Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Analysis and Performance of Fiber Composites السبت 10 أكتوبر 2020, 12:17 am | |
|
أخوانى فى الله أحضرت لكم كتاب Analysis and Performance of Fiber Composites Third Edition Bhagwan D. Agarwal Consultant Lombard, Illinois, USA Lawrence J. Broutman Consultant Chicago, Illinois, USA K. Chandrashekhara University of Missouri-Rolla Rolla, Missouri, USA
و المحتوى كما يلي :
CONTENTS Preface 1 Introduction I.I Definition I 1.2 Characteristics I 2 1.3 Classification I 3 1.4 Particulate Composites I 5 1.5 Fiber-Reinforced Composites I 7 1.6 Applications of Fiber Composites I 10 Exercise Problems I 14 References I 15 2 Fibers, Matrices, and Fabrication of Composites 2.1 Advanced Fibers I l 6 2.1.1 Glass Fibers I l 6 2.1.1.1 Production of Glass Fibers I 17 2.1.1.2 Glass Composition and Properties I 18 2.1.1.3 Su,face Treatment of Fibers: Sizes and Coupling Agents I 18 2.1.1.4 Forms of Glass Fiber I 21 2.1.2 Carbon and Graphite Fibers I 23 2.1.3 Aramid Fibers I 26 2.1.4 Boron Fibers I 27 2.1.5 Other Fibers I 28 2.2 Matrix Materials I 30 2.2.1 Polymers I 30 xiii 1 16iv CONTENTS 2.2.1.1 Thermosetting and Thermoplastic Polymers I 31 2.2.1.2 Polymer Properties of Importance to the Composite I 31 2.2.1.3 Common Polymeric Matrix Materials I 34 2.2.1.4 Fillers I 39 2.2.2 Metals I 39 2.3 Fabrication of Composites 1 41 2.3.1 Fabrication of Thermosetting Resin Matrix Composites I 42 2.3.1.1 Hand Lay-up Technique I 43 2.3.1.2 Bag Molding Processes I 46 2.3.1.3 Resin Transfer Molding I 49 2.3.1.4 Filament Winding I 49 2.3.1.5 Pultrusion I 51 2.3.1.6 Preformed Molding Compounds I 53 2.3.2 Fabrication of Thermoplastic-Resin Matrix Composites (Short-Fiber Composites) I 55 27.3 Fabrication of Metal Matrix Composites I 58 2.3.4 Fabrication of Ceramic Matrix Composites I 59 Suggested Reading I 60 3 Behavior of Unidirectional Composites 3.1 Introduction I 62 3.1.1 Nomenchiture I 62 3.1.2 Volume and Weight Fractions I 64 3.2 Longitudjnal Behavior of Unidirectional C9mposites I 67 3.2.1 Initial Stiffness I 68 3.2.2 Load Sharing I 71 3.2.3 Behavior beyond Initial Deformation I 73 3.2.4 Failure Mechanism and Strength I 74 3.2.5 Factors Influencing Longitudinal Strei;igth and Stiffness I 76 · 3.3 Transverse Stiffness·and Strength I 80 3.3.1 Constant-Stress Model I 80 3.3.2 Elasticity Methods of Stiffness Prediction I 83 3.3.3 Halpin-Tsai' Equations for Transverse Modulus I 85 62CONTENTS V 3.3.4 Transvyrse Strength I 87 3.3.4.1 Micromechanics of Transverse Failure I 88 3.3.4.2 Prediction of Transverse Strength I 90 3.4 Prediction of Shear Modulus I 91 3.5 Prediction of Poisson's Ratio I 95 3.6 Failure Modes I 96 3.6.1 Failure under Longitudinal Tensile Loads I 100 3.6.2 Failure under Longitudinal Compressive Loads I 102 3.6.3 Failure under Transverse Tensile Loads I 106 3.6.4 Failure under Transverse Compressive Loads I 107 3.6.5 Failure under In-Plane Shear Loads I 107 3.7 Expansion Coefficients and Transport 'Properties I 108 3.7.l Thermal Expansion Coefficients I 108 3.7.2 Moisture Expansion Coefficients I 114 3.7.3 Transport Properties I 114 3.7.4 Mass Diffusion I 117 3.8 Typical Unidirectional Fiber Composite Properties I 123 Exercise Problems I 124 References I 129 4 Short-Fiber Composites 4.1 Introduction I 132 4.2 Theories of Stress Transfer I 133 4.2.1 Approximate Analysis of Stress Transfer I 133 4.2.2 Stress Distributions from FiniteJElement Analysis I 137 4.2.3 Average Fiber Stress I 139 4.3 Modulus and Strength of Short-Fiber Composites I 140 4.3.1 Prediction of Modulus I 141 4.3.2 Prediction of Strength I 145 4.3.3 Effect of Matrix Ductility I 150 4.4 Ribbon-Reinforced Composites I 152 Exercise Problems I 155 References I l56 132vi CONTENTS 5 Analysis of an Orthotropic Lamina 5.1 Introduction I 158 5.1.1 Orthotropic Materials I 158 5.2 Stress-Strain Relations and Engineering Constants I I 60 5.2.1 Stress-Strain Relations for Specially Orthotropic Lamina I 161 5.2.2 Stress-Strain Relations for Generally Orthotropic Lamina I 164 5.2.3 Transformation of Engineering Constants I I66 5.3 Hooke's Law and Stiffness and Compliance Matrices I 174 5.3.1 Geaeral Anisotropic Material I 174 5.3.2 Specially Orthotropic Material I 177 5.3.3 Transversely Isotropic Material I 180 5.3.4 Isotropic Material I 181 158 5.3.5 Specially Orthotropic Material under Plane Stress I 182 5.3.6 