Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Green Techniques for Organic Synthesis and Medicinal Chemistry الإثنين 24 أغسطس 2020, 12:56 am | |
|
أخوانى فى الله أحضرت لكم كتاب Green Techniques for Organic Synthesis and Medicinal Chemistry Edited by Wei Zhang Department of Chemistry University of Massachusetts–Boston Massachusetts USA Berkeley W. Cue BWC Pharma Consulting Nottingham, New Hampshire USA Second Edition
و المحتوى كما يلي :
Contents List of Contributors xvii Foreword xxi Preface xxiii Part I General Topics in Green Chemistry 1 ? Green Chemistry Metrics 3 Frank Roschangar and Juan Colberg 1.1 Business Case 3 1.2 Historical Context 3 1.3 Metrics, Awards, and Barriers 4 1.3.1 Mass-Based Metrics 4 1.3.2 Life-Cycle Assessment 6 1.3.3 Green Analytical Chemistry (GAC) 7 1.3.4 Awards 7 1.3.5 Barriers 9 1.4 Metrics Unification Via Green Aspiration Level 9 1.4.1 Standardizing Metrics 10 1.4.2 Defining Analysis Starting Points 10 1.4.3 Considering Drug Manufacturing Complexity 11 1.4.4 Green Aspiration Level (GAL) 11 1.4.5 Relative Process Greenness (RPG) 11 1.5 Green Scorecard 12 1.6 Supply Chain 14 1.7 Outlook and Opportunities 15 1.7.1 Industry-Wide Adaption 15 1.7.2 Integration with LCA 15 1.7.3 Application of GAL to Supply Chain 15 1.7.4 Transformation-Type–Based GAL 15 1.7.5 Opportunities for Government 16 References 17 ? Green Solvents 21 Janet L. Scott and Helen F. Sneddon 2.1 Introduction 21 2.1.1 The Need for Greener Alternatives for Chlorinated Solvents 21vi Contents 2.1.2 The Need for Greener Alternatives for Dipolar Aprotic Solvents 23 2.1.3 Scope 23 2.2 Solvent Selection Guides and Tools 23 2.3 Greener Molecular Solvents 24 2.3.1 Carbonates 24 2.3.2 ?-Valerolactone 25 2.3.3 Dimethylisosorbide 27 2.3.4 Butanol 27 2.3.5 Ethyl Lactate and Lactic Acid 28 2.3.6 Glycerol and Glycerol Derivatives 29 2.3.7 Cyrene 31 2.3.8 2-Methyl Tetrahydrofuran 32 2.3.9 Cyclopentyl Methyl Ether 32 2.4 Opportunities, Challenges, and Future Developments 34 References 34 ? Green Analytical Chemistry 43 Paul Ferguson and Douglas Raynie 3.1 Introduction 43 3.1.1 Analytical Method Assessment 44 3.1.2 Case Studies 46 3.2 Sample Preparation 47 3.2.1 Sample Preparation Focusing on Liquid Approaches 47 3.2.2 Sample Preparation Using Solid Supports 49 3.3 Techniques and Methods 50 3.3.1 Liquid Chromatography 50 3.3.2 Gas Chromatography 57 3.3.3 Supercritical Fluid Chromatography 58 3.3.4 Spectroscopy 60 3.4 Process Analytical Technology 60 3.5 Biopharmaceutical Analysis 62 3.5.1 Biopharmaceutical Sample Preparation 63 3.5.2 Chromatographic and Electrophoretic Separation 63 3.5.3 PAT for Biopharmaceuticals 65 3.6 Conclusions 65 Acknowledgments 66 References 66 ? Green Engineering 71 Christopher L. Kitchens and Lindsay Soh 4.1 Introduction: Green Engineering Misconceptions and Realizations 71 4.2 12 Principles of Green Engineering 72 4.3 Green Chemistry Metrics Applied to Engineering 73 4.3.1 Maleic Anhydride Production Example 74 4.3.2 Level 1 Green Chemistry Metrics 74 4.3.3 Level 2 Green Chemistry Metrics 78 4.3.4 Level 3 Green Chemistry Metrics 80 4.4 Use of Green Solvents in the Chemical Industry 80 4.4.1 Waste Prevention 80Contents vii 4.4.2 Inherently Non-Hazardous 81 4.4.3 Renewable Rather Than Depleting 83 4.4.4 Design for Commercial After-Life 84 4.4.5 Separation and Purification to Minimize Energy Consumption and Materials Use 84 4.4.6 Integration and Interconnectivity with Available Energy and Materials Flows 85 4.4.7 Conserve Complexity 85 4.5 Presidential Green Chemistry Awards 86 4.6 Opportunities and Outlook 87 References 87 ? Greening of Consumer Cleaning Products 91 David C. Long 5.1 History of Green Consumer Cleaning Products 91 5.1.1 Cleaning Products Before 1990: Great Cleaners but Not Green 91 5.1.2 The Birth of Green Cleaning Products: Green but Didn’t Clean 92 5.1.3 Early Entries in Green Cleaning 93 5.1.4 Green Cleaning Can Provide Better Cleaning: The Historical Influence of Major Manufacturers 93 5.2 Drivers for Greener Products 94 5.2.1 Consumers 94 5.2.2 Governmental Regulations and Non-Governmental Organizations 95 5.2.3 Environmentally Preferable Purchasing Programs 96 5.2.4 Major Retailers 97 5.3 Development of Green Cleaning Criteria and Eco-Labeling 98 5.3.1 History and Background 98 5.3.2 Green Seal 100 5.3.3 ECOLOGO 100 5.3.4 EPA’s Design for the Environment/Safer Choice 101 5.3.5 GreenList 101 5.4 Development of Greener Ingredients for Cleaners 102 5.4.1 Background 102 5.4.2 Surfactants 102 5.4.3 Solvents 104 5.4.4 Chelants 105 5.4.5 Oxidizers 107 5.4.6 Colorants and Dyes 108 5.4.7 Fragrances 108 5.4.8 Disinfectants and Preservatives 109 5.5 The Future of Green Cleaning 111 Acknowledgments 112 References 112 ? Innovation with Non-Covalent Derivatization 117 John C. Warner and Emily Stoler 6.1 Introduction 117 6.2 NCD Overview 118 6.2.1 NCD Definitions 118 6.2.2 NCD Design 118 6.2.3 NCD Preparation 119 6.2.4 NCD Characterization 120viii Contents 6.3 Pharmaceutical NCDs 121 6.3.1 API Solubility 121 6.3.2 API Bioavailability 122 6.3.3 API Stability 122 6.3.4 API Additional Performance Enhancements 122 6.3.5 API NCD Future 123 6.4 Environmental and Green Chemistry Benefits 123 References 123 Part II Green Catalysts 131 ? Catalytic C-H Bond Cleavage for Heterocyclic Compounds 133 Zhanxiang Liu and Yuhong Zhang 7.1 Introduction 133 7.2 Synthesis of Nitrogen Heterocycles 133 7.2.1 Synthesis of Five-Membered N-Heterocycles 133 7.2.2 Synthesis of Six-Membered N-Heterocycles 140 7.2.3 Synthesis of Other N-Heterocycles 143 7.3 Synthesis of Oxygen-Containing Heterocycles 144 7.3.1 Synthesis of Furan 144 7.4 Synthesis of Sulfur-Containing Heterocycles 148 7.4.1 Synthesis of Dibenzothiophenes 148 7.5 Medium-Sized Heterocyclic Compounds 150 7.6 Conclusion 152 References 152 ? Biocatalysis 161 James Lalonde 8.1 Introduction 161 8.2 Enzymes for Biocatalysis 162 8.2.1 Practical Aspects of Using Enzymes in Drug Manufacture 163 8.3 Advances in Enzyme Engineering and Directed Evolution 164 8.4 Biocatalytic Synthesis of Pharmaceuticals: Case Studies of Highly Efficient Pharmaceutical Syntheses 165 8.4.1 Atorvastatin 165 8.4.2 Synthesis of Beta-Lactam Antibiotics 168 8.4.3 Pregabalin 169 8.4.4 Sitagliptin, Glasdegib, and Dexamphetamine 170 8.4.5 Simvastatin 172 8.4.6 Sulopenem and Montelukast 173 8.4.7 Boceprevir and Telaprevir 175 8.4.8 Esomeprazole 176 8.4.9 Synthesis of Drug Metabolites 177 8.5 Summary and Future Outlook 178 References 180 ? Practical Asymmetric Organocatalysis 185 Wen-Zhao Zhang, Samik Nanda, and Sanzhong Luo 9.1 Introduction 185 9.2 Aminocatalysis 185Contents ix 9.3 Br?nsted Acid Catalysis 191 9.4 Br?nsted Base Catalysis 193 9.5 Hydrogen-Bonding Catalysis 197 9.6 Phase-Transfer Catalysis 202 9.7 Lewis Acid, Lewis Base, and N-Heterocyclic Carbene Catalysis 204 9.8 Large-Scale Reaction (>100-Gram Reaction) 207 9.9 Conclusion 209 References 209 ?? Fluorous Catalysis 219 Laszl ´ o T. Mika and Istv ´ an T. Horv ´ ath ´ 10.1 Introduction and the Principles of Fluorous Catalysis 219 10.2 Ligands for Fluorous Transition