
1.1.4 Through-Hardening Steels 7
1.1.5 Heat-Treated Steels 9
1.1.6 Martensitic Steels 10
1.1.7 Hard Mold Alloys . 10
1.1.8 Corrosion-Resistant Steels 10
1.1.9 Refined Steels . 11
1.2 Cast Steel . 12
1.3 Nonferrous Metallics . 12
1.3.1 Copper Alloys 12
1.3.1.1 Beryllium-Copper Alloys 13
1.3.2 Zinc and Its Alloys . 14
1.3.3 Aluminum Alloys 16
1.3.4 Bismuth-Tin Alloys . 18
1.4 Materials for Electrolytic Deposition . 19
1.5 Surface Treatment of Steels for Injection Molds . 20
1.5.1 General Information . 20
1.5.2 Heat Treatment of Steels 21viii Contents
1.5.3 Thermochemical Treatment Methods 21
1.5.3.1 Carburizing 21
1.5.3.2 Nitriding . 22
1.5.3.3 Bonding . 22
1.5.4 Electrochemical Treatments 23
1.5.4.1 Chrome Plating . 23
1.5.4.2 Nickel Plating 23
1.5.4.3 NYE-CARD Process . 24
1.5.4.4 Hard Alloy Coating 24
1.5.5 Coating at Reduced Pressure . 24
1.5.5.1 CVD Process . 24
1.5.5.2 PVD Process . 25
1.6 Laser Surface Treatment 26
1.6.1 Laser Hardening and Re-Melting 27
1.6.2 Laser Alloying, Dispersing, and Coating . 27
1.7 Electron Beam Hardening 28
1.8 Lamcoat Coating 28
References . 28
2. Mold Making Techniques . 31
2.1 Production of Metallic Injection Molds and Mold Inserts by
Casting . 32
2.1.1 Casting Methods and Cast Alloys . 32
2.1.2 Sand Casting . 33
2.1.3 Precision Casting Techniques . 35
2.2 Rapid Tooling for Injection Molds . 35
2.2.1 State of the Art 37
2.2.2 Direct Rapid Tooling 39
2.2.2.1 Direct Fabrication of Metallic Molds 39
2.2.2.1.1 Generative Methods . 39
2.2.2.1.2 Direct Fabrication of
Nonmetallic Molds 42Contents ix
2.2.3 Indirect Rapid Tooling (Multistage Process Chains) . 43
2.2.3.1 Process Chains Involving a Positive
Pattern . 44
2.2.3.2 Process Chains Involving a Negative
Pattern . 46
2.2.4 Outlook 50
2.3 Hobbing 50
2.4 Machining and Other Material Removing Operations . 54
2.4.1 Machining Production Methods . 54
2.4.2 Surface Treatment (Finishing) . 55
2.4.2.1 Grinding and Polishing (Manual or
Assisted) . 55
2.4.2.2 Vibratory Grinding . 56
2.4.2.3 Sand Blasting (Jet Lapping) 56
2.4.2.4 Pressure Lapping 57
2.4.2.5 Electrochemical Polishing . 57
2.4.2.6 Electric-Discharge Polishing . 57
2.5 Electric-Discharge Forming Processes 59
2.5.1 Electric-Discharge Machining (EDM) 59
2.5.2 Cutting by Spark Erosion with Traveling-Wire
Electrodes . 62
2.6 Electrochemical Machining (ECM) . 63
2.7 Electrochemical Material Removal-Etching 63
2.8 Surfaces Processed by Spark Erosion or Chemical
Dissolution (Etching) . 65
2.9 Laser Carving . 67
2.9.1 Rapid Tooling with LASERCAV . 68
2.10 Molds for the Fusible-Core Technique . 68
2.10.1 Molds for Sheathing the Fusible Cores . 71
2.10.1.1 Gating the Molding 74
2.10.1.2 Thermal Considerations Concerning
Mold Design 74
2.10.1.3 Core Shifting . 75
2.10.1.4 Venting 75x Contents
2.10.2 Molds for Making the Fusible Cores 77
2.10.2.1 Core Material . 78
2.10.2.2 Construction of a Casting Mold . 78
2.10.2.3 Gating Systems . 78
2.10.2.4 Thermal Considerations Concerning
the Core-Casting Mold 80
2.10.2.5 Demolding Cast Fusible Cores . 81
References . 81
3. Procedure for Estimating Mold Costs . 85
3.1 General Outline 85
3.2 Procedures for Estimating Mold Costs . 85
3.3 Cost Group I: Cavity . 88
3.3.1 Computation of Working Hours for Cavities 89
3.3.2 Time Factor for Machining Procedure . 90
3.3.3 Machine Time for Cavity Depth . 90
3.3.4 Time Consumption for Cavity Surface . 91