Compliance Tensor and Compliance Matrix I 184 5.3.7 Relations between Engineering Constants and Elements of Stiffness and Compliance Matrices I 185 5.3.8 Restrictions on Elastic Constants I 187 5.3.9 Transformation of Stiffness and Compliance Matrices I 189 5.3.10 Invariant Forms of Stiffness and Compliance Matrices I 194 5.4 Strengths·of an Orthotropic Lamina I 196 5.4.1 Maximum-Stress Theory I 197 5.4.2 Maximum-Strain Theory I 200 5.4.3 Maximum-Work Theory I 203 5.4.4 Importance of Sign of Shear Stress on Strength of Composites I 205 Exercise Problems I 209 References I 212 6 Analysis of Laminated Composites 6.1 Introduction I 213 6.2 Laminate Strains I 213 6.3 Variation of Stresses in a Laminate 21q 6.4 Resultant Forces and Moments: Synthesis of Stiffness Matrix I 218 6.5 Laminate Description System I 225 6.6 Construction and Properties of Special Laminates I 226 6.6.1 Symmetric Laminates I 227 6.6.2 Unidirectional, Cross-Ply, and Angle-Ply Laminates I 228 6.6.3 Quasi-isotropic Laminates I 229 6.7 Determination of Laminae Stresses and Strains I 238 6.8 Analysis of Laminates after Initial Failure I 247 6.9 Hygrothermal Stresses in Laminates I 263 6.9.1 Concepts of Thermal Stresses I 263 6.9.2 Hygrothermal Stress Calculations I 264 6.10 Laminate Analysis Through Computers I 272 Exercise Problems I 277 References I 281 Analysis of Laminated Plates and Beams 7.1 Introduction I 282 7.2 Governing Equations for Plates I 283 7.2.1 Equilibrium Equations I 283 7.2.2 Equilibrium Equations in Terms of Displacements I 286 7.3 Application of Plate Theory I 288 7.3.1 Bending I 288 7.3.1.1 Bending of General Laminates I 294 7.3.2 Buckling I 295 7.3.3 Free Vibrations I 301 7.4 Deformations Due to Transverse Shear I 306 7.4.1 First-Order Shear Deformation Theory I 306 7.4.1.1 Transverse Shear Deformation Effects in Bending of a Simply Supported Rectangular Specially Orthotropic Plate I 309 7.4.2 Higher-Order Shear Deformation Theory I 311 7.5 Analysis of Laminated Beams I 314viii CONTENTS 7.5.1 Governing Equations for Laminated Beams--/ 314 7.5.2 Application of Beam Theory I 315 7.5.2.1 Bending I 315 7.5.2.2 Buckling I 318 7.5.2.3 Free Vibrations I 319 Exercise Problems I 320 References I 322 8 Advanced Topics in Fiber Composites 8.1 Interlaminar Stresses and Free-Edge Effects I 324 8.1.1 Concepts of lnterlaminar Stresses I 324 8.1.2 Determination of Interlaminar Stresses I 326 8.1.3 Effect of Stacking Sequence on Interlaminar Stresses I 328 8.1.4 Approximate Solutions for Interlaminar Stresses I 330 8.1.5 Summary I 334 8.2 Fracture Mechanics of Fiber Composites I 335 8.2.1 Introduction I 335 8.2.1.1 Microscopic Failure Initiation I 335 8.2.1.2 Fracture Process in Composites I 336 8.2.2 Fracture Mechanics Concepts and Measures of Fracture Toughness I 338 8.2.2.1 Strain-Energy Release Rate (G) I 339 8.2.22 Stress-Intensity Factor (K) I 341 8.2.2.3 ]-Integral I 345 8.2.3 Fracture Toughness of Composite Laminates I 346 8.2.4 Whitney-Nuismer Failure Criteria for Notched Composites I 349 8.3 Joints for Composite Structures I 355 8.3. l Adhesively Bonded Joints I 355 8.3.1.1 Bonding Mechanisms I 355 8.3.1.2 Joint Configurations I 356 8.3.1.3 Joint Failure Modes I 357 8.3.1.4 Stresses in Joints I 358 8.3.1.5 Advantages and Disadvantages of Adhesively Bonded Joints I 359 324CONTENTS ix 8.3.2 Mechanically Fastened Joints I .360 8.3.2.1 Failure Modes of Mechanically Fastened Joints I 360 8.3.2.2 Advantages and Disadvantages of Mechanically Fastened Joints I 361 8.3.3 Bonded-Fastened Joints I 361 Exercise Problems I 362 References I 363 9 Performance of Fiber Composites: Fatigue, Impact, and Environmental Effects 368 9.1 Fatigue I 368 9.1.1 Introduction I 368 9.1.2 Fatigue Damage I 370 9.1.2.1 Damage/Crack Initiation I 370 9.1.2.2 Crack Arrest and Crack Branching I 370 9.1.2.3 Final Fracture I 373 9.1.2.4 Schematic Representation I 373 9.1.2.5 Damage Characterization I 374 9.1.2.6 Influence of Damage on Properties I 375 9.1.3 Factors Influencing Fatigue Behavior of Composites I 378 9.1.4 Empirical Relations for Fatigue Damage and Fatigue Life I 385 -- 9.1.5 Fatigue of High-Modulus Fiber-Reinforced Composites I 386 9.1.6 Fatigue of Short-Fiber Composites I 390 9.2 Impact I 395 9.2.1 Introduction and Fracture Process I 395 9.2.2 Energy-Absorbing Mechanisms and Failure Models I 396 9.2.2.1 Fiber Breakage I 396 9.2.2.2 Matrix Deformation and Cracking I 398 9.2.2.3 Fiber Debonding I 399 9.2.2.4 Fiber Pullout I 399 9.2.2.5 Delamination Cracks I 401 9.2.3 Effect of Mater;als and Testing Variables on Impact Properties I 401X CONTENTS 9.2.4 Hybrid Composites and Their Impact Strength /. 