Metal Catalysts 224 10.3 Synthetic Application of Fluorous Catalysis 225 10.3.1 Hydroformylation 225 10.3.2 Hydrogenation 229 10.3.3 Hydrosylilation 232 10.3.4 Cross-Coupling Reactions 236 10.3.5 Hydroboration 243 10.3.6 Oxidation 243 10.3.7 Esterification, Transesterification, and Acetylation 248 10.3.8 Other Metal Catalyzed Carbon-Carbon Bond–Forming Reactions 250 10.4 Fluorous Organocatalysis 256 10.5 Other Applications of Fluorous Catalysis 259 References 259 ?? Solid-Supported Catalysis 269 Sukanta Bhattacharyya and Basudeb Basu 11.1 Introduction 269 11.1.1 General Introduction 269 11.1.2 The Impact of Solid-Phase Organic Synthesis on Green Chemistry 269 11.2 Immobilized Palladium Catalysts 270 11.2.1 Suzuki Reactions 270 11.2.2 Mizoroki–Heck Reactions in Water 273 11.2.3 Sonogashira Reactions in Water 274 11.2.4 Tsuji–Trost Reactions in Water 276 11.3 Immobilized Rhodium Catalysts 276 11.3.1 Introduction 276 11.3.2 Rhodium(II) Carbenoid Chemistry 277 11.3.3 Rhodium(I)-Catalyzed Addition Reactions 278 11.3.4 Rhodium-Catalyzed Hydrogenation Reactions 278 11.3.5 Rhodium-Catalyzed Carbonylation Reactions 278 11.4 Immobilized Ruthenium Catalysts 279 11.4.1 Introduction 279 11.4.2 Ruthenium-Catalyzed Metathesis Reactions 279 11.4.3 Ruthenium-Catalyzed Transfer Hydrogenation 280 11.4.4 Ruthenium-Catalyzed Epoxidation 282 11.4.5 Ruthenium-Catalyzed Cyclopropanation Reactions 282 11.4.6 Ruthenium-Catalyzed Halogenation Reactions 283x Contents 11.5 Other Immobilized Catalysts 284 11.5.1 Immobilized Cobalt Catalysts 284 11.5.2 Immobilized Copper Catalysts 285 11.5.3 Immobilized Iridium Catalysts 285 11.6 Conclusions 286 References 287 ?? Asymmetric Organocatalysis in Aqueous Media 291 Kartick C. Bhowmick and Tanmoy Chanda 12.1 Introduction 291 12.2 Carbon-Carbon Bond-Formation Reactions 292 12.2.1 Aldol Reactions 292 12.2.2 1,4-Conjugate Addition Reactions 305 12.2.3 Mannich Reactions 310 12.2.4 Diels-Alder Reactions 311 12.2.5 Miscellaneous C-C Bond-Forming Reactions 312 12.3 Reactions Other than C-C Bond Formation 313 12.4 Conclusion 314 References 314 Part III Green Synthetic Techniques 325 ?? Solvent-Free Synthesis 327 Kendra Leahy Denlinger and James Mack 13.1 Introduction 327 13.2 Ball Milling 328 13.2.1 Types of Ball Mills 329 13.2.2 Kinetics and Thermodynamics of Solvent-Free Reactions 330 13.2.3 Hard-Soft Acid-Base Theory 333 13.2.4 Stereoselectivity 334 13.2.5 Catalysis 334 13.2.6 Isolation Techniques 336 References 339 ?? Ultrasonic Reactions 343 Rodrigo Cella and Helio A. Stefani ´ 14.1 Introduction 343 14.2 How Does Cavitation Work? 343 14.3 Aldol/Condensation Reactions 345 14.3.1 Aldol Reaction 345 14.3.2 Mukaiyama Aldol Reaction 345 14.3.3 Knoevenagel Reaction 346 14.3.4 Claisen-Schmidt Reaction 349 14.3.5 Mannich Reaction 350 14.4 1,4-Addition 351 14.4.1 Michael Additions 351 14.4.2 Baylis-Hillman Reaction 353 14.5 Heterocycles Synthesis 353 14.6 Coupling Reactions 356 14.6.1 Heck Cross-Coupling Reaction 356Contents xi 14.6.2 Sonogashira Reaction 357 14.6.3 Stille Cross-Coupling 357 14.6.4 Suzuki Cross-Coupling 359 14.7 Wittig Reaction 361 14.8 Diels-Alder Reaction 362 14.9 Miscellaneous 365 14.10 Conclusions 366 References 366 ?? Photochemical Synthesis 373 Stefano Protti, Maurizio Fagnoni, and Angelo Albini 15.1 Introduction 373 15.2 Synthesis and Rearrangement of Open-Chain Compounds 376 15.2.1 Reactions of Olefins 376 15.2.2 Ar-H Functionalization 380 15.2.3 Miscellaneous 380 15.3 Synthesis of Three- and Four-Membered Rings 382 15.3.1 Synthesis of Three-Membered Rings 383 15.3.2 Synthesis of Four-Membered Rings 385 15.4 Synthesis of Five-, Six- (and Larger)-Membered Rings 391 15.4.1 Synthesis of Five-Membered Rings 391 15.4.2 Synthesis of Six-Membered Rings 394 15.4.3 Synthesis of Larger Rings 397 15.5 Oxygenation and Oxidation 398 15.6 Conclusions 400 Acknowledgments 401 References 401 ?? Pot Economy Synthesis 407 Wenbin Yi, Xin Zeng, and Song Gao 16.1 Introduction 407 16.2 Multicomponent Reactions 407 16.2.1 The Grieco Reaction 408 16.2.2 The Petasis Reaction 409 16.2.3 The Sonogashira-Type Reaction 410 16.2.4 The Ugi/Knevengagel/Click Reaction 411 16.2.5 MCR involving Aza-Diels-Alder Reaction 412 16.2.6 MCR Involving Fluorination and Trifluoromethylation 412 16.2.7 Other Kinds of Reactions 413 16.3 One-Pot and Multi-Step Reactions 415 16.3.1 Two-Step Reaction Sequences 416 16.3.2 Three-Step Reaction Sequences 418 16.3.3 More Than Three-Step Reaction Sequences 421 16.4 One-Pot Asymmetric Synthesis 424 16.4.1 Transition-Metal Catalysis 424 16.4.2 Organocatalysis 427 16.4.3 Chiral Pool-Based One-Pot Synthesis 431 16.5 Outlook 434 References 434xii Contents ?? Microwave-Assisted Organic Synthesis: Overview of Recent Applications 441 Nandini Sharma, Upendra K. Sharma, and Erik V. Van der Eycken 17.1 Introduction 441 17.1.1 Microwave-Assisted MCR Synthesis of N-Containing Heterocycles 442 17.1.2 Coupling Reactions 445 17.2 C-H Functionalization 449 17.2.1 Metal-Catalyzed C-H Functionalization 449 17.2.2 Metal-free C-H Functionalization 451 17.2.3 Oxidative C-H Functionalization 451 17.3 Insertion Reactions 452 17.3.1 Carbon Dioxide Insertion 452 17.3.2 Carbon Monoxide Insertion 453 17.3.3 Isonitrile Insertion 453 17.4 Reduction 453 17.4.1 Microwave-Assisted Hydrogenation of Alkynes and Alkenes 454 17.4.2 Reduction of Carbonyl Groups 454 17.5 Synthesis of Peptides and Related Fine Chemicals 455 17.6 Newer Developments 459 17.6.1 SiC Reactors and Continuous Flow Synthesis 459 17.6.2 Nanomaterial Synthesis 460 17.7 Summary 461 References 461 ?? Solid-Supported Synthesis 469 Indrajeet J. Barve and Chung-Ming Sun Abbreviations 469 18.1 Introduction 471 18.2 Techniques of Solid-Phase Supported Synthesis 472 18.2.1 Recent Advances in Linkers for Solid-Supported Synthesis 472 18.3 Solid-Phase Supported Heterocyclic Chemistry 476 18.3.1 Solid-Phase Synthesis of Nitrogen Heterocycles 476 18.3.2 Solid-Phase Synthesis of Oxygen Heterocycles 484 18.3.3 Solid-Phase Synthesis of Heterocycles with More Heteroatom 485 18.4 Solid-Supported Synthesis of Natural Products 486 18.5 Solid-Supported Organometallic Chemistry 491 18.6 Solid-Phase Synthesis of Peptides 493 18.7 Solid-Phase Supported Stereoselective Synthesis 494 18.8 Interdisciplinary Solid-Supported Synthesis 499 18.8.1 Microwave-Assisted Solid-Phase Synthesis 499 18.8.2 Solid-Phase Supported Reagents in Organic Synthesis 502 References 505 ?? Light Fluorous Synthesis 509 Wei Zhang 19.1 Introduction 509 19.2 “Heavy” Versus “Light” Fluorous Chemistry 509 19.3 The Green Chemistry Aspects of Fluorous Synthesis 510 19.3.1 Fluorous Solid-Phase Extraction (F-SPE) to Reduce Waste 510 19.3.2 Recycling Techniques 510Contents xiii 19.3.3 Monitoring Reactions 510 19.3.4 Fluorous Linker-Facilitated Synthesis 511 19.3.5 Microwave-Assisted Synthesis 511 19.3.6 Multicomponent Reactions 511 19.3.7 Reactions and Separations in Aqueous Media 511 19.4 Fluorous Techniques for Discovery Chemistry 511 19.4.1 Fluorous Ligands for Metal Catalysis 511 19.4.2 Fluorous Organocatalysis 514 19.4.3 Fluorous Reagents 