3.3.5 Time Factor for Parting Line 92
3.3.6 Time Factor for Surface Quality 92
3.3.7 Machining Time for Fixed Cores . 92
3.3.8 Time Factor for Tolerances . 93
3.3.9 Time Factor for Degree of Difficulty and
Multifariousness 93
3.3.10 Time Factor for Number of Cavities 94
3.3.11 Computation of Working Hours for EDM
Electrodes . 94
3.4 Cost Group II: Basic Molds . 95
3.5 Cost Group III: Basic Functional Components . 96
3.5.1 Sprue and Runner System 96
3.5.2 Runner System . 98
3.5.3 Hot-Runner Systems . 98
3.5.4 Heat-Exchange System . 98
3.5.5 Ejector System 99Contents xi
3.6 Cost Group IV: Special Functions 99
3.7 Other Cost Calculation Methods . 100
3.7.1 Costs Based on Similarity Considerations 100
3.7.2 The Principle behind Hierarchical Similarity
Searching 103
References . 103
4. The Injection Molding Process 105
4.1 Cycle Sequence in Injection Molding 105
4.1.1 Injection Molding of Thermoplastics 107
4.1.2 Injection Molding of Crosslinkable Plastics . 107
4.1.2.1 Injection Molding of Elastomers 108
4.1.2.2 Injection Molding of Thermosets . 108
4.2 Terms Used in Connection with Injection Molds . 109
4.3 Classification of Molds 109
4.4 Functions of the Injection Mold . 110
4.4.1 Criteria for Classification of Molds . 111
4.4.2 Basic Procedure for Mold Design 115
4.4.3 Determination of Mold Size . 115
4.4.3.1 Maximum Number of Cavities . 115
4.4.3.2 Clamping Force . 121
4.4.3.3 Maximum Clamping Area 121
4.4.3.4 Required Opening Stroke 121
4.4.4 The Flow Length/Wall Thickness Ratio . 122
4.4.5 Computation of Number of Cavities 123
4.4.5.1 Algorithm for the Determination of the
Technically and Economically
Optimum Number of Cavities 127
4.4.5.2 Costs for Sampling, Setup, and
Maintenance 136
4.5 Cavity Layouts 138
4.5.1 General Requirements 138
4.5.2 Presentation of Possible Solutions 139xii Contents
4.5.3 Equilibrium of Forces in a Mold During Injection . 139
4.5.4 Number of Parting Lines 140
References . 141
5. Design of Runner Systems 143
5.1 Characterization of the Complete Runner System . 143
5.2 Concept and Definition of Various Types of Runners . 144
5.2.1 Standard Runner Systems 144
5.2.2 Hot-Runner Systems . 144
5.2.3 Cold-Runner Systems . 144
5.3 Demands on the Runner System . 145
5.4 Classification of Runner Systems . 146
5.5 The Sprue . 146
5.6 Design of Runners 151
5.7 Design of Gates 152
5.7.1 Position of the Gate at the Part . 156
5.8 Runners and Gates for Reactive Materials . 161
5.8.1 Elastomers 161
5.8.2 Thermosets . 162
5.8.3 Effect of Gate Position for Elastomers 162
5.8.4 Runners for Highly-Filled Melts . 163
5.9 Qualitative (Flow Pattern) and Quantitative Computation
of the Filling Process of a Mold (Simulation Models) 164
5.9.1 Introduction . 164
5.9.2 The Flow Pattern and Its Significance . 165
5.9.3 Using the Flow Pattern for Preparing a
Simulation of the Filling Process . 166
5.9.4 Theoretical Basis for Producing a Flow Pattern 168
5.9.5 Practical Procedure for Graphically Producing a
Flow Pattern 169
5.9.5.1 Drawing the Flow Fronts . 169
5.9.5.2 Radius Vectors for the Presentation of
Shadow Regions . 169Contents xiii
5.9.5.3 Areas with Differences in Thickness . 172
5.9.5.4 Flow Patterns of Ribs 175
5.9.5.5 Flow Patterns of Box-Shaped
Moldings 176
5.9.5.6 Analysis of Critical Areas 176
5.9.5.7 Final Comments 179
5.9.6 Quantitative Analysis of Filling 179
5.9.7 Analytical Design of Runners and Gates . 180
