Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Computational Modeling of Tensegrity Structures السبت 14 نوفمبر 2020, 11:16 am | |
|
أخوانى فى الله أحضرت لكم كتاب Computational Modeling of Tensegrity Structures Art, Nature, Mechanical and Biological Systems Buntara Sthenly Gan
و المحتوى كما يلي :
Contents 1 All About Tensegrity . 1 1.1 Definition 1 1.2 Computational Tensegrity . 2 1.3 Where Can We Find Tensegrity? 3 1.3.1 Tensegrity in Nature and Biology . 3 1.3.2 Tensegrity in Art and Architecture . 4 1.3.3 Tensegrity in Mechanical Engineering . 5 1.4 Mathematical Modeling of a Pin-Joint Structure 5 1.5 Classification of Tensegrity 8 1.6 Creating a Class I Tensegrity: A Workshop 9 1.6.1 Material . 10 1.6.2 Triangular Icosahedron Tensegrity . 10 1.6.3 Truncated Tetrahedron Tensegrity . 14 1.6.4 Rhombicuboctahedron Tensegrity . 14 1.6.5 Skew Hexagonal Cylindrical Tensegrity 16 References 20 2 Linear Algebra for Tensegrity . 23 2.1 First-Order Linear Equation in Matrix Form . 23 2.1.1 Homogeneous Matrix . 24 2.1.2 Zero Determinant of a Matrix 24 2.2 Rectangular Matrix 26 2.2.1 Vertical Matrix 27 2.2.2 Horizontal Matrix 28 2.3 A Solution of an Indefinite Rectangle Matrix 29 2.4 Rank of a Matrix 29 2.4.1 Full Rank Matrix 30 2.4.2 Deficient Rank Matrix 31xii 2.5 Eigenvalues Decomposition (EVD) 31 2.5.1 Various Transformation Matrix . 33 2.5.2 Various Transformation Matrices’ Program Listing . 35 2.6 Singular Value Decomposition (SVD) 37 2.6.1 An Inverse of a Matrix Using SVD 38 2.6.2 Inverse of Rectangular Matrices’ Program Listing 40 Further Reading . 41 3 Structural Computations by Using SVD . 43 3.1 Structural Analysis of a System of Structure . 43 3.2 Classification of a Structural System . 43 3.3 A Physical Interpretation of SVD of an Equilibrium Matrix . 44 3.4 Force Density Method (FDM) 46 3.4.1 Equilibriums at a Node . 46 3.4.2 Connectivity Matrix 47 3.4.3 Equilibrium Matrix of a Structural System 48 3.5 Equilibrium of a Structural System 49 3.6 Solving Structural System Examples . 51 3.6.1 Class I Structural System 52 3.6.2 Class I Structural System Program List . 53 3.6.3 Class II Structural System . 55 3.6.4 Class II Structural System Program List 57 3.6.5 Class III Structural System 59 3.6.6 Class III Structural System Program List . 61 3.6.7 Class IV Structural System 63 3.6.8 Class IV Structural System Program List . 65 References 67 4 Form-Finding of a Tensegrity . 69 4.1 Rank Condition and Nullity of a Tensegrity . 69 4.1.1 Flowchart for Form-Finding of a Tensegrity . 70 4.2 Initial Stiffness of a Tensegrity . 70 4.2.1 Triplex Tensegrity Example 72 4.2.2 Calculations of Tension Coefficient 76 4.2.3 Form-Finding Conditions 77 4.2.4 TriplexFormFindingExample Program List 79 4.3 Truncated Cone Tensegrity Example . 82 4.3.1 Calculations of Nodal Coordinates 82 4.3.2 Calculations of Tension Coefficient 85 4.3.3 TconeFormFindingExample Program List 90 4.4 Triangular Icosahedron Tensegrity Example . 92 4.4.1 Calculations of Tension Coefficient 95 4.4.2 Form-Finding Conditions 96 4.4.3 Icosahedron Form-Finding Example Program List 99 References 103 Contentsxiii 5 Designing a Tensegrity . 105 5.1 Introduction 105 5.2 Tensegrity Structures . 106 5.3 Numerical Form-Finding Method . 106 5.3.1 Form-Finding of Tensegrity Using Force Density Prototype 106 5.3.2 Approximation of Coordinates from Tension Coefficients 107 5.3.3 Approximation of Force Densities from Coordinates 108 5.4 Genetic Algorithm (GA) 108 5.4.1 A Practical Example of Using GA . 109 5.4.2 Example Using GA Program List . 114 5.5 GA for Form-Finding of a Tensegrity 116 5.5.1 Solution Procedure . 117 5.5.2 Encoding Scheme for Individual Population . 118 5.5.3 Fitness and Penalty Functions 118 5.6 Numerical Examples . 121 5.6.1 Six-Node Irregular Tensegrity Structure 121 5.6.2 Eight-Node Irregular Tensegrity Structure . 121 5.6.3 Ten-Node Irregular Tensegrity Structure 122 5.6.4 IrregularFormFindingUsingGA Program List 122 5.7 Design of a Real Eight-Node Irregular Tensegrity Structure . 135 5.7.1 Form-Finding . 135 5.7.2 Sizing of Members . 136 5.7.3 Structural Analysis . 138 5.7.4 Loadings and Stress/Stability Response Evaluation . 138 References 140 6 Tensegrity in Art and Architecture: Geometrical Works . 141 6.1 Tensegrities Inside a Sphere Geometry . 141 6.2 Cylindrical Tensegrity 142 6.2.1 N-Plex Cylindrical Tensegrity Generator Program List . 144 6.3 Truncated-Cone (T-Cone) Tensegrity 148 6.3.1 N-Plex T-Cone Tensegrity Generator Program List 153 6.4 Conic Tensegrity 155 6.4.1 N-Plex Conic Tensegrity Generator Program List . 