516 19.4.4 Fluorous Scavengers 518 19.4.5 Fluorous Linkers 520 19.4.6 Fluorous Mixture Synthesis (FMS) 528 19.5 Conclusions 533 References 533 Part IV Green Techniques and Strategies in the Pharmaceutical Industry 539 ?? Ionic Liquids in Pharmaceutical Industry 541 Julia L. Shamshina, Paula Berton, Hui Wang, Xiaosi Zhou, Gabriela Gurau, and Robin D. Rogers Abbreviations 541 20.1 Introduction 543 20.2 Finding the Right Role for ILs in the Pharmaceutical Industry 544 20.2.1 Use of ILs as Solvents in the Synthesis of Drugs or Drug Intermediates 544 20.2.2 Use of ILs for Pharmaceutical Crystallization 546 20.2.3 Use of ILs in Pharmaceutical Separations 547 20.2.4 Use of ILs for the Extraction of Drugs From Natural Products 551 20.2.5 Use of ILs for Drug Delivery 552 20.2.6 Use of ILs for Drug Detection 553 20.2.7 ILs as Pharmaceutical Ingredients 554 20.2.8 ILs in Membrane Transport 566 20.3 Conclusions and Prospects 567 References 568 ?? Green Technologies and Approaches in the Manufacture of Biologics 579 Sa V. Ho and Kristi L. Budzinski 21.1 Introduction 579 21.2 Characteristics of Biologics 580 21.3 Manufacture of Therapeutic Biologics 581 21.3.1 General Characteristics of Conventional Biologics Manufacturing 581 21.3.2 Process and Analytical Technologies 583 21.3.3 Manufacturing Facilities 586 21.4 Environmental Metrics Development and Impact Analysis 587 21.4.1 Mass-Based Metrics 587 21.4.2 Energy-Based Metrics 589 21.4.3 Life-Cycle Assessment 591 21.5 Some Future Directions 592 21.6 Conclusions 594 Acknowledgments 594 References 594xiv Contents ?? Benchmarking Green Chemistry Adoption by “Big Pharma” and Generics Manufacturers 601 Vesela R. Veleva and Berkeley W. Cue 22.1 Introduction 601 22.2 Literature Review 602 22.3 Pharmaceutical Industry Overview and Green Chemistry Drivers 604 22.3.1 Cost Savings 605 22.3.2 Improved Reputation 605 22.3.3 Environmental Impacts of Pharmaceuticals 605 22.3.4 Legislation 606 22.3.5 Customer Demands 606 22.3.6 Investor Pressures 607 22.3.7 Attracting and Retaining Talent 607 22.4 Benchmarking Industry Adoption of Green Chemistry 607 22.4.1 Methods 607 22.4.2 Innovative Pharmaceutical Companies 608 22.4.3 Generic Pharmaceutical Companies 608 22.5 Results and Discussion 610 22.6 Conclusion 616 References 616 ?? Green Process Chemistry in the Pharmaceutical Industry: Case Studies Update (????–????) 621 Joseph M. Fortunak, Ji Zhang, Frederick E. Nytko III, and Tiffany N. Ellison 23.1 Introduction 621 23.2 Pharmaceutical Patents Driving Innovation 622 23.3 A Caution About Drug Manufacturing Costs 623 23.4 Process Evolution by Multiple Route Discovery Efforts—Dolutegravir 624 23.5 The Impact of Competition on Process Evolution—Tenofovir Disoproxil Fumarate 628 23.5.1 Tenofovir Disoproxil Fumarate: The Cumulative Impact of Incremental Process Improvements 632 23.6 Simeprevir (Olysio/Sovriad) and Analogues: Chiral Phase-Transfer Catalyst-Promoted Optical Alpha-Amino Acid Synthesis: A Metal-free Process 633 23.7 Vaniprevir (MK 7009), Simeprevir (TMC435), and Danoprevir: Ring-Closing Metathesis (RCM) for Macrocyclic Lactam Synthesis: Now a Commercial Reality 635 23.8 Daclatasvir (BMS-790052, Daklinza), and Ledipasvir (GS-5885): Palladium Catalyzed Cross-Coupling for Greening a Process 638 23.9 Sitagliptin (Januvia) and Ponatinib (Iclusig): Greening the Process by Telescoping Multiple Steps Together 639 23.10 Febuxostat (Uloric): Greening the Process via Metal Catalyzed C-H Activation: A Prospect 641 23.11 Conclusions 644 References 644 ?? Greener Pharmaceutical Science Through Collaboration: The ACS GCI Pharmaceutical Roundtable 649 Julie B. Manley and Michael E. Kopach 24.1 Introduction 649 24.2 Establishing Pre-Competitive Collaborations 650 24.2.1 Background 650 24.2.2 Mission and Membership 651 24.2.3 Strategic Priorities 652 24.3 Informing and Influencing the Research Agenda 654Contents xv 24.3.1 Key Research Areas 654 24.3.2 Research Grants 656 24.4 Developing Tools 661 24.4.1 Process Mass Intensity 661 24.4.2 Solvent Guide 662 24.4.3 Reagent Guide 662 24.4.4 Electronic Lab Notebooks 663 24.4.5 Continuous Processing Business Cases 664 24.5 Educating Leaders 666 24.5.1 Articles of Interest 667 24.5.2 Influencing Editorial Policy 667 24.5.3 Future Scientists 667 24.6 Collaborating Globally 668 24.6.1 Internal Collaboration 668 24.6.2 External Collaboration 668 24.7 Future Opportunities 669 24.7.1 Analytical Chemistry 669 24.7.2 Animal Health Products 669 24.7.3 Generic Manufacturing 670 24.7.4 Drug Delivery Formulation 670 24.8 Success Factors 671 24.8.1 Unique Value Proposition 671 24.8.2 Degree of Commonality 671 24.8.3 Critical Mass 671 24.8.4 Financial Investment 672 24.8.5 In-Kind Contribution 672 24.8.6 Leadership 672 References 673 Index 675??? Index a Abbreviated New Drug Application (ANDA) 615–616 absorption 22, 45, 79, 82, 373–4, 387, 398, 507, 514, 541, 555, 560, 566 Absorption, Distribution, Metabolism, and Excretion (ADME) 541, 560 ABT-341 423 accelerated hydrogen peroxide (AHP) 110–11 accidents 603 acesulfamate 558 acesulfame 567 acetaldehyde 167–8, 295, 423, 482, 496–8 acetaminophen 547 acetic acid 29, 38, 45, 57, 81, 92, 105–6, 198, 353, 355, 408–9, 426, 442, 449, 451, 460, 469, 471, 482, 488–9, 496–8, 501 acetone 27, 45, 55, 125, 166, 186, 220, 231, 256, 258–9, 268, 298, 303, 310, 336, 345, 384–7, 394, 428, 510 acetone, aldol reactions of 258 acetonitrile 23, 45, 47, 51–2, 54–5, 59, 68, 235–6, 248, 338, 349, 378, 391, 395, 397–8, 400, 549 acetophenone 238, 384, 454 acetylation 248–50 of 2-phenylethanol 249 acetylcodeine 549 acetylene dicarboxylicesters asdipolarophiles 425 acetylsalicylate 560 acetylsalicylic acid 547, 558 AChE 411 acid–base neutralization 587 acroloylferrocene 352 ACS Green Chemistry Institute Pharmaceutical Round Table (GCI PR) 23, 586 Actavis plc 611 activation reactions 141, 441 active pharmaceutical ingredients (APIs) 21, 543, 555 additional performance enhancements 122 bioavailability of 122 biocatalytic routes to 162 cocrystals of 122 greenness of 21 liquid salt forms of 556 as NCD 123 solubility of 121–2 “spring and parachute” model of 122 stability of 122 acyclovir 560 acylation 250–1 acyl chloride 477, 486 AD, see adefovir dipivoxil adamantane 250, 270 based NHC–palladium polymer 271 1,4-addition 351–3 addition reactions 305–6 adefovir dipivoxil (AD) 546, 549 adrenosterone 389 affinity chromatography (AC) 582 Aglaia plant genus 391 agrochemicals 133, 152, 412, 442 AIBN, see 2,2?-azobisazobutyronitrile albendazole 546–8 alcohol dehydrogenases 173 aldehydes 375 aldolases 163, 167–8 aldol reactions 292, 345 asymmetric, in water 293–303 4-hydroxyproline organocatalysts for 302 linear amino acid based organocatalysts for 305 Mukaiyama 345–6 organocatalysts for 292–305 aliphatic aldehydes 426 Green Techniques for Organic Synthesis and Medicinal Chemistry, Second Edition. Edited by Wei Zhang and Berkeley W. Cue. 