5.9.7.1 Rheological Principles . 180
5.9.7.2 Determining Viscous Flow Behavior
under Shear with the Aid of a Capillary
Viscometer 186
5.9.7.3 Elongational Viscosity . 189
5.9.7.4 Simple Equations for Calculating Loss
of Pressure in Gates and Runners 189
5.10 Special Phenomena Associated with Multiple Gating 192
5.11 Design of Gates and Runners for Crosslinking
Compounds 194
5.11.1 Elastomers 194
5.11.1.1 Calculation of Filling Process 194
5.11.1.2 Effect of Processing Characteristics on
the Basis of Processing Windows . 195
5.11.1.3 Criticism and Examples Concerning
the Processing-Window Model 196
5.11.2 Thermosets . 198
5.11.2.1 Flow-Curing Behavior of Thermosets 198
References . 200
6. Design of Gates . 205
6.1 The Sprue Gate 205
6.2 The Edge or Fan Gate 206
6.3 The Disk Gate . 208
6.4 The Ring Gate 208
6.5 The Tunnel Gate (Submarine Gate) . 210xiv Contents
6.6 The Pinpoint Gate in Three-Platen Molds 212
6.7 Reversed Sprue with Pinpoint Gate . 214
6.8 Runnerless Molding 215
6.9 Molds with Insulated Runners 217
6.10 Temperature-Controlled Runner Systems – Hot
Runners 220
6.10.1 Hot-Runner Systems . 221
6.10.1.1 Economic Advantages and Disadvantages
of Hot-Runner Systems . 221
6.10.1.2 Hot Runners for Various Applications and
New Possibilities . 222
6.10.1.3 Design of a Hot-Runner System and
Its Components . 223
6.10.1.3.1 Sprue Bushing . 227
6.10.1.3.2 Melt Filters . 228
6.10.1.3.3 Manifold Blocks 228
6.10.1.3.4 Manifold Beams . 229
6.10.1.4 Nozzles for Hot-Runner Molds 231
6.10.1.5 Data Concerning the Design of Hot
Runner Manifolds 234
6.10.1.5.1 Manifold Beams . 234
6.10.1.5.2 Nozzle Design 237
6.10.1.5.3 Notes on Operating Hot
Runners . 238
6.10.1.6 Heating of Hot Runner Systems 238
6.10.1.6.1 Heating of Nozzles . 238
6.10.1.6.2 Heating of Manifolds 239
6.10.1.6.3 Computing of Power Output . 240
6.10.1.6.4 Temperature Control in Hot
Manifolds 241
6.10.1.6.5 Placement of Thermocouples 241
6.10.2 Cold Runners 242
6.10.2.1 Cold-Runner Systems for Elastomer
Injection Molds 242Contents xv
6.10.2.2 Cold-Runner Molds for Thermosets 248
6.11 Special Mold Concepts . 249
6.11.1 Stack Molds . 249
6.11.2 Molds for Multicomponent Injection Molding . 252
6.11.2.1 Combination Molds . 253
6.11.2.2 Two-Component Sandwich Injection
Molds . 256
6.11.2.3 Bi-Injection Molds 256
References . 256
7. Venting of Molds . 259
7.1 Passive Venting 260
7.2 Active Venting . 265
7.3 Venting of Gas Counter-Pressure Injection Molds . 266
References . 268
8. The Heat Exchange System . 271
8.1 Cooling Time 272
8.2 Thermal Diffusivity of Several Important Materials . 275
8.2.1 Thermal Diffusivity of Elastomers 276
8.2.2 Thermal Diffusivity of Thermosets . 276
8.3 Computation of Cooling Time of Thermoplastics 277
8.3.1 Estimation . 277
8.3.2 Computation of Cooling Time with Nomograms 277
8.3.3 Cooling Time with Asymmetrical Wall
Temperatures 279
8.3.4 Cooling Time for Other Geometries 280
8.4 Heat Flux and Heat-Exchange Capacity 283
8.4.1 Heat Flux . 283
8.4.1.1 Thermoplastics 283
8.4.1.2 Reactive Materials . 287
8.4.1.2.1 Thermosets 287xvi Contents
8.5 Analytical, Thermal Calculation of the Heat-Exchange
System Based on the Specific Heat Flux (Overall
Design) . 293
8.5.1 Analytical Thermal Calculation 294
8.5.1.1 Calculating the Cooling Time 296
8.5.1.2 Heat Flux Balance . 296
8.5.1.3 Coolant Throughput 298
8.5.1.4 Temperature of the Cooling Channel 300