407 9.2.5 Damage Due to Low-Velocity Impact I 411 9.3 Environmental-Interaction Effects I 416 9.3.1 Fiber Strength I 416 9.3.1.l Features ofStress Corrosion I 416 9.3.1.2 Static Fatigue and Stress-Rupture of Fibers I 417 9.3.1.3 Stress Corrosion of Glass Fibers and GRP I 419 9.3.2 Matrix Effects I 422 9.3.2.l Effect of Temperature and Moisture I 422 9.3.2.2 Degradation at Elevated Temperatures I 426 9.3.2.3 Stress-Rupture Characteristics at Modest Exercise Problems I 431 References I 431 Temperatures I 429 10 Experimental Characterization of Composites 10.1 Introduction I 439 l0.2 Measurement of Physical Properties I 440 10.2.l Density I 440 10.2.2 Constituent Weight and Volume Fractions I 441 10.2.3 Void Volume Fraction I 442 10.2.4 Thermal Expansion Coefficients I 442 10.2.5 Moisture Absorption and Diffusivity I 443 I0.2.6 Moisture Expansion Coefficients I 444 I0.3 Measurement of Mechanical Properties I 445 10.3.1 Properties in Tension I 445 I0.3.2 Properties in Compression I 449 I0.3.3 In-Place Shear Properties I 452 10.3.3.1 Torsion Tube Test I 452 10.3.3.2 Iosipescu Shear Test I 453 10.3.3.3 [±45Js Coupon Test I 455 10.3.3.4 Off-Axis Coupon Test I 456 10.3.3.5 Other Tests I 458 10.3.4 Flexural Properties I 459 439CONTENTS xi 10.3.5 Measures of In-Plane Fracture Toughness I 463 10.3.5.J Critical Strain-Energy Release Rate,(GJ I 463 10.3.5.2 Critical Stress-Intensity Factor or Crack Growth Resistance (K_R) I 464 10.3.5.3 Critical J-Intergral (J) I 470 10.3.6 Interlaminar Shear Strength and Fracture Toughness I 471 10.3.7 Impact Properties I 475 10.4 Damage Identification Using Nondestructive Evaluation Techniques I 481 10.4.1 Ultrasonics I 481 10.4.2 Acoustic Emission I 483 10.4.3 x-Radiography I 485 10.4.4 Thermography I 486 10.4.5 Laser Shearography I 488 10.5 General Remarks on Characterization I 488 Exercise Problems I 490 References I 491 11 Emerging Composite Materials 11.1 Nanocomposites I 496 11.2 Carbon-Carbon Composites I 498 11.3 Biocomposites I 498 11.3.1 Biofibers I 498 11.3.2 Wood-Plastic Composites (WPCs) I 501 11.3.3 Biopolymers I 502 11.4 Composites in "Smart" Structures I 503 Suggested Reading I 504 Appendix 1 Matrices and Tensors Appendix 2 Equations of Theory of Elasticity Appendix 3 Laminate Orientation Code Appendix 4 Properties of Fiber Composites Appendix 5 Computer Programs for Laminate Analysis 55; Index an, 482 1stic emission, 483 tropic material, 175 otropic material, 175 otropy, 3 ntrolled, 10, 11 thermal expansion, 111 nid fibers, see Kevlar iclave, 46, 47, 48 age fiber stress, 139-140 age stress criterion, 349 ; of symmetry, 63, 160 an, 482 molding, 46-48 essure, 46, 47 ocesses, 46-48 lCUUm, 46, 47 ging, 46 ,need orthotropic lamina, 172 ding 'beams, 315 ' general laminates, 294 ' plates, 288 :omposites, 499-503 fibers, 499-501 product, 499 ding mechanisms, 355- 356 on fibers, 27-28 y CVD, 27 roperties of, 28 indary-layer phenomenon, 328 kling, 296 iad, 296 critical, 298 1ode, 296 f plates, 295 f square plate, 300 n off method, 441 can, 483 bon black, 6 bon-carbon composites, 498-499 Carbon fibers, 23-26 also see graphite fibers carbon yield, 24 form of, 26 PAN, 24 precursor, 24 process of nfuk.ing, 24, 35 properties of, 25, 26 roving of, 26 yarn of, 26 Cermets, 6 oxide-based, 6 carbide-based, 6 Ceramic fibers, 28-29 Alumina, 28, 29 Fibers FP, 28, 29 properties of, 29 silicon carbide, 28, 29 Charpy tests, 475 Classical lamination theory, 214 CLT, see classical lamination theory COD, see crack-opening displacement Code, laminate orientation, 544-548 Coefficient of thermal expansion, 111 Cold solders, 6 Combustion method, 441 Compliance curve, 467 Compliance matching procedure, 467 Compliance matrix, 184 invariant form of, 194 transformation of, 189 Compliance tensor, 184 Composite materials: applications of, 10-14 bridge, 12-14 characteristics of, 2-3 classification of, 3-5 consumption of, 12 continuous fiber, 9 cross-ply, 3 definition of, 1-2 degradation of, 426-429 INDEX density of, 65-66, 440 discontinuous fiber, 7, 9 fabrication of, 41-60 fiber-reinforced, 5, 7-10 fibrous composite, 7-11 growth of, 11 hybrid, 9, 407-411 multilayered, 7, 8 particulate, 1, 5-7 particle-reinforced, 5 properties of, 2, 123-124, 550-554 quasi-isotropic, 147 ribbon reinforced, 152-155 short-fiber, 132-155 single layer, 7, 8, 9 tape reinforced, see ribbon reinforced unidirectional, 3, 9, 62-131 use in U.S. industries, 12 Compounding, 57 Compression molding, 56 Computer: laminate analysis through, 272 programs, 550 software, commercial, 556 Concentration, 2 Constant-stress model, 80 Constitutive equations, 192 for laminates, 221. 