Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Advanced Design and Manufacturing Based on STEP الأربعاء 09 سبتمبر 2020, 1:11 am | |
|
أخوانى فى الله أحضرت لكم كتاب Advanced Design and Manufacturing Based on STEP Xun Xu · Andrew Y.C. Nee
و المحتوى كما يلي :
Contents List of Contributors . xxi 1 STEP in a Nutshell 1 T. Kramer and X. Xu 1.1 Introduction 1 1.2 History of STEP . 2 1.3 Objectives of STEP 3 1.4 Overview of STEP Parts . 4 1.5 Information Modelling Using EXPRESS and EXPRESS-G 5 1.6 Data Representation 7 1.6.1 Part 21 Files 7 1.6.2 XML Files . 9 1.6.3 STEP Data Access Interface (SDAI) . 10 1.7 STEP Integrated Resources 11 1.8 Application Protocol (AP) 12 1.8.1 AAM (Application Activity Model) 13 1.8.2 ARM (Application Reference Model) . 13 1.8.3 AIM (Application Interpreted Model) . 14 1.8.4 UOF (Unit of Functionality) . 14 1.8.5 AIC (Application Interpreted Construct) . 14 1.8.6 AM (Application Module) 15 1.8.7 Conformance Classes 15 1.9 Conformance Testing . 15 1.10 STEP-NC 16 1.11 STEP into the Future 17 Appendix Sources of Information about STEP . 18 References . 19 2 Feature-based Process Planning Based on STEP . 23 T. Kramer and F. Proctor 2.1 Introduction 23 2.2 Process Plans 24 2.2.1 Definition and Desiderata 24 2.2.2 ISO 14649 and AP 238 Process Planning Languages . 28 2.2.3 AP 240 Process Planning Language 31 2.2.4 FBICS-ALPS Process Planning Languages 33 2.2.5 Summary Table . 36xii Contents 2.3 Features 36 2.4 Feature-based Process Planning . 38 2.4.1 Overview of Feature-based Process Planning . 38 2.4.2 Features and Process Planning 39 2.4.3 Feature-based Process Planning in FBICS 39 2.5 FBICS to ISO 14649 45 2.6 Conclusion 46 References . 47 3 A Heuristic STEP-NC Based Process Planning Tool for Sequencing NC Machining Operations . 49 U. Berger, R. Kretzschmann and K. P. Arnold 3.1 Introduction 49 3.2 State of the Art and Related Work 51 3.2.1 NC Process Chain . 51 3.2.2 Challenge and Problems in the Process Chain 52 3.2.3 STEP-NC – STEP Compliant Numerical Control . 53 3.2.4 Process Planning in the STEP-NC Process Chain . 55 3.2.5 Mathematical Formulizing of the Statement of Problem 58 3.3 Objectives and Requirements for Sequencing of Machining Operations 59 3.3.1 Reasoning for a New Solution . 59 3.3.2 Objectives and Requirements of a New Solution 60 3.4 Approach for STEP-NC Machining Operations Sequencing . 60 3.4.1 Methodology and Keynote 60 3.4.2 Functional Principle and Application Scope . 61 3.4.3 Architecture and Modules . 63 3.4.4 Model for Workplan Representation and Processing 63 3.4.5 Workflow for the Knowledge-based NC Programming System . 68 3.4.6 Approach for Sequencing Algorithm 70 3.5 Technical Realization and Evaluation 72 3.5.1 Technical Realization 72 3.5.2 Evaluation of the Approach . 72 3.6 Conclusion and Outlook . 74 References . 75 4 STEPNC++ – An Effective Tool for Feature-based CAM/CNC . 79 J. Michaloski, T. Kramer, F. Proctor, X. Xu, S. Venkatesh, and D. Odendahl 4.1 Introduction 79 4.2 Feature-based CAM to Feature-based CNC . 81 4.3 Feed-forward Tolerancing 85 4.4 Smarter Machining Process Parameterization 89 4.5 STEPNC++ Implementation 91 4.6 Validation and Analysis . 95Contents xiii 4.7 Discussion 101 Disclaimer . 102 References . 102 5 A STEP-Compliant Approach to Turning Operations 105 Y.Yusof and K.Case 5.1 Introduction 105 5.1.1 Standard Product Data Exchange 106 5.1.2 STEP-NC Environment for Manufacturing . 107 5.2 Related Work 108 5.3 Design of a STEP Compliant System for Turning Operations (SCSTO) . 110 5.4 Case Study Component 118 5.5 Conclusion 120 References . 121 6 Circular Sawblade Stone Cutting Technology Based on STEP-NC . 125 J. Garrido Campos 6.1 Introduction 125 6.2 Stone Cutting Process Needs 128 6.3 Understanding and Modelling Stone Cutting Processes . 129 6.3.1 Stone Cutting Processes 129 6.3.2 Automatic Stone Cutting Machines 130 6.3.3 An Example . 132 6.4 STEP-NC Data Model for Sawblade Stone Cutting . 133 6.4.1 Disc Sawblade Cutting Features 134 6.4.2 Sawblade Cutting Operation Data . 136 6.4.3 Data Model Implementation 139 6.5 Conclusions 140 Acknowledgments 141 References . 14 7 Open Platform Development for STEP-compliant CNC . 145 T. Hu, C. Zhang, R. Liu and L. Yang 7.1 Introduction 145 7.2 Requirement Analysis 146 7.2.1 Function Level Requirement Analysis 146 7.2.2 Implementing Level Requirement Analysis 149 7.3 System Structure . 150 7.4 Design Specification of Engine Based System . 152 7.4.1 Design of Decision Unit (DU) . 