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.??? Index alkene 375 alkylation 251–3 fluorous-biphase 251 Pd-catalyzed asymmetric allylic 252 alkylbenzenes 356 alkylimidazolium salts 546 alkyl polyglucosides (APGs) 103 allergic reactions 164 allylation 251 allylphenols 378 allyltrimethylsilane 378 alumina 281, 284 supported cobalt catalysts 284 aluminium-trichloride 251 Alzheimer’s disease (AD) 385, 411 American Chemical Society (ACS) 96, 101–2, 601 ?-methylstyrene 408 Amgen 417, 586 amino acid 389 Fmoc 482 ?-amino acid 334 ?-amino-carbonyl 350 Aaminocarbonylation 453 aminocatalysis 185–91 aldol reaction 185–9 chiral aminocatalysts 186, 188, 190 Mannich reaction in 190 of Michael addition 190–1 pathways 186 proline-catalyzed Mannich reaction 189 synthesis of Wieland–Miescher and Hajos–Parrish 189 aminomethylphenol derivatives 409 4-aminophenol 547 aminophenols 409 3-aminopropylated-MCM-48, 273 3-aminopropyl triethoxysilane 279 2-aminopyridines 520 2-aminothiazole 121 aminotris (methylene phosphonic acid) (ATMP) 106 ammonium chloride 110–11, 355 amorphous compounds 555 amoxicillin 161, 168–9 amphiphilic organocatalysts 297, 301–2 ampicillin 168, 565–6 AMVI, see analytical method volume intensity analgesics 558 analytical method volume intensity (AMVI) 46 Anastas, Paul 96, 601 anesthetics 558–9, 567 anilides 137 anion-exchange method 552–3 anionic antibiotics 565 anionic surfactants 103 anisoles 250–1, 378 anthraquinone 400 antiarrhythmic drugs 558 antibacterials 558 anticancer activity 565 anticrystal engineering 558 anticrystal engineering approach 556–7 antidepressants 548 antifreeze glycopeptides 456 antifungals 418 antihelminthic neotuberostemonines 397 antimalarial compounds 551 Antimycin A3b 489, 491 apigenin 550 API-ILs 556–60 antimicrobial properties of 565 anti-proliferative effects of 565–6 appropriate selection of ions 556–8 design approach 566 examples 557–8 immobilized onto silica 564 modulating ionicity of 560–3 pharmaceutical activity assessment of 564–6 as pharmaceuticals strategies 561 prodrug 563 solubility of a drug through 566 water solubility of 560 API supported ionic liquid phases (API-SILPs) 564 Apotex 612 aprepitant 409 aquatic organisms 27, 92, 103 arene–alkene meta-photocycloaddition reaction 397 Ar-ethynyl-TAA 357 Ar-H functionalization 380 Arkon Consultants and NuPro Technologies, Inc. 87 aromatic aldehydes 186, 246, 258, 295, 297, 299, 345–51, 451 artemisinin 551 arylacetylenes 365 arylalkanoic acids 549 arylation 251–3 of indoles with aryl-halides 252 aryl halides 239, 270, 272Index ??? 3-aryl-1,2,3-oxadiazoles 364 arylpiperazinylbutyl derivatives, solid-supported synthesis of 481 ?-arylpropionic acid derivatives, synthesis of 378 aryl stannanes 239 ascaridol 399 Aspen Pharmaceutical 612 Aspergillus 418 aspirin 552, 558 astemizole 178 AstraZeneca 81, 610 asymmetric aldol reactions asymmetric aldol addition 257 in water 293–300, 303 asymmetric allylic alkylation 251 asymmetric catalysis 204 asymmetric Michael addition reaction 203, 257, 309, 430 catalyzed by Br?nsted base catalyst 195 of cyclic ketones 307 of cyclohexanone 307 of ketones 306 of thioacetic acid, thiophenol, and thiol 198 in water media 306–8 asymmetric Michael/transamination/cyclization process 429 asymmetric organocatalytic oxidation reactions 257 asymmetric polyene Heck cyclization 425 asymmetric synthesis 161, 256, 424–34 asymmetric transfer hydrogenation 280 atenolol 550 atom economy 73–4, 168, 172, 269, 407, 458, 509, 603 atorvastatin 165–8 chemoenzymatic routes to 166 Pfizer’s process to 167–8 aza-Diels–Alder reaction 363, 412 tetrahydroquinolines, synthesis of 364 azalactones 202 aza-Michael reaction 352 aza-Povarov 363–4 azasugar 395 azepinones, synthesis of 151 azide–alkyne cycloaddition 285, 334–5, 421, 443, 456 azide–alkyne (click reaction) for diastereoselective synthesis 421 azides 138, 142, 276, 411, 443 2-azidobenzoic acid 477 2-azidoethanol 415 2,2?-azobisazobutyronitrile (AIBN) 282 azodicarboxylate 428 azole antifungals 418 azomethine ylide 394, 421 b Bacillus megaterium 178 Baeyer–Villiger mono-oxygenase (BVMO) 176 Baeyer–Villiger oxidation 247, 249, 545 ball milling 328–38 diagrams of motion in 332 functionalized polymer resins in 338 types of ball mills 329, 332 Bartoli-indole synthesis 483 batch microwave reactors 443, 459 Baylis-Hillman reactions 353 benchmarking 601–16 benign solvents 59, 445 benzaldehyde 31, 40, 135, 345, 386 benzalkonium 556–9 benzalkonium chloride 104 benzene, benzoylation of 250 benzene 1,2-diamine 520 benzene reaction 74 benzethonium 558–9 benzimidazolinopiperazinones 495 solid-supported synthesis of 482–3 benzo[b]phosphole 415 1,5-benzodiazepinic rings 354 1,3-benzodioxole isocyanide 426 benzofurans 484–5 benzoin esters 384 benzophenone 358, 360, 376–7 benzophenones 358, 360 benzoquinone 363 1,2-benzothiazines 150 benzothiazoles 26, 149 synthesis of 149 benzotriazoles based activators 456 benzotriazoles, synthesis of 139 benzoxazine 191 benzoxazole 26 benzoylnitromethane 415 1-benzyl-3-methylimidazolium chloride [C7H7mim]Cl 551 beta-lactam antibiotics 168–9 BET bromodomain inhibitor 521 biaryl derivatives 491 biaryl ethenes 360??? Index biaryl moieties 308 bicalutamide 122 bifunctional organocatalysts 296 Biginelli, Pietro 355 Biginelli reactions 355 big pharma 604, 606, 612–13 Biltricide, see praziquantel bimetallic catalysts 274 bimetallic copolymers 271 Bim-Oct 552–3 BimSi(OEt)3Cl or OimSi(OEt)3Cl 552–3 BINAP 232 bioaccumulation 46, 55, 78–9 bioaccumulation factor (BAF) 26, 35, 58–9 bioactivation 22 bioactive palominol, synthesis of 393 bioactive triquinane sequiterpene (±)-?9(12)-capnellene 384 bioactivity 580 bio-based glycerol and glycerol derivatives 29–31 acetals and ketals 31 hydrogen-bonding capacity of 30–1 physicochemical properties of 30 range of reactions 30 biocatalysis biocatalytic routes to API 162 enzymes for 162–4 of pharmaceuticals 165–78 for synthesis of pharmaceutical intermediates 163 biocatalysts, use in chemical manufacturing 164 biodegradation 55, 79 bioethanol 54 biologics 579, 605 characteristics of 580–1 environmental impact considerations for 587–92 future prospects 592–4 manufacturing facilities for 586–7 manufacturing of 579, 581–7 process analytical technology (PAT) for 585–6 process technologies for 583–5 therapeutic 581–7 biopharmaceutical analysis 62–5. See also biologics chromatographic and electrophoretic separation 63–5 sample preparation 63 Biopharmaceutical benchmarks 2014 579 biopharmaceutical industry 604 bioprocessing 579–81, 585, 587 biosensors 554 biphasic catalysis 509, 511 biphasic systems 219, 545, 551 bipolar disorder 419 bis-butenolide 400 bis(2-methoxyethyl) ammonium bis(trifluoromethylsulfonyl)imide 551 bis-NHC–palladium polymer 270 bisoprolol 549 [bis(trifluoroacetoxy)iodo]benzene 449 Biyouyanagi (H. chinense L. var. salicifolium) 386 biyouyanagin A 386 B3LYP/6-31+G(d) density functional theory 331 BNCT, see boron neutron capture therapy Boc 456, 473, 475 boceprevir 175–6 bone marrow 580 borate ester–mediated amidation reactions 33 boronic acid 361, 410 boronic acids 278 boron neutron capture therapy (BNCT) 433 borosilicate 460 BPy-PMO 285–6 breast cancer 110, 579–80 Bbrivudine 546 bromobenzene 270, 357 4-bromobenzyl bromide 361 bromoiodoarene 414 2-bromo-2-nitropropane-1,3-diol (bromopol) 109 Br?nsted acid catalysis 191–3 asymmetric Friedel-Crafts reaction catalyzed by 193 asymmetric Mannich reaction by 193 asymmetric reduction of quinolines by 192 enamides catalyzed by 192 pathway 191 Br?nsted base catalysis 193–6 asymmetric Michael addition catalyst by 194–6 asymmetric Phospha-Michael addition catalyzed by 196 pathway 194 BTPP, see tert-butylimino-tri(pyrrolidino)phosphorane Buchi, George 374, 390 ¨ Buchwald-Hartwig reactions 449 buspirone 178 butanol 27 butenolide 400 1-butyl-3-methylimidazolium dimethyl phosphate ([C4mim][DMP]) 549Index ??? 1-butyl-3-methylimidazolium ibuprofenate ([C4mim][Ibu]) 552 1-butyl-3-methylimidazolium trifluoroacetate ([C4mim][TFA]) 546 ?-butyrolactone 26 BVDU (Brivudin, Zostex, Zerpex, Zonavir) 446 BVMO, see Baeyer–Villiger mono-oxygenase byproducts 377 c CAE, see coacervative extraction CALB, see Candida antarctica California Green Chemistry Initiative 606 camptothecin 391 Candida antarctica (CALB) 335 Candida infections 418 capillary electrophoresis (CE) 65, 549 capillary electrophoresis-enhanced chemiluminescence (CE-ECL) 549 capillary gel electrophoresis (CGE) 65 capillary zone electrophoresis (CZE) 65, 549–50 Capnella imbricata 384 carbamates 488 carbamazepine 122 carbazoles, synthesis of 138 carbenes 204, 207 carbohydrates 103, 166 carbonates 24–5 cyclic 24 dialkyl 24 dimethyl 24–5 metal mediated reactions 24 carbon-carbon bond-formation reactions 292, 312–13, 392, 422, 445–9 diastereoselective and enantioselective 351 carbon-carbon bond-forming reactions, metal catalyzed 250–6 carbon-carbon bonds 250–6 carbon dioxide 48–9, 84–5 carbon dioxide insertion chemistry 452 carbon footprint 587, 603, 606, 616 carbon monoxide 225, 452 insertion chemistry 453 carbon tetrachloride 21 carbonyl-alkene cycloaddition 374 ?-carboranyl-?-acyloxy-amides 433 carboxylic acid 119–20, 188–9 cascade reaction 407 castanospermine 393 catalysis 334–6 catalyst/product separation 20 catecholborane 243 cationic surfactants 103 cavitation 343–5 Cbz 489, 520 C?CAT catalytic system 453 C-C coupling 237 CE, see capillary electrophoresis CE-ECL, see capillary electrophoresis-enhanced chemiluminescence cellulose 25–6, 31, 59, 549 cephalexin 161, 168–9 cephalosporins 433 cephalotoxine 397 cetylpyridinium 558–9 cetyltrimethylammonium bromide (CTAB) 283 C60 fullerene 362 CGE, see capillary gel electrophoresis chalcones 349–50 chelants 105–7 chemical engineering 44, 356 chemical processing industry 80 chemoenzymatic processes 169 chemoselectivity 164, 230 ChemSusChem 21 chiral amine-polyoxometalate (CA-POM) hybrids 188 chiral analysis 59 chiral Br?nsted acid catalysts 191, 391 chiral Br?nsted base catalysts 194 chiral dihydropyrones 313 chiral drugs 550 chiral hydrogen-bonding catalysts 197, 201 chiral imidazolidinones 311 chiral ionic liquids (CILs) 314 chiral Lewis acid 206 chiral metal complexes 291 chiral phase-transfer catalysts 203 chiral pool-based one-pot synthesis 431–4 chiral resolution 122, 162 chiral separations 550 chloramphenicol 550 chlorinated hydrocarbon solvents 104 chlorinated solvents 21–2 greener alternatives for 21–2 chlorinated waste 22 chlorine bleach 107, 110 chlorine demand 107??? Index 4?-chloroacetanilide 547 chloroacetic acid 426 2-chloroacrylonitrile 416 chloroform 21–2, 547 6-chlorohexanol 503 4-chloro-3-nitrocoumarin 391 chlorophenols 92, 378 chlorpheniramine 550 cholesterol 166, 172, 297, 380 chromanoid scaffolds 431 chromatographic analysis 46, 549 chromatographic purification 584 chromatography 336 chromium 108 cinacalcet 417 Cinchona alkaloids 193–5, 197–203 cinchonidine 208 cinnamaldehydes 205, 429 cinnarizinne 566 circulating (micro)reactors 374 circulatory disorders 388 13-cis-retinoic acid 379 Claisen-Schmidt reactions 349–50 click chemistry 334 click reactions 285, 411–12 climate change 99, 592 clinoptilolite (CP) 346 Clorox Bleach 94, 107 cloud point extraction (CPE) 48 Cl 2PdL29a catalyst 238 CM, see cross metathesis [C4mim]Cl-salt aqueous biphasic system 551 CMR, see cross-metathesis reaction C-N coupling 448–9 coacervates 48 coacervative extraction (CAE) 48 coacervative liquids 48 cobalt catalysts 284–5 cobalt catalysts, immobilized 284–5 cobalt-catalyzed C-H annulation reactions 148 cocrystals 118–20, 122 of API 122 in chiral resolution of APIs 122 of 1:1 danazol:vanillin 122 definition 118 glutaric acid 122 stability to hydration 122 cofactor recycling systems 178 Colawet MA-80, 557–8 Co-L31e catalyst 244 Collaborative Innovation Project Group 110 colloids 555 colorants 108 column chromatography 336 combinatorial chemistry 409, 413, 471 communication 111–12 competitive absorption 374 computational chemistry 112 computational toxicology 112 condensation reactions 345–51 conductor-like screening model for real solvents (COSMO-RS) 550 1,4-conjugate addition reactions 305–10 conjugate additions 203–5 conjugated dienes 232, 375, 398 consumer pressure 96 Consumer Product Safety Act of 1972 93 continuous chromatography 584 continuous processes 585 copper (I) catalyst 389 copper catalysts, immobilized 285 copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction 335, 443, 456 copper-catalyzed 1,7-enyne trifluoromethylation/bicyclization reaction 416 copper-catalyzed Henry reactions 254–5 copper-free Sonogashira reactions 24 cosmetics 27 COSMO-RS, see conductor-like screening model for real solvents cost index (CI) 73 cotton 387 coumarin-3-carboxamides with 1,2,3-triazole moiety, synthesis of 411 coumarin-pyrrole-isoquinoline-fused pentacyclic compounds 391 coumarins, synthesis of 146–7 coupling reactions 30–2, 356–61 of amines 490 C-N coupling 448–9 C-S coupling 448 Diels-Alder reaction 362–5 Heck 445–7 Heck and Suzuki 30 Heck cross-coupling reaction 356–7 Hiyama cross-coupling reaction 491 isonitrile insertion/C-O cross-coupling reaction 453Index ??? ligand-free Suzuki 28 microwave-assisted 445–9 palladium-catalyzed carbonylative Negishi cross-coupling reactions 453 Sonagashira cross-coupling reactions 31 Sonogashira 447–8 Stille cross-coupling 357 Suzuki cross-coupling reaction 359–61 Suzuki reaction 447 Wittig reaction 361–2 CP, see clinoptilolite CPE, see cloud point extraction CPME, see cyclopentyl methyl ether cross-coupling reactions 27, 31–2 cross-linking 282, 461 cross metathesis (CM) 279 cross-metathesis reactions (CMR) 254 cryogenic conditions 167 C-S coupling 448 CTAB, see cetyltrimethylammonium bromide Cu-catalyzed azide–alkyne Huisgen [3+2]-cycloaddition reaction 443 Cu-catalyzed Ullmann coupling 449 CuI nanoparticles 357 cumene hydroperoxide 176 ?-cuparenone 392 Curie, Jacques 343 Curie, Pierre 343 current manufacturing guidelines (c-GMPs) 612 cyclic carbonates 24 cyclic enones 352 cycloaddition 416 cycloalkane 248 cyclobutane ring, intramolecular formation of 387–9 cyclobutanes 382 cyclodextrin 317, 319 ?-cyclodextrin (?-CD) 550 cyclodextrin complexes 357 ?-cyclodextrin modified with epichlorohydrin (?-CDEpi) 554 cycloheptanoindole 398 1,3-cyclohexanedione derivative 393 cyclohexanone 176, 189, 194 cyclohexene 229–30 cyclohexenone 244, 351 cyclooctene 245 cyclopalladated ferrocenylimines 359 cyclopenta[b]benzofurans 391 cyclopentadiene 32, 205–6 cyclopentyl methyl ether (CPME) 32–4, 202 cyclopropanation reactions 277–8, 282–3 cyclopropanes 282, 383–4, 429 CYP102A1 (P450-BM3) 178 CYP3A4 enzymes 178 cyrene 31 cytochrome P450 enzymes 177 cyclopropanation 179 drug metabolites from 177–9 engineered 179 cytotoxic activity 391, 396 cytotoxicity 552, 565 Cytovene 609 CZE, see capillary zone electrophoresis d danazol 122 Dane salt 169 D-camphor sulfonic acid (D-CSA) 299–300 DCE, see 1,2-dichloroethane D-CSA, see D-camphor sulfonic acid decanoic acid 563 decarboxylative cross-couplings 449 degradation 48, 51, 59, 79, 122 dehydroaminoacids 230 dehydrocavidine 551 7-dehydrocholesterol 380 dendrimers 298–9 density functional theory 331 2-deoxy-D-ribose 5-phosphate aldolase (DERA) 167 DERA, see 2-deoxy-D-ribose 5-phosphate aldolase dermatitis 111 design for degradation (DfD) 603 Design for the Environment (DfE)/Safer Choice Program 96, 101 destabilization 375 destruxin E, solid-supported synthesis of 489–92 dexametasone 552 dexamphetamine 161, 170–1 DfE program, see Design for the Environment/Safer Choice Program diabetes 170, 395, 418, 423 dialkylethers 220 ?,?-diamino acid 195 1,5-diaminoanthraquinones 408 diarylprolinol ether catalyst 313 diazoketones 389, 393 ?-diazoketones 393 diazolidinyl urea 109??? Index diazomethane 168 diazonamide A 398 dibenzo[b,d]azepines 151 dibenzothiophenes, synthesis of 148–9 dichloroethane 334 1,2-dichloroethane (DCE) 334 dichloromethane (DCM) 22, 549 dicyanonaphthalene 395 didecyldimethylammonium 557 Diels-Alder reactions 205–7, 254–6, 292, 311–12, 331, 397 of N-oxides and cycopenta-1,3-diene 255 dienes 232, 256, 345 diethylamine 57 diethylenetriamine penta (methylene phosphonic acid) (DTPMP)) 106 diethylenetriaminepentaacetic acid (DTPA) 106 diethyl ether 22, 32–4, 389 diethyl malonate 252, 431 diethyl tartrate 176 differential scanning calorimetry (DSC) 120–1 2,6-difluorobenzyl azide 416 1,2-difurylalkene 400 2,3-dihydrobenzo[f][1,2,5]thiadiazepin-4(5H)-one 1,1-dioxides, solid-supported synthesis of 485 3,4-dihydro-2H-pyran 408 dihydrolevoglucosenone, see cyrene 2,3-dihydronaphtho[1,2-b]furans 145 dihydropyrano[2,3-c] pyrazole 475 dihydropyrimidinones 355 2,4-diketones 352 2,5-diketopiperazines 432 dimethyl carbonate 24 dimethylformamide (DMF) HS-GC-MS method 549 dimethylisosorbide (DMI) 27 boiling point of 27 neat 27 solubilizing properties of 27 stability of 27 dimethylol dimethyl (DMDM) hydantoin 109 dimethyl sulfoxide (DMSO) 23, 549 diosgenin-based amphiphilic organocatalyst 297 dioxolane 395 dipeptide 298 dipeptidyl peptidase 4 (DPP-4) 418 diphyllobothrium latum 421 dipolar aprotics 23 disinfectants 110–11 disodium benzophenondisulfonate 377 DISSOLVINE 106 1,4-disubstituted 1,2,3-triazoles 354 1,4-divinyl benzene (DVB) 282 2D-LC 64 DMDM, see dimethylol dimethyl hydantoin DMI, see dimethylisosorbide DMSO, see dimethyl sulfoxide docusate 556–7, 565 1-dodecyl-3-methylimidazolium chloride 565 domino reaction 407 double salt ionic liquids (DSIL) 547 downstream process (DSP) 581 DPP-4, see dipeptidyl peptidase 4 D-proline 345 dragmacidin E 398 drug metabolites, synthesis of 177–8 DSC, see differential scanning calorimetry DSIL, see double salt ionic liquids DSP, see downstream process DTPA, see diethylenetriaminepentaacetic acid DTPMP, see diethylenetriamine penta (methylene phosphonic acid) dual functional liquid salts 559–60 DVB, see 1,4-divinyl benzene dyes 108 e (E)-2-(benzo[d]thiazole-2-yl)-3-heteroarylacrylonitriles 349 Eckert, Charles 87 ECL, see electrochemiluminescence sensor eco-labeling 98–100 eco-label certification 100 ISO 14020/14024 guiding principles 98–9 ECOLOGO program 100–1 Eco Options program, 2006 97 EDTA, see ethylenediaminetetraacetic acid tetra E-factor 73–5, 78, 80, 587–8, 603, 615 electrochemiluminescence (ECL) sensor 554 electrophilic lactonization reaction, solid-supported synthesis in 485 electrospray ionisation (ESI) 61 Eli Lilly 586 ELISA, see enzyme-linked immunosorbent assay antibody based testing Elliman’s solid-phase organic synthesis 473Index ??? Emergency Planning and Community Right-to-Know Act (EPCRA) 96 EMLA cream 567 endo/exo isomers 391 energy-based metrics 589–91 enol silyl ether moiety 395 EntrestoTM 123 Environmentally Preferable Purchasing Program, 1999 96–7 Environmental Protection Agency (EPA) 606 EPA method 550, 47 EPA method 610, 47 Safer Chemical Ingredients List 110 “Safer Detergents Stewardship Initiative” 103 Toxic Release Inventory (TRI) 46 enzyme engineering 164–5 enzyme-linked immunosorbent assay (ELISA) antibody based testing 164 EPA, see Environmental Protection Agency EPCRA, see Emergency Planning and Community Right-to-Know Act epoxidation 282 Eschenmoser-type condensation 418 e-series glycol ethers 104 ESI, see electrospray ionisation esomeprazole 176 esterification 248–50 in biphasic system 249 ethanol 54 ethyl cyanoacetate 346 ethylenediaminetetraacetic acid tetra (EDTA) 105–6 ethylene glycol ether 105 ethyl glyoxalate 415 ethyl lactate 28–9 melamine-Pd catalyst mediated Suzuki-Miyaura cross-coupling in 28 as a solvent in Cu-catalyzed oxidative coupling 28 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) 547 ethyl-S-lactate solvents 105 etodolac 567 Etodolac-Lidocaine Topical Patch 567 etomidate 547 Etter, Margaret 118 Euphorbiaceae plant family 388 excited-state-intramolecular proton transfer (ESIPT) 391 E/Z isomerization, photoinduced 379 f failure mode and effect analysis (FMEA) 74 fault tree analysis (FTA) 74 FBS, see fluorous-biphase systems FDASIA, see Food and Drug Administration Safety and Innovation Act fenofibrate 547 fexofenadine (Allegra) 177 five-membered rings formation by ring contraction/enlargement 392–4 synthesis of 391–4 flash chromatography 57 flavanoid scaffold 431 flavonol 391 Flos Genkwa 550 fluoren-9-ylmethyloxycarbonyl (Fmoc) 456 fluorinated cyclohexenones 412 fluorinated dihydroquinolinone 413 fluorinated isoquinolines 413 fluorination 412–13 fluorous benzaldehyde 520 fluorous-biphase allylation 252 fluorous-biphase Prins reaction 251 fluorous-biphase systems (FBS) 220, 246 fluorous bis(oxazolines) 254 fluorous Boc 520 fluorous catalysis in acetylation 248–50 in esterification 248–50 fluorous-biphase concept in 220–2 fluorous transition metal catalysts 224–5 in hydroboration–oxidation reaction 243 in hydroformylation reaction 225–9 in hydrogenation 229–32 in hydrosilylation reaction 232–6 in oxidation reactions 243–8 principles of 219–24 in transesterification reactions 248–50 in transition metal catalyzed cross-coupling reactions 236–43 fluorous catalyst 221–3 fluorous distannoxane catalyst 249 fluorous DMSO 518–19 fluorous HPLC (F-HPLC) 528 fluorous ligands for metal catalysis 512–14 fluorous linkers 520–8 fluorous mixture synthesis (FMS) 528–33 fluorous nanoparticles, Pd-based 242??? Index fluorous organocatalysis 256–9, 514–16 fluorous organocatalysts 256–8, 431–2, 511–16 fluorous phosphines 222–3 ligands of 224 fluorous phosphite ligands 225 fluorous (S)-pyrroldine sulfonamide 256 fluorous reagents 516–18 fluorous reverse-phase silica gels 242 fluorous safety-catch linkers 520 fluorous scavengers 518–20 fluorous (Rf) silyl 528 fluorous synthesis of an imidazo[1,2-a]pyridine derivative 521 components of a 560-member mappicine library 529 for discovery chemistry 511–33 of drug-like molecules and nature product analogs, diastereomers, and enantiomers 529–33 fluorous linker-facilitated synthesis 511 fluorous solid-phase extraction (F-SPE) to reduce waste 510 green chemistry aspects of 510–11 heavy versus light 509–10 monitoring reactions 510 of quinoxalinone 520 recycling techniques 510 fluorous-tagged aryl stannanes 239 fluorous transition metal catalysts 224–5 FMEA, see failure mode and effect analysis Fmoc-amino acids 482 FMS, see fluorous mixture synthesis Food and Drug Administration Safety and Innovation Act (FDASIA) 615 fragrances 108–9 Friedel-Crafts acylations 249–50 with acyl-chloride 250 of veratrole 250 Friedel-Crafts reactions 192, 545 Fritsch Pulverisette 6, 332 frustrated Lewis pairs (FLP)-catalyzed hydrogenations 455 FTA, see fault tree analysis fumaric esters 352 functionalized polymer resins 337 furan, synthesis of 144–5 furan-2(5H)-one derivatives, solid-supported synthesis of 485–6 furfural 32 g GAC, see green analytical chemistry Ga-catalyzed Mannich reaction 351 gas chromatography 57–8 gastrointestinal stromal tumor (GIST) 417 GC3 Innovation Project Group 111 G-CON Manufacturing 587 GDUFA, see Generic Drug User Fee Amendment GE Healthcare Life Sciences’ KUBio FlexFactory platform 587 gem-difluoromethylenes 413 GEN, see Global Ecolabeling Network Genentech 586 Generally Regarded as Safe (GRAS) List 111, 558 GeneratoR of Agro-based Sustainable Solvents (GRASS) 29 Generic Drug User Fee Amendment (GDUFA) 615 Generic Pharmaceutical Association (GPhA) 606 generic pharmaceutical industry 604, 608–10 Gewald reaction 419 GHS, see Globally Harmonized System Gilead Sciences 610 Ginkgo Biloba 388 GIST, see gastrointestinal stromal tumor glasdegib 162, 171–2 GlaxoSmithKline (GSK) 81, 327, 586, 609 Global Ecolabeling Network (GEN) 98–9 Globally Harmonized System (GHS) 82 glycerol 83 glycerol carbonate 24 glycol ethers 104–5 glycosidases 395 glycyrrhizic acid 551 glyoxal 109 GPhA, see Generic Pharmaceutical Association Grandisol 387 GRAS, see Generally Regarded as Safe List GRASS, see GeneratoR of Agro-based Sustainable Solvents green analytical chemistry (GAC) case studies 46–7 comparison of green profiles 46–7 critical review of 44 principles of 43 relative eluting strengths of solvent mixtures 56 sample preparation and analytical measurement options 44–5, 47–50 techniques and methods 50–60Index ??? green aspiration level (GAL) 9–10, 11 application to supply chain 15 drug manufacturing complexity and 11 green chemistry with 16 Green Scorecard and 13 industry-wide adaption 15 LCA, integration with 15 process starting materials, definition for 10–11 relative process greenness and 11 standardizing metrics 10 transformation-type-based 15 green chemistry 601–2 benchmarking industry adoption of 607–17 cost of implementing 614–15 customer demands 606 literature review 602–4 opportunities 615 principles of 603 green chemistry metrics awards 7–8 barriers 9 GAC 7 government adoption of 16 Green Scorecard 12 historical context of 3–4 industries and 3, 14 life-cycle assessment 6–7, 15 mass-based 4–5, 6 supply chain 14 unification via green aspiration level 9 Green Chemistry 21 Green Chemistry Institute (ACS/GCI) Green Chemistry Formulators’ Roundtable 102, 111 green chemistry metrics components 73 E-factor 75 energy-based metrics 589–91 exposure assessment 79 level 1, 74–8 level 2, 78–80 level 3, 80 maleic anhydride production example 74 mass-based metrics 587–9 reaction mass efficiency (RME) metric 74 risk and hazard assessment 78–9 green chemistry (GC) program 607 green consumer cleaning products birth of 92 chelants 105–7 chemical selection in consumer cleaning products 96 colorants and dyes 108 consumers and 94–5 Design for the Environment (DfE) Program 101 drivers and 94–7 early products 93–4 eco-labeling 98–100 ECOLOGO program 100–1 fragrances 108–9 future of 111–12 general requirements for chemicals 102 government regulations and non-governmental organizations, role of 95–6 Greenlist 101 Green Seal standards 100 major retailers of 97–8 oxidants or oxidizers 107 solvents 104–5 surfactants 102–4 green engineering green chemistry metrics in 73–80 life-cycle considerations for 86 misconceptions and realizations 71–2 principles of 72 greener alternatives for chlorinated solvents 21–3 for dipolar aprotics 23 greener molecular solvents bio-based glycerol and glycerol derivatives 29–31 carbonates 24–5 cyclopentyl methyl ether (CPME) 32–4 cyrene 31 dimethylisosorbide (DMI) 27 ethyl lactate 28–9 lactic acid 28–9 2-methyl tetrahydrofuran (2-MeTHF) 32 n-butanol 27 opportunities, challenges, and future developments 34 ?-valerolactone 25–7 Greenlist process 94, 101 green procurement programs 97 Green Reaction Conditions, 1998 87 Green Scorecard 12 GAL and 13 rating matrix for RPG for 12 Green Seal standards 100??? Index green solvents, application of bio-based products 83 in conserving complexity of a process 85–6 for EHS and life-cycle impacts 81–2 as fertilizers 84 mass/energy integration 85 in reactions and separations processes 81 renewable solvents 83–4 in separations processes 84–5 waste prevention 80–1 Grieco three-component reaction 408–9 Grignard reactions 32, 34 griseofulvin 547 Grubbs catalyst 253 Grubbs-Hoveyda catalysts 253–4, 279–80 GVL, see ?-valerolactone h Hajos-Parrish-Eder-Sauer-Wiechert reaction 207, 256 halohydrin dehalogenase (HHDH) 166 hamigerans 396 Hantzsch-type mechanism 443 Hantzsch-type reaction 28 hard-soft acid-base (HSAB) theory 333–4 1H-benzotriazoles 353 HCOOH/KI catalytic system 452 Heck and Suzuki coupling reactions 30 Heck cross-coupling reaction 356–7 Heck isomerization–Fischer indolization–alkylation (HIFIA) synthesis 443 Heck isomerization–Fischer indolization (HIFI) synthesis 443 Heck reactions 236–9, 243, 445–7 of 2,3-dihydrofurane and 4-chloropentyl-triflate 238 of iodobenzene and methyl-acrylate 239 palladium complexes for 237 HEDP, see 1-hydroxyethylidene diphosphonic acid helium 57–8 Henry reactions 254 herbertenolide 392 heterocycles synthesis 353–5 heterogeneous catalysts 446 heterogeneous sonochemistry 344 1-hexadecyl-3-methylimidazolium chloride 565 hexanoic acid 563 hexetidinium 558–9 1-hexyl-2,3-dimethylimidazolium dazolium dihydrogen phosphate ([bnmim]H2PO4) 346 HIFI, see Heck isomerization–Fischer indolization synthesis HIFIA, see Heck isomerization–Fischer indolization–alkylation synthesis high performance liquid chromatography (HPLC) 51–2, 586 high through-put (HTP) screening 164–5 Hippophae rhamnoides 550 Hiyama cross-coupling reaction 491 HLB, see hydrophilic-lipophilic balance HMG-CoA reductase inhibitor 394 Home Depot 97–8 homogeneous catalytic reactions 219 homogeneous sonochemistry 344 Hospira 611 “hot spot” theory 344 HPLC, see high performance liquid chromatography HSAB, see hard-soft acid-base theory HTP, see high through-put screening Huisgen 1,3-dipolar cycloaddition 354 4-hydoxyproline catalysts 300–5 hydrazides 473, 475 hydrazine-derived heterocycles 473 ?-hydrazinocarboxylic acids 410 hydroboration 243–4 hydroformylation 225–9 of 1-alkenes 229 catalysts for 228 first fluorous 228 of propylene 225 rhodium-catalyzed, of 1-octene 228–30 hydrogen 58 hydrogenation 229–32 fluorous ligands for 231 of 1-octene 231 of 4-octyne 231 of styrene 232 hydrogen bonding 118–19 hydrogen-bonding catalysis 197–202 asymmetric intramolecular [2+2] photocycloaddition catalyzed by 202 asymmetric Strecker reaction catalyzed by 198 Michael addition reaction 198–201 pathway of 197 symmetric Michael addition catalyzed by 202 hydrogen peroxide-based bleaches 107 hydrophilic interaction chromatography (HILIC) 54, 59 hydrophilic-lipophilic balance (HLB) 553Index ??? hydroxy and acid group–modified catalysts 303–5 1-hydroxyethylidene diphosphonic acid (HEDP) 106 1-hydroxyethyl-3-methylimidazolium chloride [C2OHmim]Cl 551 hydroxy group–protected catalysts 300–3 with polymer support 303 hydroxylactams, solid-supported synthesis of 484 4-hydroxy-L-proline 302 5-hydroxy-1,4-naphthoquinone 399 hydroxy-o-quinodimethanes 397 4-hydroxyproline-based catalysts 305–10 ionic liquid–type 309 modified 308–9 modified with polymer support 309 hydroxyquinoline-2-carboxylic acid derivate 429 Hypericum genus 386 i IBISS, see InBioSynSolv ibuprofen 381, 556 ibuprofenate 557 ideal recoverable catalyst 219 IFRA, see International Fragrance Association IL, see ionic liquids ILs, see ionic liquids imatinib 417 imidazole 480 imidazolidinyl urea 109 4-imino-?-lactam derivatives, synthesis of 144 immobilized cobalt catalysts 284–5 immobilized copper catalysts 285 immobilized iridium catalysts 285–6 immobilized palladium catalysts 270–6 immobilized rhodium catalysts 276–9 immobilized ruthenium catalysts 279–84 InBioSynSolv (IBISS) 29 indazole, synthesis of 138–9 indole 382 infrared (IR) spectroscopy 60, 120 in silico design strategies 83–4 insulin-regulated aminopeptidase (IRAP) inhibitors 459–60 intermolecular formation of a cyclobutane ring 385–7 International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) 603 International Fragrance Association (IFRA) 108 intramolecular formation of a cyclobutane ring 387–9 ionic-catalyzed Knoevenagel condensation 346 ionic liquids (ILs) 48 ADME (absorption, distribution, metabolism, and excretion) for 560 1-allyl-3-ethylimidazolium tetrafluoroborate ([aeim][BF4]) 546 in analysis of separation efficiency 548 of antibacterial quaternary ammonium cations 556 based silica sorbent 551 in chromatographic analysis 549 in chromatographic separations 548–9 for continuous pharma manufacturing 547–50 definition 544 in determination of flavonoids 550 as drug carriers 552–3 for drug detection 553–4 for extraction of drugs from natural products 551 formation of biphasic systems 545 in headspace gas chromatography (HSGC) 549 in high performance liquid chromatography (HPLC) 548–9 in HS-GC analysis of residual solvents 549 hydrophilic 547 hydrophobic 547 IL-APIs 556–60 imidazolium 553 imidazolium-based 546, 549 for isolation of pharmaceutically active shikimic acid 551 as matrix media 549 in membrane transport 566–7 miscible 546–7 for pharmaceutical crystallization 546–7 as pharmaceutical ingredients 554–6 phosphonium and ammonium-based 565 protic (PILs) 551 in purification of several APIs 547 room temperature (RTIL) 545–6 salicylate 558 solubility of model drugs in 546 as solvents in synthesis of drugs or drug intermediates 544–6 structure 544 sulfonic acid-functionalized 551 in synthesis of 5?-O-monoesters of 1-?-D-arabinofuranosylcytosine 545 tuammoniumheptane salicylate 566 as a tunable hydrophilic–lipophilic carrier 553 ionic liquid–tagged organocatalysts 309 IRAP, see insulin-regulated aminopeptidase inhibitors iridium catalysts, immobilized 285–6??? Index isatins, synthesis of 136–7 isobenzofuranones, synthesis of 145–6 isochromenes, synthesis of 147–8 isocoumarins, synthesis of 146–7 ISO Eco-Labels 99 isofagomine 395 isoindolin-1-ones, synthesis of 134 isoniazid 121 isonitrile 520 isonitrile insertion/C-O cross-coupling reaction 453 isopropanol 388, 400 isopropylmyristate (IPM) 552 isoquinoline, synthesis of 140–1 isoquinolinium 412 isoquinolinones, synthesis of 141–2 isorhamnetin 550 itraconazole 547, 566 j Januvia 170 Johnson & Johnson 586, 609 Jorgensen–Hayashi catalyst 429 Jorgensen–Hayashi organocatalysts 306 Josiphos 170 Juglone 399–400 k kaempferol 550 ?-ketoesters 352 ketone reductase (KRED) 166–7, 173 montelukast 174 reduction 173–5 ketones 375 ketoprofen 549 Knoevenagel condensation 346–9 of ethyl cianoacetate and aromatic aldehydes 347 green protocol for 346 of malonitrile and aromatic aldehydes 348 Knoevenagel–Michael cyclization 355 Knoevenagel/Ugi/click reaction 411–12 KRED, see ketone reductase l? -lactam antibiotics 433 lactic acid 28–9 lactones, synthesis of 147 lanthanide(III) bis(perfluorooctansulfonyl)amides 249 large-scale reaction 207–9 of 6-cyanoindole derivatives 209 of Wieland–Miescher and Hajos–Parrish ketones 208 L29e-modified Pd catalyst 238 Lennox-Gastaut syndrome 416 levulinic acid 32 Lewis acid catalysis 204–7 Lewis base catalysis 204–7 Li 2CO3 334 lidocaine 542 lidocainium 557–9 lidocainium acetylsalicylate 558 lidocainium chloride 564 lidocainium salicylate 562 life-cycle assessment (LCA) approach 587, 591–2 ligand-free catalysis 335 ligand-free Suzuki coupling reactions 28 ligands bipyridine 286 diphenylphosphine 271 exchange of the catalyst species 228 fluorous 511–14 fluorous phosphine 224 fluorous phosphite 225 fluorous-tagged 241 for HIV protease inhibitor 376 N-, O-, S-, and Si-containing 226–7 Phosphine-phosphite 502 linear amino acid catalysts 305 linkers for solid-phase organic synthesis (SPOS) 472–5 linoleic acid 563 Liotta, Charlie 87 lipase hydrolytic ester resolution 170 lipophilic decylsulfate 566 lipopolysaccharides (LPS) 164 Lipshutz, Bruce 87 liquid chromatography 63 acetone as solvent in 55 dichloromethane mixtures in 55 green acids and bases used in 57 methanol as solvent in 55 popularity 50 propylene carbonate-ethanol mixtures in 54–5 reduction in mobile-phase volume 50–1 solvent selection in 52–7 sustainability of 50 temperature, importance of 51–2Index ??? liquid-liquid extraction (LLE) 48 liquiritin 551 low thermal-mass (LTM) chromatography 58 L-proline 299, 345, 428 LUF5771 416 ?-Lycorine 428 Lyrica 169 Lysobactin (Katanosin B) 487 m mAb production, characteristics of 582–3 MacMillan’s imidazolidinone catalyst 190 macrocyclic peptide 495 macrocyclic peptidomimetics, solid-phase parallel synthesis of 493–4 maleic acid, sunlight-photocatalyzed alkylation of
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Green Techniques for Organic Synthesis and Medicinal Chemistry رابط مباشر لتنزيل كتاب Green Techniques for Organic Synthesis and Medicinal Chemistry
|
|