8.5.1.5 Position of the Cooling Channels 302
8.5.1.6 Design of Cooling Circuit . 307
8.5.1.6.1 Flow Rate of Coolant . 307
8.5.1.6.2 Pressure Drop 308
8.6 Numerical Computation for Thermal Design of Molded
Parts . 308
8.6.1 Two-Dimensional Computation . 309
8.6.2 Three-Dimensional Computation . 309
8.6.3 Simple Estimation of the Heat Flow at Critical
Points 310
8.6.4 Empirical Correction for Cooling a Corner . 311
8.7 Practical Design of Cooling Systems 312
8.7.1 Heat-Exchange Systems for Cores and Parts
with Circular Cross-Section . 312
8.7.2 Cooling Systems for Flat Parts 316
8.7.3 Sealing of Cooling Systems 318
8.7.4 Dynamic Mold Cooling 320
8.7.5 Empirical Compensation of Corner Distortion in
Thermoplastic Parts from Heat-Flux Differences 322
8.7.5.1 Cold Core and Warm Cavity . 323
8.7.5.2 Modification of Corner Configuration . 323
8.7.5.3 Local Adjustment of Heat Fluxes 324
8.8 Calculation for Heated Molds for Reactive Materials 325
8.9 Heat Exchange in Molds for Reactive Materials . 325
8.9.1 Heat Balance . 325
8.9.2 Temperature Distribution . 328Contents xvii
8.10 Practical Design of the Electric Heating for Thermoset
Molds 329
References . 331
9. Shrinkage . 335
9.1 Introduction . 335
9.2 Definition of Shrinkage . 335
9.3 Tolerances 337
9.4 Causes of Shrinkage 342
9.5 Causes of Anisotropic Shrinkage . 343
9.6 Causes of Distortion . 345
9.7 Effect of Processing on Shrinkage . 346
9.8 Supplementary Means for Predicting Shrinkage 348
References . 349
10. Mechanical Design of Injection Molds 351
10.1 Mold Deformation . 351
10.2 Analysis and Evaluation of Loads and Deformations . 351
10.2.1 Evaluation of the Acting Forces . 352
10.3 Basis for Describing the Deformation . 353
10.3.1 Simple Calculation for Estimating Gap
Formation 353
10.3.2 More Accurate Calculation for Estimating Gap
Formation and Preventing Flash . 354
10.4 The Superimposition Procedure . 356
10.4.1 Coupled Springs as Equivalent Elements . 356
10.4.1.1 Parallel Coupling of Elements . 357
10.4.1.2 Elements Coupled in Series 358
10.5 Computation of the Wall Thickness of Cavities and Their
Deformation 358
10.5.1 Presentation of Individual Cases of Loading and
the Resulting Deformations . 359
10.5.2 Computing the Dimensions of Cylindrical Cavities 360xviii Contents
10.5.3 Computing the Dimensions of Non-Circular
Cavity Contours . 362
10.5.4 Computing the Dimensions of Mold Plates . 363
10.6 Procedure for Computing Dimensions of Cavity Walls
under Internal Pressure 364
10.7 Deformation of Splits and Slides under Cavity Pressure 364
10.7.1 Split Molds . 364
10.8 Preparing for the Deformation Calculations 370
10.8.1 Geometrical Simplifications . 372
10.8.2 Tips on Choosing Boundary Conditions 374
10.9 Sample Calculations . 376
10.10 Other Loads 385
10.10.1 Estimating Additional Loading . 385
References . 386
11. Shifting of Cores . 387
11.1 Estimating the Maximum Shifting of a Core . 387
11.2 Shifting of Circular Cores with Lateral Pinpoint Gate at
the Base (Rigid Mount) . 388
11.3 Shifting of Circular Cores with Disk Gates (Rigid Mount) . 390
11.3.1 Basic Examination of the Problem 391
11.3.2 Results of the Calculations 392
11.4 Shifting of Cores with Various Types of Gating (Rigid
Mount) 394
11.5 Shifting of Inserts 395
11.5.1 Analytical Calculation of Deformation of Metal
Inserts Using a Cylindrical Roll Shell as an
Example 395
11.5.1.1 Evaluation of the Deflection Line for
