Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Modern Electric, Hybrid Electric, and Fuel Cell Vehicles السبت 11 يوليو 2020, 1:13 am | |
|
أخوانى فى الله أحضرت لكم كتاب Modern Electric, Hybrid Electric, and Fuel Cell Vehicles Fundamentals, Theory, and Design Mehrdad Ehsani, Texas A&M University Yimin Gao, Texas A&M University Sebastien E. Gay, Texas A&M University Ali Emadi, Illinois Institute of Technology
و المحتوى كما يلي :
Contents 1. Environmental Impact and History of Modern Transportation 1 1.1 Air Pollution 2 1.1.1 Nitrogen Oxides 2 1.1.2 Carbon Monoxide 3 1.1.3 Unburned Hydrocarbons 3 1.1.4 Other Pollutants 3 1.2 Global Warming 4 1.3 Petroleum Resources 5 1.4 Induced Costs 7 1.5 Importance of Different Transportation Development Strategies to Future Oil Supply 9 1.6 History of Electric Vehicles 13 1.7 History of Hybrid Electric Vehicles 15 1.8 History of Fuel Cell Vehicles 17 References 19 2. Vehicle Fundamentals 21 2.1 General Description of Vehicle Movement 22 2.2 Vehicle Resistance 23 2.2.1 Rolling Resistance 23 2.2.2 Aerodynamic Drag 25 2.2.3 Grading Resistance 26 2.3 Dynamic Equation 27 2.4 Tire–Ground Adhesion and Maximum Tractive Effort 29 2.5 Power Train Tractive Effort and Vehicle Speed 31 2.6 Vehicle Power Plant and Transmission Characteristics 33 2.6.1 Power Plant Characteristics 34 2.6.2 Transmission Characteristics 36 2.6.2.1 Gear Transmission 37 2.6.2.2 Hydrodynamic Transmission 39 2.6.2.3 Continuously Variable Transmission 43 2.7 Vehicle Performance 44 2.7.1 Maximum Speed of a Vehicle 45 2.7.2 Gradeability 46 2.7.3 Acceleration Performance 462.8 Operating Fuel Economy 49 2.8.1 Fuel Economy Characteristics of Internal Combustion Engines 49 2.8.2 Calculation of Vehicle Fuel Economy 50 2.8.3 Basic Techniques to Improve Vehicle Fuel Economy 52 2.9 Braking Performance 54 2.9.1 Braking Force 54 2.9.2 Braking Distribution on Front and Rear Axles 55 References 60 3. Internal Combustion Engines 61 3.1 4S, Spark-Ignited IC Engines 62 3.1.1 Operating Principles 62 3.1.2 Operation Parameters 64 3.1.2.1 Rating Values of Engines 64 3.1.2.2 Indicated Work per Cycles and Mean Effective Pressure 64 3.1.2.3 Mechanical Efficiency 66 3.1.2.4 Specific Fuel Consumption and Efficiency 67 3.1.2.5 Specific Emissions 68 3.1.2.6 Fuel/Air and Air/Fuel Ratio 68 3.1.2.7 Volumetric Efficiency 69 3.1.3 Relationships between Operation and Performance Parameters 69 3.1.4 Engine Operation Characteristics 70 3.1.4.1 Engine Performance Parameters 70 3.1.4.2 Indicated and Brake Power and Torque 71 3.1.4.3 Fuel Consumption Characteristics 72 3.1.5 Operating Variables Affecting SI Engine Performance, Efficiency, and Emissions Characteristics 74 3.1.5.1 Spark Timing 74 3.1.5.2 Fuel/Air Equivalent Ratio 74 3.1.6 Emission Control 77 3.1.7 Basic Technique to Improve Performance, Efficiency, and Emission Characteristics 78 3.2 4S, Compression-Ignition IC Engines 81 3.3 Two-Stroke Engines 82 3.4 Wankel Rotary Engines 86 3.5 Stirling Engines 89 3.6 Gas Turbine Engines 94 3.7 Quasi-Isothermal Brayton Cycle Engines 97 References 98 4. Electric Vehicles 99 4.1 Configurations of Electric Vehicles 994.2 Performance of Electric Vehicles 102 4.2.1 Traction Motor Characteristics 103 4.2.2 Tractive Effort and Transmission Requirement 104 4.2.3 Vehicle Performance 105 4.3 Tractive Effort in Normal Driving 109 4.4 Energy Consumption 114 References 116 5. Hybrid Electric Vehicles 117 5.1 Concept of Hybrid Electric Drive Trains 118 5.2 Architectures of Hybrid Electric Drive Trains 120 5.2.1 Series Hybrid Electric Drive Trains 121 5.2.2 Parallel Hybrid Electric Drive Trains 123 5.2.2.1 Torque-Coupling Parallel Hybrid Electric Drive Trains 124 5.2.2.2 Speed-Coupling Parallel Hybrid Electric Drive Trains 130 5.2.2.3 Torque-Coupling and Speed-Coupling Parallel Hybrid Electric Drive Trains 133 References 136 6. Electric