153 7.4.2 Generation of Function Description Data (FDD) 153 7.4.3 Design of EMI . 157 7.4.4 Design of SE . 157 7.4.5 Design of EtherMC Hardware Platform 159 1xiv Contents 7.4.6 Secondary Development Scenario . 161 7.5 Prototype Development 161 7.5.1 Design of DU 161 7.5.2 Design of FDD 162 7.5.3 Hooking up FDD with SE and HMI 166 7.6 Conclusion 167 Acknowledgment 167 References . 168 8 STEP-NC in Support of Machining Process Optimization . 169 L. Xu 8.1 Introduction 169 8.2 Cutting Force in Machining Processes . 172 8.3 Tool Path Cross-section in Milling . 174 8.4 Parameterization of the Tool Path Cross-section 176 8.5 Force-based Feed Optimization 179 8.5.1 Feed Derivation . 180 8.5.2 Multiple Machine System Constraints 181 8.5.3 Downward Feed Optimization 181 8.6 Other Optimization Methods 182 8.6.1 Tool Life-based Optimization . 182 8.6.2 Volume-based Optimization . 184 8.6.3 Constant-Chip Optimization . 185 8.6.4 Machine System Dynamics . 187 8.6.5 Feed Lag 188 8.7 Optimization Implementation Plans . 188 8.7.1 Implementation at CAM 189 8.7.2 Implementation on CNC . 189 8.7.3 Implementation with an Independent System . 190 8.7.4 Example of Optimization with an Independent System 191 8.8 Conclusions 192 References . 194 9 Achieving a STEP-NC Enabled Advanced NC Programming Environment 197 M. Rauch, R. Laguionie and J.Y. Hascoet 9.1 Introduction 197 9.2 A New Role for the NC Controller into the Numerical Chain . 198 9.2.1 Advanced CNC Programming and Machining 199 9.2.2 High-level Tool-path Generation 203 9.3 STEP-NC Platform for Advanced and Intelligent Manufacturing (SPAIM) . 204 9.3.1 Machining a Part from a STEP-NC File 205 9.3.2 A STEP-NC Platform for Industrial Machine Tools . 206 9.3.3 Benefits of a STEP-NC Enabled Controller 209 9.3.4 Toward Advanced CNC Programming . 211Contents xv 9.4 Conclusions 212 References . 213 10 STEP-compliant CNC Systems, Present and Future Directions . 215 V. K. Nguyen and J. Stark 10.1 The Traditional Numerical Control Environment 215 10.2 The STEP-NC Standard . 217 10.2.1 Details of the STEP-NC Standard . 219 10.2.2 Characteristics of STEP-NC 219 10.3 Limitations of STEP-NC 221 10.4 The Current State of STEP-NC Practice and Research 222 10.5 The Current Problem Statement . 223 10.6 The Next Steps Beyond the State of the Art . 224 10.6.1 Data and Information in the PLM Environment 225 10.6.2 Next Generation Controller . 227 10.7 Conclusions 228 Acknowledgment 230 References . 230 11 Standardised Process Control System for CNC Manufacturing 233 S. Kumar and S. T. Newman 11.1 Introduction 233 11.2 Process Control . 234 11.2.1 Definitions . 237 11.2.2 Requirements for Developing Process Control Systems . 237 11.2.3 Process Control Solutions for CNC Machine Tools 238 11.3 Review of Process Control Systems . 242 11.4 A Standardised Process Control Framework 243 11.5 Process Control Information Model . 245 11.5.1 STEP-NC Compliant Product and Manufacturing Information Model 245 11.6 A Computational Prototype of Standardised Process Control System (SProCS) . 248 11.7 Realisation of SProCS 252 11.8 Conclusions 255 Acknowledgment 257 References . 257 12 A STEP-NC Compliant Methodology for Modelling Manufacturing Resources . 261 A. Nassehi and P. Vichare 12.1 Introduction 261 12.2 Manufacturing Resource Modelling . 262 12.2.1 Manufacturing Resource Representation Methodologies 263xvi Contents 12.2.2 Perspectives for Resource Modelling in the Context of Manufacturing . 265 12.2.3 Modelling Approaches in the Context of Modelling Perspectives . 267 12.3 A Modelling Framework for Technological Manufacturing Resources . 268 12.3.1 CNC Machine Tools and Auxiliary Devices . 269 12.3.2 Mechanical Elements, Electro-mechanical Elements and Electronic Elements 269 12.3.3 Kinematic Chains 270 12.4 The STEP-NC Compliant Schema for Representation of Machine Tools and Auxiliary Devices 270 12.4.1 Mechanical Machine Element . 271 12.4.2 Kinematic Joint . 271 12.4.3 Axes of Movement 273 12.4.4 Additional Entities Required for Resource Representation . 273 12.5 Example Models . 274 12.5.1 2-Axis Lathe 274 12.5.2 3-Axis Milling Centre . 276 12.5.3 5-Axis Milling Centre . 277 12.5.4 Parallel Kinematics Machine . 278 12.6 Future Developments 279 12.7 Conclusion 280 Acknowledgment 280 References . 280 13 Development of Digital Semantic Machining Models for STEP-NC Based on STEP Technology . 283 F. Tanaka, M. Yamada, S. Mitsui, T. Kishinami, K. Akama, T. Kondo and M. Onosato 13.1 Introduction 283 13.2 Digital Semantic Machining Model . 