Different Part Geometries . 396
11.6 Design Examples for Core Mounting and Alignment of
Deep Cavities . 399
References . 400Contents xix
12. Ejection 401
12.1 Summary of Ejection Systems 401
12.2 Design of the Ejection System – Ejection and Opening
Forces . 405
12.2.1 General Discussion . 405
12.2.2 Methods for Computing the Release Forces . 407
12.2.2.1 Coefficients of Static Friction for
Determining Demolding and Opening
Forces . 407
12.2.2.2 The Estimation Method for Cylindrical
Sleeves . 410
12.2.2.3 Rectangular Sleeves . 413
12.2.2.4 Tapered Sleeves . 413
12.2.2.5 Summary of Some Basic Cases . 413
12.2.3 The Release Forces for Complex Parts
Exemplified with a Fan 414
12.2.4 Numerical Computation of Demolding Processes
(for Elastomer Parts) . 420
12.2.5 Estimating the Opening Forces . 424
12.2.5.1 Changes of State in a p-v-T Diagram
for Molds with Different Rigidities 425
12.2.5.2 Indirect Opening Forces 426
12.2.5.3 Total Opening Force . 426
12.3 Types of Ejectors 426
12.3.1 Design and Dimensions of Ejector Pins 426
12.3.2 Points of Action of Ejector Pins and Other
Elements of Demolding . 429
12.3.3 Ejector Assembly . 433
12.4 Actuation of the Ejector Assembly 434
12.4.1 Means of Actuation and Selection of Places of
Action 434
12.4.2 Means of Actuation 434
12.5 Special Release Systems . 437
12.5.1 Double-Stage Ejection . 437xx Contents
12.5.2 Combined Ejection 437
12.5.3 Three-Plate Molds . 440
12.5.3.1 Ejector Movement by Stripper Bolt 440
12.5.3.2 Ejector Movement by Latch . 440
12.5.3.3 Reversed Ejection from the Stationary
Side . 441
12.6 Ejector Return . 443
12.7 Ejection of Parts with Undercuts . 446
12.7.1 Demolding of Parts with Undercuts by Pushing
Them Off . 446
12.7.2 Permissible Depth of Undercuts for Snap Fits 447
12.8 Demolding of Threads 449
12.8.1 Demolding of Parts with Internal Threads . 449
12.8.1.1 Stripper Molds . 449
12.8.1.2 Collapsible Cores 449
12.8.1.3 Molds with Interchangeable Cores 450
12.8.2 Molds with Unscrewing Equipment . 451
12.8.2.1 Semiautomatic Molds 452
12.8.2.2 Fully Automatic Molds . 453
12.8.3 Demolding of Parts with External Threads 460
12.9 Undercuts in Noncylindrical Parts . 461
12.9.1 Internal Undercuts . 461
12.9.2 External Undercuts 461
12.9.2.1 Slide Molds 462
12.9.2.2 Split-Cavity Molds . 467
12.9.3 Molds with Core-Pulling Devices . 471
References . 472
13. Alignment and Changing of Molds 475
13.1 Function of Alignment . 475
13.2 Alignment with the Axis of the Plasticating Unit 475
13.3 Internal Alignment and Interlocking 476
13.4 Alignment of Large Molds . 480Contents xxi
13.5 Changing Molds 482
13.5.1 Systems for a Quick Change of Molds for
Thermoplastics 482
13.5.2 Mold Exchanger for Elastomer Molds . 489
References . 490
14. Computer-Aided Mold Design and the Use of
CAD in Mold Construction . 493
14.1 Introduction . 493
14.1.1 The Flow Pattern Method Pointed the Way
Forward . 493
14.1.2 Geometry Processing Marks the Key to
Success . 494
14.1.3 Complex Algorithms Mastered 495
14.1.4 Simulation Techniques Still Used Too
Infrequently . 495
14.1.5 Simpler and Less Expensive . 495
14.1.6 The Next Steps Already Carved Out . 496
14.2 CAD Use in Mold Design 498
14.2.1 Introduction . 498
14.2.2 Principles of CAD 498
14.2.2.1 2D/3D Model Representation 498
14.2.2.2 Enhancing the Performance of CAD
Models by Associativity, Parametrics, and
Features 501