224-225 Contact Jay-up, 43 Continuous fiber reinforced composite, 9 Coupling agents, 16, 19 Coupling coefficients, see Cross-coefficients Crack-driving force, 466 Crack extension, 342 Crack-extension force, 466 Crack-extension force curve, 466 Crack-growth resistance, 466 Crack-growth resistance curve, 466,467 Crack-length-estimation curve, 467,469556 INDEX Crack-opening displacement, 467 Crack opening mode, 342 Creel, 49 Critical buckling load, 298 Critical fiber length, 136 Critical volume fraction, 75, 76, 146 Cross-coefficients, 168-170 Cross-linking, 42 Cumulative weakening, 78 Curing agent, 35 Curing stresses, 268 Damage: due to low velocity impact, 411-416 fatigue, 368 identification, 481-488 initiation, 96 DCB see double-cantileverbeam Debonding, 96, 370 of fibers, 399 Degradation of composites, at elevated temperatures, 426-429 Delamination, 96 Delamination crack, 370, 373, 396,401 DEN, see double edge notched Density, 57-58, 440 Diffusion, mass, 106 Diffusivity, 120 longitudinal, 120, 121 measurement of, 443 transverse, 120, 121 Discontinuous fiber reinforced composites, see Short-fiber composites Double-cantilever-beam, 472, 473 Double edge notched specimen, 465 Drop-weight impact test, 476 Ductility index, 409 Edge delamination suppression, 335 Edge effects, 324-335 Effect of temperature and moisture on composite properties, 422-426 Effective modulus, 252 Elastic constants, 175, see also Engineering constants number of, 182 relations with compliance matrix, 185 relations with stiffness matrix, 185-187 restrictions on, 187-189 symmetry of, 175 variation of, 170-172 Elasticity methods, 83 Electrical conductivity, 115, I 16, 118 End effects, 78 End tabs, 445, 446 Energy absorbing mechanisms, 396 fiber breakage, 397 fiber debonding, 399 matrix cracking, 398 matrix deformation, 398 Energy curves, 471 Engineering constants, 160 determination of, see Testing of composites extremum value of, 170 for orthotropic lamina, 160, 161 restrictions on, 187-189 relations with compliance matrix, 185 relations with stiffness matrix, 185-187 transformation of, 166-172 variation of, 170-172 variations with fiber orientation, 169-172 Environmental interaction effects, 416-431 Epoxy, 36-38 properties of, 37 Epoxy resin, 36 Equations of motion, 302 Experimental characterization, 431-495 See also Testing of composites Fabrication of composites, 41- 60 by bag molding, 46-48 by contact lay-up, 43 by hand lay-up, 43--45 by resin transfer molding, 49 by stamping, 57 by thermoforming, 57, 58 ceramic matrix, 59-60 filament winding, 49-51 metal matrix, 58-59 molding compounds, 53 prepregs, 55 pultrusion, 51-53 thermoplastic resin 55-58 thermosetting resin 42-55 Failure: envelop, 204-205, 2 initiation, 88, 96 microscopic, 335 internal, 96 load, 97 models, 78-79 modes of, 96-108 shear, 107, 109 Failure criteria, see als Failure theories for biaxial stress fie! 205 for notched composi maximum distortion 91 Whitney-Nuismer, 3, Failure theories: maximum strain, 20( maximum stress, l 9i maximum work, 203 Tsai-Hill, 203 Fatigue, 368-395 characterization of, 3 crack arrest in, 370 crack branching in, 3 cross-ply cracks in, 3 372 damage, 370 damage initiation, 37 delamination crack, 3 empirical relations fo 386 factors influencing be 378 Goodman-Boller relationship, 384 influence of mean str1 383 influence on propertie 375-377 of high modulus fiber composites, 386- of short fiber composi 390-395 schematic representati 373-374 shear, 382-383 S-N curve, 375 Fibers: advanced, 16-30 aramid, 7, 26 average stress on, 139 boron, 27-28eaking of, 96, 100-101, 397 1ckling of, 102, 103 :rbon, 23-26 :ramie, 28 1opped, 10 itical length of, 136 ushing of, 107 :bonding of, 399 1d effects, 133 iber FP, 28 lass, 7, 16-23 cake, 17 composition, 18 end, see strand production of, 17, 18 properties, 18, 19 roving, 21 sizes, 17 staple, 17, 18 strand, 17 surface treatment of, 18- 20 yield, 21 :raphite, 7, 33-26 see also Carbon-fibers neffective length of, 136 (evlar, 26-27 oad transfer length of, 136 nan-made, 7 nicrobuckling of, 102 Jolyethylene, 28-30 Jroperties of, 7, 8 ,ullout, 100-101 ;ilicon carbide, 28 Spectra, 29 ,er aspect ratio, 140 ier composites, applications of, 10-14 properties of, 10 oer packing, 124 oer pullout, 396, 399-401 oer splitting, 106, 107 ber volume fraction minimum, 75, 146 critical, 75, 146 berglass, see glass fibers ber-reinforced composites, 7-10 fament winding, 49-51 patterns, 50, 51 Hers, 39 inorganic, 6 .nite element analysis codes, 555,556 inish, 18 iakes, 6 mica, 6 racture mechanics, 335-355 Fracture mechanics concepts, 338-346 Fracture process in composites, 336-338 Fracture process in impact, 395-396 Fracture process zone, 397 Fracture surface work, 341 Fracture toughness measures of, 338 of composite 1;:lminates, 346-349 Fundamental frequency, 303 Gel coat, 43 Generalized Hooke's law, 175 Generally orthotropic lamina, 164 Glass fibers, 7, 16-23 cake, 17 composition, 18 chopped-strand mat, 22 continuous-strand mat, 22 coupling agent, 18 E-, 19 end, 17 fabric, 23 finish, 18 forms of, 21-23 mat, 22 milled, 23 production of, 17-18 properties of, 8, 18, 19 roving, 21 S-, 19 sizes, 17 compatible, 18, 19 temporary, 18 staple, 17-18 strand, 17 surface treatment of, 15 surfacing mat, 22 veil, 22 woven roving, 22 yarn, 23 Goodman-Boller relationship, 383,384 Graphite fibers, 23 from PAN, 24 precursor, 24 tows, 26 Gel coating, 43 Haplin-Tsai equations for ribbon reinforced composites, 154 for shear modulus, 93 INDEX 557 for short-fiber composites, 141-144 for transverse modulus, 85 for transverse transport properties, 115 Hand lay-up technique, 43 Hole size effect, 349 Homogeneity, 3 Hooke's law, 174 for generally isotropic material, 174-177 for generally orthotropic material, 174-177 for isotropic material, 181- 182 for specially orthotropic material, 177-180 for transversely isotropic material, 180-181 generalized, 175 in contracted notation, 179- 180 Hybrid, see hybrid composites Hybrid composites, 9, 397, 407-411 Hybrid laminates, 3, 5 Hybridization, 407 Hygrothermal forces, 268 Hygrothermal moments, 268 Hygrothermal stresses, 263- 273 Calculations, 264-273 IITRI test fixture, 450 Impact: energy absorbed, 396 energy absorbing mechanisms, 396-401 failure modes, 396-401 initiation energy, 408 low velocity, damage due to, 411-416 propagation energy, 408 hybrid composites, 407-411 strength of short-fiber composites, 152 Charpy, 475 drop weight, 476 instrumented Charpy, 477 lzod, 475-476 Impact energy values for materials, 408 Impact properties, effect of materials variables on, 401-407 effect of testing variables on, 401-407558 INDEX Impact properties (Continued) of unidirectional fiber-epoxy composites, 410 Ineffective length, 136 Interfacial bond, 79 Interfacial area, 1 Interfacial conditions, 79 Initiation energy, 405, 408 Intelligent structures, 503 Interlaminar fracture toughness, determination of, 471- 475 Interlaminar shear strength, determination of, 324- 335, 471 Interlaminar stresses, 471, 472 approximate solutions for, 330--334 concepts of, 324-326 determination of, 326-328 effect of stacking sequence on, 328-330 Invariant forms of compliance matrix, 194-196 stiffness matrix, 194-195 Isotropic composite, 132 Isotropy, 3, 159 Izod tests, 475 J-curve, 471 J-integral, 345-346 critical, 470 determination of, 470-471 energy interpretation, 470 Joints adhesively bonded, 355-360 advantages of, 359 configuration, 356-357 design of, 355 failure modes, 357 stresses in, 358 bonded-mechanically fastened, 361-362 for composite structures. 355 mechanically fastened, 360-- 361 advantages of, 361 disadvantages of, 361 failure modes of, 36 K-calibration factor, 465 K,-curve, see crack extension force curve Kevlar fibers, 26-27 chemistry of, 26 properties of, 27 Knee of stress-strain curve, 250 Lamina, 63, 158, see also Orthotropic lamina Laminate: analysis after initial failure, 247-262 analysis of, 213-281 analysis through computers, 272-277 angle-ply, 228-229 constitutive equations for, 221, 224-225 cross-ply, 228-229 curing stresses, 268 definition of, 158 description system, 225- 226, see also laminate orientation code effective modulus, 251 fracture mechanics of, 335- 355 hygrothermal forces in, 268 hygrothermal