285 13.2.1 Basic Concepts of the Digital Semantic Machining Model . 285 13.2.2 Modelling and Implementation of Digital Semantic Machining Models 286 13.3 Product Data Quality Assurance Method . 287 13.3.1 Current Problems of Checking the Quality of Product Data . 288 13.3.2 A Software for Checking the Quality of Product Data 289 13.3.3 Constituents of Proposed Method . 290 13.3.4 Example of Checking Quality of Product Data . 291 13.4 Machining Features for 3+2 Axis Machining . 292 13.4.1 Concepts of 3+2 Axis Machining 293 13.4.2 Machining Feature in 3+2 Axis Machining . 293 13.4.3 Extraction Method of 3+2 Axis Machining Features 295 13.4.4 Example 296 13.5 Machine Tools for ISO 14649 CNC Data Model . 297 13.5.1 Background of Developing ISO 14649 Machine Tools 297Contents xvii 13.5.2 Machine Tool Model Based on STEP Kinematic Model 298 13.5.3 Prototype of 5-Axis Machine Tool for ISO 14649 CNC Data Model 300 13.5.4 Practical Results 301 13.6 Conclusions 302 Acknowledgment 303 References . 303 14 Development of a STEP-NC Network Management Protocol for Decentralized Manufacturing 307 F. Calabrese and A. Buonanno 14.1 Introduction 307 14.2 Overview of STEP-NC . 309 14.3 Decentralized Manufacturing Solution . 310 14.3.1 STEP-NC Network Management Protocol . 311 14.3.2 Details of the Components 313 14.3.3 Simplified and Hybrid Architectures 317 14.3.4 SNMP Compliant Controller . 318 14.3.5 Interpreter 318 14.3.6 High-level Controller 318 14.3.7 Tool-path Generator 319 14.3.8 Low-level Controller . 319 14.3.9 Machining Inspector 319 14.4 Application of the SNMP Architecture in a Real Scenario 319 14.4.1 Evaluation of the Performance of the System . 324 14.5 Conclusion 327 References . 328 15 A Generic Product Modelling Framework for Rapid Development of Customised Products 331 S. Q. Xie and W.L. Chen 15.1 Introduction 331 15.2 Product Modelling: A Review 333 15.3 Generic Product Information Framework . 33 15.3.1 STEP-based Modelling Environment 335 15.3.2 ‘Five-phase’ Modelling Methodology . 33 15.3.3 EDM Data Exchange and Sharing Methods 339 15.4 EXPRESS Data Model . 340 15.5 Case Study 342 15.5.1 Product and its Assembling Information . 342 15.5.2 Tooling Information 343 15.5.3 Machine Tool Information 344 15.5.4 Manufacturing Information . 345 15.6 STEP Compliant Product Data Management System . 346 15.7 Conclusion and Future Work 348 Acknowledgment 349 5 8xviii Contents Reference 350 16 STEP in the Context of Product Data Management 353 V. Srinivasan 16.1 Introduction 353 16.2 Product Data and Metadata . 355 16.2.1 Product Data 355 16.2.2 Product Metadata 357 16.3 STEP PDM Schema . 360 16.4 OMG PLM Services . 368 16.4.1 OMG’s Model Driven Architecture 368 16.4.2 OMG PLM Services Architecture . 369 16.5 Others to Watch 379 16.6 Concluding Remarks 379 Acknowledgment 380 References . 380 17 STEP in the Context of PLM . 383 C. Mehta, L. Patil and D. Dutta 17.1 Introduction 383 17.2 Overview of Standards for PLM 385 17.2.1 EIA-649 National Consensus Standard for Configuration Management 386 17.2.2 ANSI/GEIA GEIA-859-2004 Data Management 386 17.2.3 ISO/IEC 12207 Software Life Cycle Processes 386 17.2.4 PLM-XML 386 17.2.5 ISO 10303-239 (STEP AP 239) 387 17.2.6 STEP-based Standards 388 17.3 Applying STEP to Data Exchange and Reuse in PLM . 388 17.3.1 Engineering Change Management as a Typical PLM Activity . 388 17.3.2 Requirements for Exchange and Reuse of ECM Data 389 17.3.3 Suitability of STEP for Exchange and Reuse of ECM Data . 390 17.3.4 Enhancing EC Representation in STEP – Change Evaluation Model 391 17.3.5 Example Application of CEM . 393 17.4 Further Issues and Directions . 394 17.4.1 Conflicts Within the Standard . 394 17.4.2 Abstract/Ambiguous Definitions . 396 17.5 Concluding Remarks 396 Acknowledgment 397 References . 397 18 Usage of Agent Technology to Coordinate Data Exchange in the Extended Enterprise . 399 O. López-Ortega and K. López de la CruzContents xix 18.1 Introduction 399 18.2 Integrated EXPRESS Model 401 18.2.1 STEP-related Standards . 401 18.2.2 Semantic Integration to Represent Core Capabilities 402 18.2.3 The Integrated EXPRESS Model 404 18.3 Model and Implementation of the Multi-agent System 405 18.3.1 Business Processes as Inspiration for Communication Protocols 405 18.3.2 Communication Protocols Among Agents to Support Data Exchange . 406 18.3.3 Agent-oriented Programming 409 18.3.4 Exemplification of a Business Process Type . 