Propulsion Systems 137 6.1 DC Motor Drives 142 6.1.1 Principle of Operation and Performance 142 6.1.2 Combined Armature Voltage and Field Control 146 6.1.3 Chopper Control of DC Motors 146 6.1.4 Multiquadrant Control of Chopper-Fed DC Motor Drives 151 6.1.4.1 Two-Quadrant Control of Forward Motoring and Regenerative Braking 151 6.1.4.1.1 Single Chopper with a Reverse Switch 151 6.1.4.1.2 Class C Two-Quadrant Chopper 152 6.1.4.2 Four-Quadrant Operation 154 6.2 Induction Motor Drives 155 6.2.1 Basic Operation Principles of Induction Motors 156 6.2.2 Steady-State Performance 159 6.2.3 Constant Volt/Hertz Control 162 6.2.4 Power Electronic Control 163 6.2.5 Field Orientation Control 166 6.2.5.1 Field Orientation Principles 166 6.2.5.2 Control 173 6.2.5.3 Direction Rotor Flux Orientation Scheme 175 6.2.5.4 Indirect Rotor Flux Orientation Scheme 1786.2.6 Voltage Source Inverter for FOC 180 6.2.6.1 Voltage Control in Voltage Source Inverter 182 6.2.6.2 Current Control in Voltage Source Inverter 185 6.3 Permanent Magnetic Brush-Less DC Motor Drives 187 6.3.1 Basic Principles of BLDC Motor Drives 190 6.3.2 BLDC Machine Construction and Classification 190 6.3.3 Properties of PM Materials 193 6.3.3.1 Alnico 194 6.3.3.2 Ferrites 195 6.3.3.3 Rare-Earth PMs 195 6.3.4 Performance Analysis and Control of BLDC Machines 196 6.3.4.1 Performance Analysis 196 6.3.4.2 Control of BLDC Motor Drives 198 6.3.5 Extension of Speed Technology 199 6.3.6 Sensorless Techniques 200 6.3.6.1 Methods Using Measurables and Math 201 6.3.6.2 Methods Using Observers 201 6.3.6.3 Methods Using Back EMF Sensing 202 6.3.6.4 Unique Sensorless Techniques 203 6.4 Switched Reluctance Motor Drives 204 6.4.1 Basic Magnetic Structure 204 6.4.2 Torque Production 207 6.4.3 SRM Drive Converter 210 6.4.4 Modes of Operation 213 6.4.5 Generating Mode of Operation (Regenerative Braking) 214 6.4.6 Sensorless Control 216 6.4.6.1 Phase Flux Linkage-Based Method 218 6.4.6.2 Phase Inductance-Based Method 218 6.4.6.2.1 Sensorless Control Based on Phase Bulk Inductance 218 6.4.6.2.2 Sensorless Control Based on Phase Incremental Inductance 219 6.4.6.3 Modulated Signal Injection Methods 220 6.4.6.3.1 Frequency Modulation Method 220 6.4.6.3.2 AM and PM Methods 221 6.4.6.3.3 Diagnostic Pulse-Based Method 221 6.4.6.4 Mutually Induced Voltage-Based Method 222 6.4.6.5 Observer-Based Methods 222 6.4.7 Self-Tuning Techniques of SRM Drives 222 6.4.7.1 Self-Tuning with the Arithmetic Method 223 6.4.7.1.1 Optimization with Balanced Inductance Profiles 223 6.4.7.1.2 Optimization in the Presence of Parameter Variations 224 6.4.7.2 Self-Tuning Using an Artificial Neural Network 2246.4.8 Vibration and Acoustic Noise in SRM 226 6.4.9 SRM Design 228 6.4.9.1 Number of Stator and Rotor Poles 228 6.4.9.2 Stator Outer Diameter 229 6.4.9.3 Rotor Outer Diameter 230 6.4.9.4 Air gap 230 6.4.9.5 Stator Arc 231 6.4.9.6 Stator Back-Iron 231 6.4.9.7 Performance Prediction 231 References 232 7. Series Hybrid Electric Drive Train Design 239 7.1 Operation Patterns 240 7.2 Control Strategies 242 7.2.1 Max. SOC-of-PPS Control Strategy 243 7.2.2 Thermostat Control Strategy (Engine-On–Off) 244 7.3 Sizing of the Major Components 246 7.3.1 Power Rating Design of the Traction Motor 246 7.3.2 Power Rating Design of the Engine/Generator 247 7.3.3 Design of PPS 249 7.3.3.1 Power Capacity of PPS 249 7.3.3.2 Energy Capacity of PPS 250 7.4 Design Example 251 7.4.1 Design of Traction Motor Size 251 7.4.2 Design of the Gear Ratio 251 7.4.3 Verification of Acceleration Performance 252 7.4.4 Verification of Gradeability 253 7.4.5 Design of Engine/Generator Size 254 7.4.6 Design of the Power Capacity of PPS 255 7.4.7 Design of the Energy Capacity of PPS 255 7.4.8 Fuel Consumption 256 References 257 8. Parallel Hybrid Electric Drive Train Design 259 8.1 Control Strategies of Parallel Hybrid Drive Train 261 8.1.1 Maximum State-of-Charge of Peaking Power Source (Max. SOC-of-PPS) Control Strategy 262 8.1.2 Engine Turn-On and Turn-Off (Engine-On–Off) Control Strategy 265 8.2 Design of Drive Train Parameters 266 8.2.1 Design of Engine Power Capacity 266 8.2.2 Design of Electric Motor Drive Power Capacity 268 8.2.3 Transmission Design 271 8.2.4 Energy Storage Design 2728.3 Simulations 274 References 276 9. Mild Hybrid Electric Drive Train Design 277 9.1 Energy Consumed in Braking and Transmission 278 9.2 Parallel Mild Hybrid Electric Drive Train 280 9.2.1 Configuration 280 9.2.2 Operating Modes and Control Strategy 281 9.2.3 Drive Train Design 283 9.2.4 Performance 285 9.3 Series–Parallel Mild Hybrid Electric Drive Train 287 9.3.1 Configuration of the Drive Train with a Planetary Gear Unit 287 9.3.2 Operating Modes and Control 291 9.3.2.1 Speed-Coupling Operating Mode 291 9.3.2.2 Torque-Coupling Operating Mode 293 9.3.2.3 Engine-Alone Traction Mode 294 9.3.2.4 Regenerative Braking Mode 294 9.3.2.5 Engine Starting 295 9.3.3 Control Strategy 295 9.3.4 Drive Train with Floating-Stator Motor 296 References 298 10. Energy Storages 299 10.1 Electrochemical Batteries 300 10.1.1 Electrochemical Reactions 302 10.1.2 Thermodynamic Voltage 304 10.1.3 Specific Energy 304 10.1.4 Specific Power 306 10.1.5 Energy Efficiency 309 10.1.6 Battery Technologies 309 10.1.6.1 Lead-Acid Batteries 310 10.1.6.2 Nickel-based Batteries 311 10.1.6.2.1 Nickel/Iron System 311 10.1.6.2.2 Nickel/Cadmium System 311 10.1.6.2.3 Nickel–Metal Hydride (Ni–MH) Battery 312 10.1.6.3 Lithium-Based Batteries 313 10.1.6.3.1 Lithium–Polymer (Li–P) Battery 313 10.1.6.3.2 Lithium-Ion (Li-Ion) Battery 313 10.2 Ultracapacitors 314 10.2.1 Features of Ultracapacitors 315 10.2.2 Basic Principles of Ultracapacitors 31510.2.3 Performance of Ultracapacitors 317 10.2.4 Ultracapacitor Technologies 320 10.3 Ultrahigh-Speed Flywheels 322 10.3.1 Operation Principles of Flywheels 322 10.3.2 Power Capacity of Flywheel Systems 324 10.3.3 Flywheel Technologies 326 10.4 Hybridization of Energy Storages 328 References 332 11. Fundamentals of Regenerative Braking 333 11.1 Energy Consumption in Braking 334 11.2 Braking Power and Energy on Front and Rear Wheels 334 11.3 Brake System of EVs and HEVs 338 11.3.1 Series Brake — Optimal Feel 338 11.3.2 Series Brake — Optimal Energy Recovery 339 11.3.3 Parallel Brake 341 11.4 Antilock Brake System (ABS) 343 References 345 12. Fuel Cell Vehicles 347 12.1 Operating Principles of Fuel Cells 348 12.2 Electrode Potential and Current–Voltage Curve 350 12.3 Fuel and Oxidant Consumption 354 12.4 Fuel Cell System Characteristics 355 12.5 Fuel Cell Technologies 357 12.5.1 Proton Exchange Membrane Fuel Cells 357 12.5.2 Alkaline Fuel Cells 359 12.5.3 Phosphoric Acid Fuel Cells1 361 12.5.4 Molten Carbonate Fuel Cells 361 12.5.5 Solid Oxide Fuel Cells 362 12.5.6 Direct Methanol Fuel Cells 363 12.6 Fuel Supply 364 12.6.1 Hydrogen Storage 364 12.6.1.1 Compressed Hydrogen 364 12.6.1.2 Cryogenic Liquid Hydrogen 366 12.6.1.3 Metal Hydrides 367 12.6.2 Hydrogen Production 368 12.6.2.1 Steam Reforming 369 12.6.2.2 POX Reforming 370 12.6.2.3 Autothermal Reforming 370 12.6.3 Ammonia as Hydrogen Carrier 371 12.7 Nonhydrogen Fuel Cells 371 References 37213. Fuel Cell Hybrid Electric Drive Train Design 375 13.1 Configuration 376 13.2 Control Strategy 377 13.3 Parametric Design 379 13.3.1 Motor Power Design 379 13.3.2 Power Design of the Fuel Cell System 381 13.3.3 Design of the Power and Energy Capacity of the PPS 381 13.3.3.1 Power Capacity of the PPS 381 13.3.3.2 Energy Capacity of the PPS 381 13.4 Design Example 383 References 385 Index 387
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Modern Electric, Hybrid Electric, and Fuel Cell Vehicles رابط مباشر لتنزيل كتاب Modern Electric, Hybrid Electric, and Fuel Cell Vehicles
|
|