moments in, 268 hygrothermal stresses in, 263-272 interlaminar stresses in, 324-335, 471 load carrying capacity of, 255 mechanical strains in, 266 netting analysis, 280 orientation code, 544-549 primary modulus, 250 quasi-isotropic, 229-230 residual stresses, 268 resultant force, 218 resultant moment, 218 secondary modulus, 250 specially orthotropic, 228 stacking sequence, 219, 328, 544-549 stiffness matrices, 221 strains in, 238 strength analysis, 274-276 stress analysis, 273-274 stresses and strains in, determination of, 238- 247 stresses in, 238 symmetric, 227-228 thermal strain, 263 thermal stresses, see Laminate, hygrothermal stresses unidirectional, 228-2 Laminated beams bending of, 315-318 buckling of, 318-319 free vibrations of, 31· governing equations J 314 Laminated plates bending of, 288 buckling of. 295 equilibrium equations 283-286 free vibrations of, 30 governing equations f 283 in terms of displacements, 2: 288 Laminates, 8, 158 bidirectional, 10 Laser shearography, 488 Law of mixtures, see Rt mixtures Load coefficients, 290 Load sharing, 71-73 Load transfer length, 131 Longitudinal direction, t Longitudinal stiffness: factors influencing, 76 prediction of, 68-69 Longitudinal strength: factors influencing, 76 prediction of, 75-76 Low velocity impact, 41 damage due to, 411-4 Mass diffusion, 117-123 Major Poisson's ratio, 95 Mandrel, 50 MAPLE, 555, 556 Mat, 10, 22 chopped-strand, 22-23 continuous-strand, 22- surfacing, 22-23 Material axes, 63 Mathcad, 520, 555, 556 MATLAB,520, 555,556 Matrix material, 2, 7, 30- Bismaleimides, 38 effect of temperature a1 moisture on, 422- elevated temperature, degradation at, 421 429 epoxy,36-38 metals, 39,41 microcracking, 96 phenolics, 381stics, 30-40 lyester, 34-35 ,Iyimides, 38 ,Iymers, 30-40 ~yl esters, 38 ix (mathematical): dition, 514 lumn, 510 finitions, 509 terminant, 513 agonal, 511 ements of, 509 entity, 511 verse, 517 ultiplication, 516 1erations, 514-520 thogonal, 519 incipal diagonal of. 511 w, 510 .ew symmetric, 511 uare, 510 .btraction, 514 mmetric, 511 msformation of, 519 mspose of, 5 I 0 tit, 511 :ix digestion method, 441 :ix dissolution method, 441 rix ductility, 150 .imum strain. theory, 200- 203 .imum stress theory, 197- 200 .imum work theory, 203- 205 .sure of fiber orientation, 148 .surement of jtical crack growth resistance, 464 ·itical I-integral, 470 ·itical strain-energy release rate, 463 ·itical stress-intensity factor, 464 ensity, 440 iffusivity, 444-445 exure properties, 459 npact properties, 475 1-plane shear properties, 452 1terlaminar fracture toughness, 471 1terlaminar shear strength, 471 1easures of fracture toughness, 463 1echanical properties, 445- 481 moisture absorption, 444- 445 moisture expansion coefficients, 444-445 physical properties, 440- 445 properties in compression, 449 properties in tension, 445 stiffness and strength, see testing of composites thermal expansion · 0coefficients, 442 void volume fraction, 442 volume 0 frnction, 441 weight fractions, 441 Microbuckling of fibers, 102, . 103 in extension niode, I02 in shear mode, 102, 103 Micromechanics of transverse failure, 88 Microscopic failure initiation, 3,35 Milled fibers, 23 Minimum volume fraction: of short fiber composite, 146 of unidirectional composite, 76 Minor Poisson's ratio, 95 Modulus: effective, 252 longitudinal, 68, 160 primary, 250, 375 residual, 375 secondary, 250, 375 shear, 91-95, 160 of short-fiber composites, 141-145 transverse, 80-91, 141, 160 Moisture absorption, I I 4 Moisture expansion coefficients, 114 longitudinal, 114 transverse, 114 Mold release, 43 Molding compounds, 10, 53- 55 BMC, 42, 53 bulk, 42, 53 DMC, 53 dough, 53 prepregs, 42, 55 sheet, 42, 53, 54 SMC, 42, 53, 54 Nanocomposites, 7, 496-498 Clay-reinforced, 7 INDEX 559 Nanotube-reinforced, 7 Nanotubes, 7, 496 Single walled, 497 Multi-walled, 497 Natural fibers, 499 properties of, 500 Navier's approach NDE, see nondestructive evaluation Neutral axis, 460 Nodal lines, 304 Nondestructive evaluation, 481-488 Nondestructive evaluation techniques: acoustic emission, 483 laser shearography, 488. 489 thermography, 486 ultrasonics, 481 X-radiography, 485 Notch sensitivity, 346 Notched-bend tests, 464-465 Notched plate, 465 Notched-plate test, 472, 473 Orthotropic lamina, 161 analysis of, 158 balanced, 172 engineering constants of, 160. 166 generally, 161 shear strength, importance of sign, 205-209 specially, 161 strength of, 196-209 strength under biaxial stresses, 196-209 stress-strain relations in arbitrary direction, 164-166 transformation of engineering constants, 166-174 variation of elastic constants, 170-172 Orthotropic materials, 158- 160, see also Orthotropic lamina definition of, 158-160 deformation behavior of, 159 Hooke's law for, 160-174 PAN, 24 Particulate composites, I, 5-7 Plasma spraying, 59560 INDEX Plastics, see polymers Platelets, 2, 496 Ply, 63 Point of instability, 466 Point-stress criterion, 349 Poisson's ratio: major, 95, 161 minor, 95, 161 orediction of, 95 restriction on, 188, 189 Polyester, 34-36 properties of, 35, 36 Polyethylene fibers, 28-30 Dyneema, 29 properties of, 29 Spectra, 29 Polymerization, 42 Polymers, 30-40 crystalline melt temperatures of, 32 epoxy, 36-38 properties of, 37 glass transition temperatures of, 32, 33 melting point of, 32 network, 31 polyester, 34-35 properties of, 35, 36 properties of, 31-34 epoxy resin, 37 phenolics. 38 polyester resin, 34 polyimide, 38 thermoplastic resins, 40 thermoplastic, 31, 38-39 high temperature, 39 properties of, 39, 40 thermosets, 31 temperature for processing of, 32 thermosetting, 31 Preform, 10 Preimpregnated fibers, see prepregs Premixes, 42 Prepregs, 9, 42, 55 Primary modulus, 375 Propagation energy, 405, 408 Properties of fiber composites, 550-554 Properties of unidirectional composites, 123-124 Pultruded shapes, 51, 52 Quasi-isotropic laminate, 229- 230 R-curve, see crack-growth resistance curve Rail shear test, 458 Reinforcements, 2 geometry of, 3 orientation of, 3 Reinforcing material, 2 Residual strength, 376 . Residual stresses, 79-80, 268 Resin transfer molding (RTM), 49 vacuum assisted (VARTM), 49 Resultant forces, 218 Resultant moments, 218 Ri~bon-reinforced composites, 152-155 Halpin-Tsai equations for, 154 in-plane transverse modulus of, 154 Rule of mixtures, 69 for density, 65 for longitudinal diffusivity, 120 for longitudinal modulus, 69 for Poisson's ratio, 96 for stress, 68 for transport properties, 114 Sandwich cross-beam, 459 Secondary cracks, 398 Secondary modulus, 250, 375 Self-consistent models, 84, 85 Self-similar crack growth, 337 SEN, see single edge notched Series solution, 290 Shear coupling, 164 Shear deformation theory first-order, 306-311 higher-order, 311-314 Shear failure, 107, 109 Shear-lag analysis, 134 Shear modulus, 91-95, 160 Shear strain: engineering, 180, 534-535 tensorial, 180, 535 Shear strength, 197 Shearography, laser, 488 Short beam shear test, 472 Short-fiber composites, 132- 157 critical fiber length, 136 critical fiber volume fraction of, 146, 147 effect of matrix ductility on properties of, 150-152 examples of, 133 failure initiation of, J fatigue of, 390-395 impact strength of, 1. ineffective fiber leng1 load transfer length, matrix ductility, effec 150-152 minimum fiber volun fraction of, 146, modulus of, 140 prediction of, 141 randomly oriented, randomly oriented, l· ribbon reinforced, 15 strength of, 140, 145 prediction of, 145 strength of random fl composite, 147, stress distribution in, 139 theories of stress trar for, 133-140 Single edge notched sp, 465 Sizes, 17, 18-20 compatible, 18, 19 temporary, 18 Smart structl!res, 503 S-N curve, 378 Software packages, commercially a, 556 Sound deadener, 6 Specially ortbotropic .la 161 stress-strain relations 161-164 under plane stress, 1: constitutive equati1 192 stiffness coefficien 183 Specially orthotropic m 177 Specific stiffness, 7-8, Specific strength, 7-8, Speckle effect, 488 Spray-up, 44, 45 Stamping, 57 Staple fibers, 18 Static fatigue, 417 Static fatigue of fibers, Static-rupture of fibers, Stiffness: factors influencing, 7 methods of predictin longitudinal, 68 residual, 376 transverse, 84-87ess matrix, 183 1ding, 221 1pling, 221 :ineering constants, relations with, 185-187 ensional, 221 orthotropic materials, 183 ariant form of, 194 ersion of, 238 :ractured plies, 248 thesis of, 218-221 1sformation of, 189 lysis of, 532-535 1patibility conditions, 535 :rmination of, 238 ineering, 180, 535 ;hanical, 26t; ;orial. 180, 535 1sformation equation, 534 -displacement relations, 533 -energy release rate, 339-341 ical, 341 magnification factor, 90 -stress relations, see Stress-strain relations
ors influencing, 76-80 situdinal compressive, 103-106, 197 situdinal tensile, 75-76, 197 :hed, 351-355 ,rthotropic lamina, 196 1uasi-isotropic laminate, 257 dual, 376 hort-fiber composite, 145-149 sverse, 87-91, 197 >ries of, 197-205 th reduction factor, 90 thening mechanisms, 3, 5 ysis of, 536-540 ndary conditions, 537, 539 ng, 268 rmination of, 238-247 ilibrium equations, 539 rothermal, 263-272 rlaminar, 324-335 lual, 79-80, 268 sign convention for, 205, 537 symmetry of, 538 thermal, see, hygrothermal transformation, 539-540 Stress concentration factor, 88, 90 Stress corrosion, 419 features of, 416 of glass fibers, 419-422 of GRP, 419-422 Stress-intensity factor, 339, 341-344 critical, 464 determination of, 464-470 relation with strain energy release rate, 342 Stress-rupture characteristics, 429-431 Stress-rupture of fibers, 418 Stress-strain relations, 160 for anisotropic materials, 175-176 for generally orthotropic lamina, 164-166 for isotropic materials, 540 for specially orthotropic lamina, 161-164 generalized, 175 in terms of engineering constants, 163 Surface energy, 341 Surfacing mat, 44 Symmetric laminates, 227 Tensors: definition of, 527 laws of transformation, 527 Tests, bend, four point, 459, 460 bend, three point, 459, 460 compression, 449 coupon, [±45],, 455 coupon, off-axis, 456 double cantilever beam, 472 flexural, 459 fracture toughness, 463 impact, 475 drop weight, 476 Charpy, 476 Izod, 476 in-plane shear, 452 Iosipescu shear, 453 notched plate, 472 picture frame, 458 rail shear, 458 sandwich cross beam, 459 sandwich beam, 448 INDEX 561 short beam shear, 472 tension, 445 torsion tube, 452 Testing of composites: bending, 459 Charpy, 475-481 compression, 449 drop weight, 476 flexural, 459 four-point bending, 459 fracture toughness, 463-475 in-plane shear, 452-459 Iosipescu, 453 [ ± 45], coupon, 455 off-axis coupon, 456 torsion tube, 452 instrumented Charpy, 475- 481 Izod, 475-481 notched bend, 465 notched plate, 463 off-axis shear, 457 off-axis tension, 447 picture frame, 458 rail shear, 458 sandwich crossbeam, 459 short beam shear. 472 tension, 445-449 three point bending, 459 Thermal stresses concepts of, 263-264 Thermography, 486-488 pulse-echo, 487 through transmission. 487 Thickness shear, 472 Transverse shear deformations due to, 306- 311 effects of, 306 Transverse splitting, 102 Transversely isotropic, 63, 160 Theories of failure, see failure theories Theories of stress transfer, 133-140 Thermal conductivity, 115- 117 Thermal expansion coefficients, 108-114 longitudinal, 111 transverse, 111 Thermal strains, 264 Thermal stress, see Hygrothermal stress Thermoforming, 57 Them10plastic polymers, 31 properties of, 40 Total impact energy, 405 Transformation: matrix, 190562 INDEX Transformation (Continued) of strain, 534 of stress, 539 relations. 190 Transport properties, 114 Transverse: isotropy, 63 splitting, 102-106 stiffness, 80-87 srrength, 87-91 Transverse direction, 63 Tsai-Hill theory, 203 Ultrasonics, 481-483 pitch-catch method of, 481, 482 pulse-echo method of, 481, 482 through transmission method of, 482, 483 Unidirectional composites: anisotropy of thermal expansion, 112 coefficient of thermal expansion, 108-114 critical volume fraction, 75- 76 expansion coefficients, 108- 114 failure initiation, 74 failure mechanism of, 74 failure modes, 96-108 longitudinal behavior of, 67 longitudinal stiffness, 68-71 longitudinal strength, 75-76 factors influencing, 76 statistical models for, 77 mass diffusion in, 117-123 model for, 68 moisture in, 114 minimum volume fraction, 75 Poisson's ratio, 95 major, 95 minor, 95 prediction of, 95-96 properties of, typical, 113, 123, 124 shear modulus of, 91-95 prediction of, 91 Haplin-Tsai equations for, 93 thermal conductivities, 115- 117 thermal expansion, 108-114 transport properties, 114 transverse stiffness, 80-87 transverse strength, 87-91 prediction of, 90 empirical approa 91 transversely isotror Unstable crack growtl Variation of stresses i laminate. 216- Veil, 23, 44 Voids. 67 volume fraction, 6~ Void content, 67 Volume fraction, 64, , critical, 76, 146. definition of, 65:_6( minimum, 75, 146 Weight fractions, 2, 6 Whitney-Nuismer fail criteria, 349-'.1 for notched compo 349-355 Winding angle, optim Wood-plastic compos 502 X-radiography, 485~ penetrant-enhanced
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Analysis and Performance of Fiber Composites رابط مباشر لتنزيل كتاب Analysis and Performance of Fiber Composites
|
|