412 18.4 On the Networking of Enterprises 415 18.4.1 Multi-agent Systems on Distributed Design and Manufacturing . 415 18.4.2 Covenants in the Extended Enterprise . 415 18.5 Conclusions 416 References . 416 19 An XML Implementation for Data Exchange of Heterogeneous Object Models . 419 X.Y. Kou and S.T. Tan 19.1 Introduction 419 19.2 XML Technologies and ISO 10303 421 19.3 An XML Implementation for Data Exchange of Heterogeneous Object Models 422 19.3.1 Existing Heterogeneous Object Models 422 19.3.2 Representing Material Heterogeneity with XML 426 19.4 Implementations and a Case Study . 433 19.5 Conclusions 436 Acknowledgment 436 References . 436 20 Module-based Platform for Seamless Interoperable CAD-CAM-CNC Planning . 439 C. Brecher, W. Lohse and M. Vitr 20.1 Challenges of Production Industries in High-wage Countries 439 20.2 Deficits in the Interoperability of Existing CAM Tools . 441 20.2.1 CAM Tools in Today’s Business Processes 442 20.2.2 Limits of Current CAM Systems . 443 20.3 IT Platform for Open Computer-based Manufacturing 443 20.3.1 The Open Computer-based Manufacturing Approach 443 20.3.2 Application of the Platform for Open Computer-based Manufacturing . 445 20.4 Design Concept for the Module-based Platform 446 20.4.1 System Architecture of openCBM 447xx Contents 20.4.2 Service-oriented Architecture for the openCBM Platform 447 20.4.3 Interoperable Data Structures Based on STEP Standards . 449 20.5 Use Cases for the Module-based Platform . 451 20.5.1 CAx Framework for Process Planning 451 20.5.2 Process Data Acquisition and a Process Information Database 458 20.6 Conclusions 460 Acknowledgements . 461 References . 461 Appendix Software Tools for Using STEP 463 Index A AAM – application activity model, 12, 129 Abstract test suites, 4 Acceleration, 86, 188, 458 Accuracy, 86, 98, 179, 288, 291 ACIS, 429, 433 ACL messages, 410 Aerospace manufacturing, 250 Agent communication language, 409, coordinator, 406, 415 leader, 415 management, 406 MAS – Multi-Agent System, 57, 405 organization, 406 product, 406, 408 resources, 406 technology, 415 Agile, 224 AI – Artificial Intelligence, 56 AIC – Application Interpreted Construct, 4, 12 AIM – Application interpreted Model, 11, 25, 106, 390, 395 Allowance, 97, 115, 133, 138 AM – Application Module, 12 AMPS – Advanced Machining Processes and Systems, 238 AMT – Assembly Model Tree, 217, 223, 339 Analysis and computations, 208 ANN – Artificial Neural Network, 71 AP – Application Protocol, 2, 12, 54, 110, 129, 334, 390, 396, 422, 442 API – Application Protocol Interface, 10, 11, 24, 36, 159, 339, 433 Application module, 4, 12 ARM – Application Reference Model, 12, 25, 39, 106, 129 Attribute, 5, 246, 339, 364, 392, 428, 448 Axial depth, 172 B Bending moment, 174, 180 Bidirectional, 209, 212, 406, 460 Black box, 65, 73, 250 Blitz++, 93 BOM – Bill of Material, 341 Boolean, 25, 29, 41, 115, 139 Boost, 92 Boundary geometry, 246 BP – Business Processes, 405 BPT – Business Process Types, 405, 412 BPV – Business Process Variations, 406 BSP – Business SubProcesses, 406 BSU – Basic Semantic Unit, 405 C C language binding, 10 C++ language, 5, 10, 25, 92, 430 CAD4D, 430 Canned cycles, 83, 95, 99 Capability machine, 107, 242 process, 237, 240, 263 CBR – Case-based Reasoning, 57 Index472 Index CC – Conformance Classes, 239, 359, 378 CEM – Change Evaluation Model, 389 Central coordination, 406 Chatter, 187, 236 Chip thickness, 172, 175, 179 thinning, 180, 185 Chips, 184 Christofides algorithm, 67 CIM – Computer Integrated Manufacturing, 81, 333, 368, 377 Circularity, 242, 246 Class, 5, 11, 84, 87, 92, 112, 115, 359, 375, 396, 410, 430 Client, 99, 310, 320, 324, 414 CLM – Closed-loop Machining, 238, 239 CMM – Coordinate Measuring Machine, 24, 27, 237, 240 Collaboration, 388 Collaborative, 17, 217, 221, 288, 334 Collaborative engineering, 288 Collective decision making, 406 Communication protocol, 311, 405, 409 Compensator, 248 Competitiveness, 17, 228 Computations, 93, 150, 209, 293 Computer Aided Systems CACUI – Computer Aided Customer User Interface, 339 CAD – Computer Aided Design, 2, 10, 25, 51, 60, 107, 201, 243, 252, 267, 287, 333, 360, 422, 430, 444 CAD-CAM-NC chain, 441, 458 CAE – Computer Aided Engineering, 81, 287, 430 CAM – Computer Aided Manufacturing, 52, 59, 106, 128, 140, 189, 198, 209, 216, 220, 240, 309, 441, 452 CAPP – Computer Aided Process Planning, 51, 55, 109, 205, 333, 339 CAx – Generic Computer Aided System, 107, 227, 238, 244, 254, 288, 451 Computer Numerical Control Autonomous CNC, 53 CNC, 53, 60, 81, 106, 128, 139, 146, 162, 188, 198, 235, 249, 262, 276, 285, 297, 309, 318, 323 CNC Controllers, 16, 28, 39, 53, 106, 128, 147, 188, 200, 215, 217, 219, 238, 267 CNC machine tools, 190, 235, 238, 268 COMSOL Multiphysics, 430 Concurrent engineering, 81, 107, 288, 333 Conformance Classes, 12, 15, 84, 239, 359 Conformance testing, 2, 4, 15 Connective junction, 154 Consistence production, 237 Constructors, 114 Control, 44, 84, 98, 108, 128, 140, 148, 199, 202, 206, 215, 219, 224, 227, 242, 269, 293, 441, 450, 457 virtual controls, 451 Conversational programming, 83, 95 Cooperation, 216, 228, 378 CORBA, 368, 370 Core capabilities, 402 Corrigendum, 176 Cross-section, 136, 172, 192 CRUD function, 376 CSPC – Context Statistical Process Control, 242 Cutter corner radius, 186 Cutting condition, 174, 179, 298, 301, 309 force, 172, 179, 184, 189, 267 power, 184 strategy, 85, 131, 459 velocity, 183473 Cylindricity, 246 D Data analysis, 14, 43, 81, 90, 100, 112, 146, 208, 217, 235, 242, 327, 333, 338, 390, 396, 426, 430, 441, 447, 451 CNC model data, 298 collection, 11, 26, 29, 90, 99, 263, 371, 387, 422, 427, 450 exchange, 4, 84, 106, 160, 333, 339, 357, 386, 412, 421, 442, 449 geometric data, 82, 285, 334, 337, 338, 340, 341, 355, 359 integration, 81, 147 list, 28, 30, 41, 61, 68, 82, 92, 99, 294, 341, 373, 403, 410, 426, 432, 445, 458 model, 17, 59, 60, 64, 72, 91, 106, 111, 114, 133, 146, 176, 179, 182, 187, 205, 210, 218, 238, 263, 279, 285, 334, 337, 339, 342, 367, 387, 391, 401, 426, 450 shape data, 285 structure, 5, 17, 51, 111, 175, 188, 248, 289, 298, 318, 336, 339, 342, 346, 391, 424, 429, 446, 458 Database, 7, 10, 16, 61, 69, 73, 156, 310, 320, 323, 335, 339, 346, 409, 444, 445 Deceleration, 188 Decentralized manufacturing solution, 310, 324 Decision making, 60, 148, 151, 161, 165, 206, 235, 249, 265 Deficiency, 443 Deflection, 86, 174, 181, 199, 211 Description methods, 4 Design features, 39, 54, 60, 72 Destination, 99, 312 DEXs – Data EXchange specification, 387 Die casting dies, 292 Dimensional constraints, 408 Discrete components, 244 Dispatcher, 310, 325 Distributed, 17, 51, 84, 220, 227, 325, 342, 347, 368, 388, 405, 410, 415, 449 DLL – Dynamic Link Library, 150, 167 DMIS – Dimensional Measurement Interface Standard, 33 DMPC – Dynamic Manufacturing Process Control, 235 DNC – Distributed Numerical Control, 51 DPIIM – Die and Product Integrated Information Model, 333 Draughting, 12, 422 DTDs – Document Type Definitions, 10 DU – Decision Unit, 150, 159 DXF – Drawing eXchange Format, 106, 139 Dynamic model, 86, 273 Dynamic programming, 57 E Early binding, 11 EBNF – Extended Backus Naur Form, 92 EC – Engineering Changes, 58, 70, 218, 388 ECAT – Electronic and Assembly and Test, 235 ECM – Engineering Change Management, 374, 378, 388 ECM data, 390 EDM, 133, 218, 263, 293, 335 EDM – Engineering Data Management, 224 e-economy, 17 Elements electro-mechanical, 269 electronic, 263, 269, 279 mechanical, 268, 273 Index474 Index mechanical machine element, 264, 270 EMI – Engine Machine Interface, 150, 157 Energy equilibrium principle, 184 Engine Based CNC Structure, 150 Engine kernel, 151, 158 Entity, 5, 15, 30, 45, 64, 87, 92, 93, 94, 115, 136, 139, 208, 247, 271, 293, 299, 311, 317, 319, 341, 367, 391, 392, 393, 395, 396, 403, 429, 447 Error fixturing, 240 operator, 240 part deformation, 240 tool wear, 240 wear, 86, 151 ESPRIT III, 217 ET – Equivalent Transform language, 288 EtherMC master driver, 159 tree-shape topology, 159 Ethernet-based fieldbus for Motion, 150, 151, 167 Execution, 26, 31, 34, 43, 92, 201, 209, 216, 243, 290, 315, 318, 405, 408, 453, 458 EXPRESS EXPRESS language, 3, 24, 36, 91, 100, 111, 219, 265, 270, 285, 347, 359, 367, 390, 401, 421, 447, 449 schema, 6, 24, 31, 91, 111, 333, 341, 361, 367, 421, 449 EXPRESS-G, 4, 14, 270, 335, 390, 422 Extended Enterprise, 406, 412, 416 Extracted features, 293 F FBICS – Feature-Based Inspection and Control System, 24, 33 FBICS_ALPS, 33, 45 FBICS_COMBO, 33, 45 FDD – Function Description Data, 150, 165 Statechart modeling, 153 tree shape structure, 158 Feature, 16, 25, 35, 54, 57, 60, 72, 82, 109, 115, 119, 133, 161, 191, 203, 216, 218, 227, 238, 286, 293, 294, 297, 309, 318, 334, 371, 401, 406, 424, 426, 442, 450 attributes, 89 heterogeneous feature tree (HFT), 426, 432 models, 36 placement, 237, 250 tree, 9, 67, 92, 157, 207, 209, 424, 430 tree structure, 424 types, 36, 68 Feature-based, 17, 24, 35, 53, 56, 68, 82, 