14.2.2.3 Interfaces and Use of Integrated CAD 502
14.2.2.4 Data Administration and Flow of
Information 506
14.2.3 CAD Application in Mold-Making . 507
14.2.3.1 Modeling 507
14.2.3.2 Integrated Functions for Mold-Making . 511
14.2.3.3 Application-Specific Function Extension . 514
14.2.3.4 Possibilities Afforded to Concurrent
Engineering through the Use of CAD 515xxii Contents
14.2.4 Selection and Introduction of CAD Systems . 517
14.2.4.1 Phases in System Selection 518
14.2.4.2 Formulating the CAD Concept 520
14.2.4.3 Benchmarking . 521
14.2.4.4 CAD Introduction . 522
References . 523
15. Maintenance of Injection Molds . 527
15.1 Advantages of Maintenance Schedules . 529
15.2 Scheduling Mold Maintenance . 530
15.2.1 Data Acquisition 530
15.2.2 Data Evaluation and Weak-Point Analysis 532
15.2.3 Computer-Based Support 534
15.3 Storage and Care of Injection Molds 534
15.4 Repairs and Alterations of Injection Molds . 538
References . 541
16. Measuring in Injection Molds . 543
16.1 Sensors in Molds 543
16.2 Temperature Measurement 543
16.2.1 Measuring Melt Temperatures in Molds Using IR
Sensors . 543
16.3 Pressure Measurement 544
16.3.1 Purpose of Pressure Measurement . 544
16.3.2 Sensors for Measuring Melt Pressures in Molds . 544
16.3.2.1 Direct Pressure Measurement 545
16.3.2.2 Indirect Pressure Measurement 546
16.4 Use of Sensor-Transducer Probes . 547
16.5 Process Optimization 547
16.6 Monitoring Quality . 548
References . 550Contents xxiii
17. Mold Standards . 553
References . 559
18. Temperature Controllers for Injection and
Compression Molds 561
18.1 Function, Method, Classification . 561
18.2 Control 563
18.2.1 Control Methods 563
18.2.2 Preconditions for Good Control Results 565
18.2.2.1 Controllers . 565
18.2.2.2 Heating, Cooling, and Pump Capacity 565
18.2.2.3 Temperature Sensors . 566
18.2.2.4 Installation of Temperature Sensors in
the Mold 566
18.2.2.5 Heat-Exchange System in the Mold 567
18.2.2.6 Keeping the Temperature as Stable as
Possible . 568
18.3 Selection of Equipment . 569
18.4 Connection of Mold and Equipment – Safety Measures 569
18.5 Heat Carrier 570
18.6 Maintenance and Cleaning . 571
References . 571
19. Steps for the Correction of Molding Defects
during Injection Molding 573
References . 576
20. Special Processes – Special Molds . 577
20.1 Injection Molding of Microstructures . 577
20.1.1 Molding Technology and Process Control . 577
20.1.2 Production Processes for Microcavities 579
20.1.2.1 Silicon Technology 581
20.1.2.2 The LiGA Technique . 583
20.1.2.3 Laser LiGA 584xxiv Contents
20.1.2.4 Laser Removal 584
20.1.2.5 Electric-Discharge Removal 585
20.1.2.6 Micromachining . 587
20.2 In-Mold Decoration . 587
20.3 Processing of Liquid Silicone 591
20.3.1 Evacuation 591
20.3.2 Gate 592
20.3.3 Demolding . 592
20.3.4 Temperature Control . 592
20.3.5 Cold-Runner Technique 593
20.4 Injection-Compression Molding 593
References . 596
Index  


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب How to Make Injection Molds
رابط مباشر لتنزيل كتاب How to Make Injection Molds
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب How to Make Injection Molds
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Selecting Injection Molds
» كتاب Understanding Injection Molds
» كتاب Flow Analysis of Injection Molds
» كتاب Gastrow - Injection Molds - 130 Proven Designs
» كتاب Cold Molds

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: