Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Mechanical Response of Composites السبت 08 أغسطس 2020, 10:04 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Mechanical Response of Composites Pedro P. Camanho , C.G. Davila , S.T. Pinho , J.J.C. Remmers
و المحتوى كما يلي :
Contents 1 Computational Methods for Debonding in Composites 1 Ren´ e de Borst and Joris J.C. Remmers 1.1 Introduction 1 1.2 Levels of Observation 3 1.3 Zero-Thickness Interface Elements 5 1.4 Solid-Like Shell Formulation . 12 1.5 The Partition-of-Unity Concept 15 1.6 Delamination in a Solid-Like Shell Element . 21 1.7 Concluding Remarks 23 References . 24 2 Material and Failure Models for Textile Composites 27 Raimund Rolfes, Gerald Ernst, Matthias Vogler, and Christian H¨ uhne 2.1 Introduction 28 2.2 Multiscale Analysis . 29 2.2.1 Homogenization 31 2.2.2 Voxel Mesh 32 2.2.3 Micromechanical Unit Cell . 33 2.2.4 Mesomechanical Unit Cell 34 2.3 Material Models 37 2.3.1 Isotropic Elastic-Plastic Material Model for Epoxy Resin . 37 2.3.2 Transversely Isotropic Elastic-Plastic Material Model for Fiber Bundles . 44 2.3.3 Transversely Isotropic Damage Formulation . 50 2.4 Results of Micromechanical Unit Cell Computations 51 2.4.1 Comparison with Test Results from WWFE . 52 2.4.2 Results of Micromechanical Unit Cell for Homogenization . 54 2.5 Conclusion . 55 References . 55 ixx Contents 3 Practical Challenges in Formulating Virtual Tests for Structural Composites 57 Brian N. Cox, S. Mark Spearing, and Daniel R. Mumm 3.1 Introduction – The Concept of a Virtual Test . 58 3.2 The Structure of a Virtual Test – Formalizing the Link Between Experiment and Theory . 60 3.3 The System Management Challenge . 62 3.4 Experiments That Guide Model Formulations 64 3.5 Challenges in Observing Mechanisms 68 3.6 The Cycle of Calibration and Validation 70 3.7 Concluding Remarks 72 References . 73 4 Analytical and Numerical Investigation of the Length of the Cohesive Zone in Delaminated Composite Materials . 77 Albert Turon, Josep Costa, Pedro P. Camanho, and Pere Maim´? 4.1 Introduction 77 4.2 Length of the Cohesive Zone for Isotropic Materials 78 4.3 Length of the Cohesive Zone for Orthotropic Materials 80 4.3.1 Length of the Cohesive Zone Under Mixed–Mode Loading . 82 4.4 Generalization of the Length of the Cohesive Zone for Finite-Sized Geometries . 83 4.4.1 Mode II 85 4.4.2 Mixed-Mode I and II . 86 4.5 Validation of the Model 86 4.5.1 Numerical Model 86 4.5.2 Mode I loading . 88 4.5.3 Mode II Loading 90 4.5.4 Mixed-Mode Loading 91 4.6 Updated Engineering Solution to Use Coarse Meshes . 93 4.7 Conclusions 96 References . 96 5 Combining Elastic Brittle Damage with Plasticity to Model the Non-linear Behavior of Fiber Reinforced Laminates . 99 Clara Schuecker and Heinz E. Pettermann 5.1 Introduction 100 5.2 Plasticity Model 102 5.2.1 Plastic Strain for ? f p = 0 (Puck Modes A and B) . 102 5.2.2 Plastic Strain for ? f p = 0 (Puck Mode C) . 103 5.2.3 Identification of Parameters for the Plasticity Model 104 5.2.4 Lamina Response for Mode C . 106 5.3 Combination with Damage Model . 108 5.4 Laminate Behavior 110 5.4.1 Influence of Curing Stresses on Shear Behavior 110Contents xi 5.4.2 Accumulation of Plastic Strain 111 5.5 Conclusions 115 References . 116 6 Study of Delamination in Composites by Using the Serial/Parallel Mixing Theory and a Damage Formulation 119 Xavier Mart´?nez, Sergio Oller, and Ever Barbero 6.1 Introduction 120 6.2 Formulation 121 6.2.1 Serial/Parallel Mixing Theory . 121 6.2.2 Tangent Constitutive Tensor . 124 6.2.3 Isotropic Continuum Damage Formulation 126 6.3 End Notch Flexure (ENF) Test Simulation 131 6.3.1 Experimental Test Description . 131 6.3.2 Numerical Model Description . 132 6.3.3 Comparison Between the Numerical and the Experimental Results 133 6.3.4 Detailed Study of the Numerical Results 135 6.4 Conclusions 138 References . 139 7 Interaction Between Intraply and Interply Failure in Laminates 141 F.P. van der Meer and L.J. Sluys 7.1 Introduction 141 7.2 Softening Orthotropic Plasticity . 142 7.2.1 Viscoplastic Regularization . 144 7.2.2 Stress Evaluation 145 7.2.3 Consistent Linearization 149 7.2.4 Convergence Issue . 151 7.2.5 Associativity Versus Non-associativity 152 7.3 Delamination . 154 7.4 Numerical Example . 156 7.5 Discussion . 158 References . 159 8 A Numerical Material Model for Predicting the High Velocity Impact Behaviour of Polymer Composites . 161 Lucio Raimondo, Lorenzo Iannucci, Paul Robinson, and Silvestre T. Pinho 8.1 Introduction 161 8.2 A Phenomenological Model for Predicting Material Non-linear Effects in UD Plies Under Compressive/Shear Loading Conditions . 162 8.2.1 Premise 162 8.2.2 Outline of the Modelling Approach . 162 8.2.3 Shear Non-linear Stress-Strain Behaviour . 163xii Contents 8.2.4 Modelling Effects of Mechanical (or “Internal”) Friction on Progressive Failure Development 164 8.2.5 Modelling Progressive Failure in Matrix Dominated Modes . 166 8.2.6 Validation of the 3D Plasticity Model . 167 8.3 Modelling Strain Rate Effects in Compression . 168 8.3.1 Premise and Outline Modelling Approach . 168 8.3.2 Shear Strain Rate Dependent Behaviour . 168 8.3.3 Modelling Strain Rate Effects in Matrix Dominated Modes of Deformation . 169 8.3.4 Validation of the 3D Strain-Rate Dependent Plasticity Model . 169 8.4 Strain-Rate Dependent Energy-Based Damage Mechanics Approach 170 8.5 Validation of the Impact Damage Model 174 8.6 Conclusions 175 References . 177 9 Progressive Damage Modeling of Composite Materials Under Both Tensile and Compressive Loading Regimes . 179 N. Zobeiry, A. Forghani, C. McGregor, R. Vaziri, and A. Poursartip 9.1 Introduction 179 9.2 Description of the CODAM Model . 183 9.3 Model Calibration . 185 9.4 Model Validation . 188 9.4.1 Simulation of OCT Test 188 9.4.2 Simulation of Open Hole Plates Under Compression 189 9.5 Non-local Approach . 190 9.5.1 Limitations of Local Damage Models . 190 9.5.2 Non-local Regularization . 191 9.6 Conclusions 193 References . 194 10 Elastoplastic Modeling of Multi-phase Metal Matrix Composite with Void Growth Using the Transformation Field Analysis and Governing Parameter Method . 197 Ernest T.Y. Ng and Afzal Suleman 10.1 Introduction 197 10.2 Micromechanics 199 10.2.1 Setting the Stage 199 10.2.2 Governing TFA Equations 200 10.3 GPM Algorithm 202 10.4 Gurson-Tvergaard Model in GPM . 203 10.4.1 Gurson-Tvergaard Yield Criterion 203 10.4.2 Newton’s Method . 205 10.4.3 Ranges of ?eP m and ?e¯P 206Contents xiii 10.5 Verifications and Examples . 210 10.5.1 Test Cases 210 10.5.2 Discussion on the Evaluation Process . 215 10.5.3 4-phase Composite Material . 216 10.6 Closing Remarks 219 Appendix – The four partial derivatives . 219 References . 220 11 Prediction of Mechanical Properties of Composite Materials by Asymptotic Expansion Homogenisation 223 J.A. Oliveira, J. Pinho-da-Cruz, and F. Teixeira-Dias 11.1 Introduction 224 11.2 Asymptotic Expansion Homogenisation 224 11.2.1 AEH in Linear Elasticity . 224 11.2.2 Localisation Methodology 228 11.3 Finite Element Method in AEH 229 11.3.1 Corrector ? 229 11.3.2 Periodicity Boundary Conditions 229 11.3.3 Homogenised Elasticity Matrix Dh . 230 11.4 Numerical Procedures . 230 11.4.1 The Main Program 230 11.4.2 Representative Unit-Cell Generation 231 11.4.3 Automatic Association of Degrees of Freedom . 231 11.5 Numerical Applications 233 11.6 Final Remarks 240 References . 241 12 On Buckling Optimization of a Wind Turbine Blade 243 Erik Lund and Leon S. Johansen 12.1 Introduction 243 12.2 Discrete Material Optimization (DMO) Approach 245 12.2.1 Parametrization for Single Layered Laminate Structures . 246 12.2.2 Parametrization for Multi Layered Laminate Structures 247 12.2.3 Patch Design Variables . 247 12.2.4 DMO Convergence 247 12.3 Analysis and Design Sensitivity Analysis . 248 12.4 The Optimization Problem 249 12.5 Buckling Optimization of Wind Turbine Blade Test Section 250 12.6 Conclusion . 258 References . 258 13 Computation of Effective Stiffness Properties for Textile-Reinforced Composites Using X-FEM 261 M. K¨ astner, G. Haasemann, J. Brummund, and V. Ulbricht 13.1 Homogenization 261 13.1.1 Boundary Conditions and Deformation Modes . 264xiv Contents 13.1.2 Effective Properties 268 13.1.3 Summary 269 13.2 Application of the eXtended Finite Element Method (X-FEM) to Modelling of Textile-Reinforced Composites 269 13.2.1 Fundamentals . 270 13.2.2 Definition of X-elements . 271 13.2.3 Automated Model Generation . 274 13.3 Effective Material Properties of GF-PP Woven Fabric . 275 13.3.1 Effective Yarn Properties . 275 13.3.2 Effective Properties of Plain Weave Fabric . 276 13.3.3 Experimental Verification . 278 13.4 Conclusion . 278 References . 279 14 Development of Domain Superposition Technique for the Modelling of Woven Fabric Composites 281 Wen-Guang Jiang, Stephen R. Hallett, and Michael R. Wisnom 14.1 Introduction 281 14.2 Domain Superposition Technique 282 14.2.1 Coupling Technique . 283 14.2.2 Material Models 284 14.3 Numerical Analysis Results . 285 14.3.1 Convergence Study of DST . 286 14.3.2 Comparison Between DST and Conventional FE Analysis 289 14.4 Conclusions 290 References . 290 15 Numerical Simulation of Fiber Orientation and Resulting Thermo-Elastic Behavior in Reinforced Thermo-Plastics 293 H. Miled, L. Silva, J.F. Agassant, and T. Coupez 15.1 Introduction 293 15.2 Modelling Flow-Induced Fiber Orientation 295 15.2.1 Evolution Equation of Fiber Orientation . 295 15.2.2 Numerical Resolution of Folgar and Tucker’s Equation 297 15.2.3 Validation on an Industrial Part 299 15.3 Predicting Thermo-Elastic Properties of the Composite 302 15.3.1 Unidirectional Properties . 303 15.3.2 Anisotropic Properties . 305 15.4 Results and Discussion . 306 15.4.1 Choice of a Micromechanical Model for the Unidirectional Properties . 306 15.4.2 Effective Properties of a Three-Dimensional Plate 308 15.5 Conclusion . 310 References . 311
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Mechanical Response of Composites رابط مباشر لتنزيل كتاب Mechanical Response of Composites
|
|