109, 111, 128, 219, 239, 243, 249, 334 assessment, 58, 60, 64, 267, 347, 416 design, 17, 35, 111 knowledge representation, 56, 64, 265 machining, 3, 53, 85 machining and inspection, 3 process planning, 38 Feed derivation, 180 downward, 180 per flute, 186 Feed-forward tolerance, 85, 89, 95 Filter, 99 Finite Element Analysis, 12 FIPA Foundation for Physical Agents, 409 Flexible manufacturing., 239 Force coefficient, 172 tangential and radial, 173 Formatter, 100 Fortran, 93 FPGA – Field Programmable Gate Array, 160475 FSM – Finite State Machine, 153 G G codes (ISO 6983), 30, 216, 240 G2STEP, 109 GA – Genetic Algorithm, 57, 65 GD&T – Geometric Dimensions and Tolerances, 85, 88, 246, 355 Generic Product Modelling Framework, 334 Geometrical features, 176, 220 Geometrical transformation model, 207 Geometry, 3, 11, 25, 30, 37, 51, 81, 115, 119, 172, 184, 188, 202, 218, 227, 238, 246, 262, 309, 319, 355, 429, 433, 443, 460 Globalised, 17, 224 Globalization, 109, 128, 223 GPM – Generic Product Modeling, 333 GPMF – Generic Product Modeling Framework, 334, 339, 342 Grammar, 24, 93, 339 Graph theory, 61, 64 H Hamiltonian Path, 67, 70 Handshake, 406 Helix angle, 173 Heterogeneity, 422, 430 Heuristic algorithm, 56, 71 Heuristics, 61, 68, 70 HFT – Heterogeneous Feature Tree, 424 Hierarchical control, 24 History junction, 153 HMI – Human Machine Interface, 150, 151, 155, 167, 207, 208 HTM – Homogeneous Transformation Matrix, 252 Human-linked parameters, 202 Hybrid architectures, 311 Hybrid solutions, 317 I ICA – Independent Component Analysis, 242 ICAM – Intelligent Computer Aided Manufacturing, 199, 202, 211 IDEF0, 13 IDEF1X, 14 IDL – Interface Definition Language, 370, 447 IGES – Initial Graphics Exchange Specification, 2, 106, 357 Illocutory content, 408 Implementation methods, 3, 339 Individual component occupancy, 326 Inertia, 188 Information manufacturing, 111, 188, 245, 254, 262, 342 modelling, 4, 388, 447 process, 83, 107, 198, 238, 244, 318, 337, 341, 387, 415, 450 product, 3, 189, 218, 238, 246, 248, 335, 342, 347, 374, 387 Inheritance, 11, 94 Injection moulding machine, 344 Injection moulding moulds, 292 Inspection processes, 341 Integrated, 11, 17, 25, 52, 61, 81, 90, 107, 111, 128, 147, 189, 205, 217, 227, 236, 239, 265, 333, 401, 443, 450 Integrated application resources, 4, 12 Integrated generic resources, 4, 11 Integrated manufacturing environment, 333 Integrated resources, 11, 25, 333 Integration, 3, 17, 82, 92, 107, 209, 219, 238, 244, 262, 334, 368, 386, 444 International standards, 3, 10 Internet, 11 Internet-based collaborative manufacturing, 210 Index476 Index Interoperability, 17, 53, 62, 82, 106, 128, 191, 201, 212, 267, 287, 385, 394, 430, 443, 449 Interoperability error, 287 Interoperable, 17, 107, 128, 199, 211, 220, 249 Interpreter, 28, 45, 140, 146, 201, 298, 318 Intranet, 10, 17, 347 ISO 10303, 3, 11, 28, 61, 91, 106, 134, 176, 205, 219, 238, 246, 285, 309, 366, 390, 401, 421, 450 AP203, 4, 12, 110, 119, 335, 341, 360, 371, 390, 422, 450 AP214, 15, 110, 285, 359, 370, 378, 390, 450 AP219, 14 AP224, 16, 36, 43, 61, 110, 115, 134, 274, 285, 333, 390, 450 AP238, 3, 10, 28, 36, 54, 106, 129, 176, 205, 239, 285, 298, 450 AP239, 226, 379, 395 AP240, 14, 17, 31, 36, 285, 366, 390, 395, 450 ISO 13399, 239 ISO 13584, 3, 12, 401, 405 ISO 14649, 3, 16, 28, 37, 45, 51, 54, 62, 91, 106, 129, 133, 203, 219, 238, 244, 254, 285, 297, 300, 450 ISO 6983(G-codes), 51, 62, 82, 92, 107, 128, 191, 215, 240, 297 ISO 7200, 358, 361 J JADE platform, 409 JAMA, 287, 291 JAPIA, 291 Java, 10, 17, 25, 111, 248, 410 Java-based object-oriented platform, 248 JBuilder, 111 JSDAI, 17 Job scheduling, 56, 57 K Kinematic, 263, 278, 297, 455 chain, 264, 270 joint, 271, 299 structure, 298 Kinematics, 12, 52, 199, 207, 264, 270, 279 Knowledge database, 60, 68, 72, 161 Knowledge management, 216 L L/D ratio, 187 Late binding, 11, 421 LCS – Local Coordinate System, 252 Lifecycle, 222, 285, 385, 394 Line shape, 246 Linux, 430 LITHO-PRO project, 133 Load ratio, 181 Local information systems, 406 Local ownership, 406 Lot size, 52, 408 Low pass filter, 188 Lower-fault, 243 Low-Level Controller, 318 M Machine Downtime, 237 Machine native format, 222 Machine tool, 16, 90, 95, 109, 192, 198, 205, 209, 215, 237, 263, 268, 273, 279, 286, 293, 297, 346, 372, 442, 450, 456 2-Axis Lathe, 274 5-axis machining, 95, 264, 277, 285, 292, 298 Chiron, 238 information, 209, 342 multi-axis machines, 129, 243 virtual machine tools, 263 Machine-specific, 128, 140, 147, 216, 219 Machining adaptive, 84477 die machining, 293 feature, 14, 24, 30, 35, 52, 82, 100, 107, 128, 203, 218, 239, 243, 285, 293, 309, 318, 333, 343, 371, 405, 424, 428, 444, 450, 459 high speed machining, 207, 293 multi-axis., 110 operations, 30, 51, 73, 82, 100, 109, 115, 134, 187, 192, 198, 239, 248, 293, 310 parameterization, 85, 90, 203 parameters, 89, 115, 132, 207, 237 process plan, 61, 64, 83 strategy, 85, 89, 107, 136, 203, 309 Managers, 310, 320 MANDATE – MANufacturing management DATa Exchange, 401, 405, 408 Manufacturing factors, 83 MDA – Manufacturing Data Analysis, 242, 368, 374, 455 manufacturing friendly, 189 MIP – Manufacturing Information Pipeline, 227 scenario, 66, 222, 267, 274 Material compositions, 422, 430 distribution, 179, 190, 324, 372, 406, 423, 430, 451 heterogeneous material, 422, 426 homogeneous material, 422, 426 information, 336, 341, 347, 431 Material Removal Rate, 174, 179, 189 MathML language, 430 MATLAB, 53, 162, 165 MCD – Machine Control Data, 82, 86 Mechanical chain, 270 Merchant, 172 MES – Manufacturing Execution System, 51, 55 Metadata, 94, 357, 367, 370, 377 Meta-model, 404, 447 Meta-template programming, 92 Methods, 3, 16, 25, 51, 65, 94, 108, 114, 153, 182, 187, 198, 211, 225, 244, 248, 263, 288, 296, 333, 339, 372, 388, 405, 411, 444, 455 Microcontroller, 320, 323 Milling, 9, 16, 24, 36, 45, 82, 87, 90, 94, 108, 110, 115, 118, 129, 133, 139, 172, 185, 200, 212, 216, 218, 222, 252, 263, 276, 293, 443, 454, 457 climb, 175 conventional, 175 cutters, 9, 95, 172, 185, 293 features, 37, 222 operations, 97, 108, 116, 172, 185 plunge, 178, 203, 209 pocket, 87 trochoidal, 203, 209 MIM – Module Integrated Model, 15 MMI – Man Machine Interface, 140 Model CNC data model, 286, 301 diagrams, 112 Digital Semantic Machining Model, 285, 286 driven architecture, 369 kinematic model, 297, 300 Machine tool model, 263, 297, 450 Machining Model, 285 product model, 2, 84, 115, 218, 243, 265, 285, 333, 342, 386 semantic model, 285 MOSES – Model Oriented Simultaneous engineering System, 243 Motion control, 30, 85, 140, 162 Mould and die machining, 292 Moulding, 132, 342 MySQL, 320, 323 N Navigation, 94 NC Index478 Index controller, 54, 128, 140, 147, 198, 212, 223, 450, 458 machining, 51, 56, 60, 67, 148, 199, 205, 250 NCG, 72 NDIS – Network Device Interface Specification protocol, 159 NN – Neural Network, 57, 65 O OAGi – Open Applications Group Inc, 379 OASIS – Organization for the Advancement of Structured Information Standards, 379, 388 Object-oriented, 5, 54, 92, 107, 112, 206, 217, 297, 333 data, 54, 217, 333 programming, 5, 206 OEM, 221, 228 OMA – Object Management Architecture, 368 OMG – Object Management Group, 361, 368, 379 OMM – On Machine Measurement, 237, 239 Operational feedback, 387 Optimization, 57, 174, 192, 202, 210 ORB – Object Request Broker, 368 Overview and fundamental principles, 4, 16, 219 P PACS – Process Analysis and Control System, 236 PADDES – Product DATA Analysis Distributed Diagnostic Expert Systems, 243 Parallel kinematic machine tools, 265, 278 Parallelism, 246 Part definition, 81, 366, 394 program, 82, 92, 95, 109, 115, 119, 146, 216, 266 tolerance information, 85 Pattern strategy, 203 PCA – Principal Component Analysis, 242 PDES – Product Data Exchange Specification, 2, 333, 360 PDM – Product Data Management, 224, 285, 355, 358, 366, 370, 377, 388, 441 PDM Schema, 360 PDQ – Product Data Quality, 287 PDTnet, 370, 373, 377 Performance evaluation, 324 Physical files, 8 Physical transformations, 235 PIM – Platform Independent Model, 369, 374, 377 PLC, 140, 453 PLCS, 226, 379, 387 PLM – Product Lifecycle Management, 17, 224, 357, 361, 368, 374, 385, 396, 460 Plug-and-produce, 227 Poor parameterization machining dilemma, 90 Portability, 191, 216 Post-process, 82, 86, 140, 200, 216, 243, 266 Post-process measurement, 243 Post-processor, 82, 86, 140, 200, 216, 220, 266 Power, 174, 181, 206, 207, 211, 227, 402, 423 Probing simulator, 248, 253 Probing Workingsteps, 246, 253 Process capability, 237, 240, 263, 266 control, 227, 234, 248 cycle time, 237 data, 16, 99, 133, 199, 202, 209, 219, 246, 263, 298, 341, 450, 458 knowledge, 60, 82, 85, 240 PVR – Process Variability Reduction, 236 Process planning, 16, 24, 51, 68, 72, 81, 89, 110, 128, 209, 227, 238,479 244, 251, 265, 333, 390, 443, 450, 458 language, 24, 36 Process plans, 24, 38, 61, 111, 236, 249, 265, 334, 390, 442 Processing of request., 313 Process-intermittent, 243 Product data, 2, 11, 84, 114, 129, 225, 242, 286, 309, 333, 347, 355, 367, 374, 386, 390, 404, 408, 412, 421, 441 Product design, 84, 189, 220, 238, 333, 372, 403 Product Lifetime Management, 17, 224, 228, 357, 361, 368, 374, 379, 385, 460 Product metadata, 355, 367, 370, 377 Product model data, 2, 285 Production Industries, 443 Productivity, 82, 128, 179, 189, 224, 237 Proprietary functions, 216 ProSTEP, 360, 369, 374 Protocol Messages, 312 Q Quality checking, 287 Quasi-newton algorithm, 254 R RASOR – Rules and a System of Rules, 243 Raw stock, 82, 84 Reactive system, 149, 153 RealNC, 450 Real-time, 10, 83, 149, 157, 198, 211, 217, 222, 239, 451, 458 Rectangular pocket, 89, 247 Rectangular shape, 174, 176, 178 Renishaw process control system, 240 Resource availability, 263, 408 capability, 408 capacity, 408 configuration, 408 constitution, 408 manufacturing, 107, 114, 221, 263, 274, 279, 401, 408, 415 repeatability, 408 status, 408 technological, 268 tolerance, 408 Response time, 326 Retrofit, 200 Revolution and indexed feature, 136 Roughing and finishing operations, 138, 239 RS274, 26, 33, 35 RS274NGC, 45 S Sampling Size, 237 Satisfactory, 57, 243 Sawblade, 128, 138 Schema, 5, 24, 45, 219, 250, 274, 335, 341, 361, 366, 388, 395, 421, 428 Sculptured surfaces, 277, 293 SDAI – Data Access Interface, 7, 408 Self-learning algorithms, 109 Self-learning NC machining, 228 Server – client communication protocol, 406 Shop-floor, 51, 63, 82, 89, 107, 128, 140, 151, 201, 205, 209, 216, 237, 242, 266, 346, 450 Simple Network Management Protocol, 311 Simplified architectures Dispatcher/Manager - Agent., 317 Simulation, 56, 81, 98, 154, 161, 165, 191, 208, 216, 221, 240, 249, 264, 295, 379, 441, 459 Graphical, 222, 268 Tool path, 263 Simulink, 54, 165 Smart NC Machining, 224, 227 SMEs, 223, 227 SOAP, 449 Software-on-demand, 446 Index480 Index Solid metallic material, 184 SOP, 51 SPaDe – Standardised Positional Deviation, 249, 254 SPC – Statistical Process Control, 242 Spindle 347 SProCS – Standardized Process Control System, 248, 252 Standard Development Organizations, 379 Standardization, 356, 370, 450 State-of-the-art, 57, 239 STEP Compliant, 107, 147, 205, 212, 335, 337, 346, 388, 422 STEP PDM Schema, 358, 377 STEP-ompliant CNC system, 148, 161 STEP-NC interpretation software, 200 STEP-NC Network Management Protocol, 318 STEPNC++, 92, 100 ST-FeatCAPP, 109 Stiffness, 456 Stone cutting, 128, 133, 139 Structured engagement, 416 Subtype, 5, 34, 94, 247, 343 Supertype, 5, 34, 37, 94 Supplier, 226, 341, 389, 405 Supplier information, 341, 347 Supplier_BSU, 405 Supplier_Code, 405 Surface roughness, 85, 180, 237 Surface-finish, 129 Syntax, 10, 24, 355, 367, 388, 444, 449 T Tactile sensation, 412 Thermal drift, 237, 240 Three-tiers software architecture, 310 Toleranced plane angle measure, 246 flatness, 246 straightness, 246 surface shape, 246 toleranced_length_measure, 87, 246 Tolerances dimensional tolerances, 246 Tool holder, 269, 295 Tool life, 86, 90, 179, 182 Tool wear, 66, 73, 90, 98, 151, 179, 182, 237, 240 Tool-path, 26, 30, 36, 54, 85, 95, 107, 128, 162, 174, 181, 198, 216, 240, 263, 293, 298, 319, 441, 447, 450, 457 Tool-stock, 173, 178, 184, 191 Topology, 3, 11, 25, 159, 444, 455 Touch trigger probes, 34, 244 Traceability, 98, 227, 460 Trajectory, 84, 174, 188, 301, 319 Trajectory motion, 86 Trigger, 24, 100, 153, 157, 245 Turning, 16, 24, 36, 44, 108, 118, 132, 172, 205, 212, 218, 267, 443 TurnSTEP, 109, 110 U UML – Unified Modeling Language, 87, 94, 112, 367, 370, 374 UOF – Unit of Functionality, 12 Upper-fault, 243 User interface, 40, 115, 253, 333, 339, 347, 441 V VDA4965, 391 Vericut, 263, 450 Virtual Enterprise, 84, 222, 415 Virtual time management, 453, 456 Visualization tool, 68 Volume-based, 184 W Wafer fabrication, 235 Wire EDM, 220481 Wirth Syntax Notion, 92 Workability evaluation, 325 Workingsteps, 30, 107, 111, 119, 134, 161, 203, 247, 253, 298, 309, 319 Workpiece, 26, 35, 41, 51, 68, 84, 94, 98, 111, 246, 264, 269, 299, 455, 460 Workplan, 28, 51, 73, 107, 111, 136, 189, 202, 218, 246, 253, 262, 309, 318 WSDL, 378, 449 Wysiwyg, 227 X XML(Extensible Markup Language) data, 10, 109, 300 file, 7, 109, 140, 421, 429 format, 10, 109, 238, 301, 387, 434 model, 430 schema, 10, 222, 367, 387, 421, 433, 449 XML-based, 367, 386, 421, 431, 433 XPATH, 95 Index
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Advanced Design and Manufacturing Based on STEP رابط مباشر لتنزيل كتاب Advanced Design and Manufacturing Based on STEP
|
|