157 6.5 Paraboloid Tensegrity . 158 6.6 Various Stacked Cylindrical Tensegrity . 158 6.6.1 Layered N-Plex Cylindrical Tensegrity Program List 160 6.7 3D Geometric Transformation 162 6.8 Arch Tensegrity . 163 6.8.1 Arch Tensegrity Program List 164 6.9 Spiral Tensegrity 166 6.9.1 Spiral Tensegrity Program List . 167 Contentsxiv 7 Tensegrity for Mechanical Application: Vibration . 171 7.1 Introduction 171 7.2 Dynamics of Axially Prestressed Cables 172 7.3 Equation of Motion 173 7.4 Spectral Element Modeling 174 7.4.1 Governing Equations in the Frequency Domain 174 7.4.2 Spectral Nodal DOFs, Forces, and Moments . 175 7.5 Weak Form of Governing Equation 177 7.5.1 Spectral Element Equation . 177 7.6 Local to Global Axis Transformation and Assembling . 179 7.7 Vibration of a Uniform Prestressed Cable Example . 182 7.8 Vibration of a Uniform Prestressed Cable Example Program List . 183 7.8.1 Vibration of a Triplex Tensegrity Example 185 References 190 8 Tensegrity in Biological Application: Cellular Tensegrity . 193 8.1 Introduction to Cell Mechanics . 193 8.2 Models for Cytoskeletal Mechanics 193 8.3 Nucleated Cell of Tensegrity . 194 8.3.1 NucleatedCellTensegrity Program List . 195 8.4 Enumeration of Triangular Icosahedron Tensegrity 198 8.4.1 EnumerationTIcosahedronTensegrityGenerator Program List 199 8.5 Models for Red Blood Cell 201 8.5.1 Enumeration Ten-Plex Cylindrical Tensegrity Program List 202 8.6 Tensegrity Models for DNA 204 8.6.1 DNA Strands of Tensegrity Module Program List . 204 References 207 Index . A Arch tensegrity, 4, 5, 163 Art, 4, 5 Axially prestressed structures, 172 B Biological application cytoskeletal mechanics, 193, 194 nucleated cell, 194 red blood cell, 201 triangular icosahedron tensegrity, 198 Biology, 3, 4 C Cell mechanic, 193 Class I tensegrity material, 10 rhombicuboctahedron, 14, 16 skew hexagonal cylindrical, 16, 20 triangular icosahedron tensegrity, 10–14 truncated tetrahedron, 14 Computational cost and speed, 3 Computational tensegrity, 2, 3 Conic tensegrity, 155–158 Constant matrix, 24 Coordinate transformation and assembling processes, tensegrity member, 179–182 Cylindrical tensegrity enumeration of 3-9 plex, 145–146 MATLAB code, N-plexCylindricalTensegr ityGenerator.m., 144–147 shifting/rotation angle, 142 struts and braces, 143 tension coefficients, 144 Cytoskeleton, 4, 193, 194 D Deficient rank matrix, 31 Degree of freedom (DOF), 8 Deoxyribonucleic acid (DNA), 204 Design real eight-nodes irregular tensegrity structure loadings and stress/stability response evaluation, 138, 139 numerical form-finding process algorithm, 135–136 sizing of members, 136 structural analysis, 138 Discrete Fourier transform (DFT), 172 Dynamic shape functions, 171 Dynamic stiffness method (DSM), 171 E Eigenvalues decomposition (EVD) linear algebra, 31 program listing, various transformation matrices, 35, 37 singular values, 32 singular vectors, 32 square matrix, 33 transformation matrix, 33, 34, 36 Eight-node irregular tensegrity structure, 121, 124, 125 Index210 Enumeration ten-plex cylindrical tensegrity, 202–204 Equilibrium matrix decomposition, 59, 64 FDM, 55 FGM, 51 physical interpretation of SVD, 44, 45 SEM, 186 structural system, 43, 48–51 SVD, 70, 108 F Finite element method (FEM) assembling process, 8 discretization, 7 eight-node tensegrity object, 138 elements, assembled, 7 harp, 7 idealization of physical system, 6 First order linear equation constant matrix, 24 zero determinant of matrix, 24–26 Floating point operations per second (FLOPS), 2 Force density method (FDM) cables network problems, 46 connectivity matrix, 47 equilibrium matrix, structural system, 48, 49, 52, 59 equilibriums at a node, 46, 47 tensegrity structure, 46 tension coefficients, 85, 95 Form-finding cable connections chart, 142 flowchart, 70, 71 GA (see Genetic algorithm (GA)) irregular tensegrity, MATLAB code, 122–134 iteration process, 106 stochastic procedure and numerical optimization algorithm, 105 structural configurations, self-stresses, 105 T-cone tensegrity, 82–92 triangular icosahedron tensegrity, 96–102 triplex tensegrity, 72–79 Free vibration axially prestressed triplex tensegrity, 185–186 equation of motion, 173, 174 uniform prestressed cable, 182–183 Frequency domain, 172, 175, 177 Full rank matrix, 30 G Generalized stress, 49 Genetic algorithm (GA) connectivity matrix, 117 crossover, 109, 113 eliteness, 109 fitness functions, 109, 114 form-finding connectivity matrices and prototype force density vector, 117 encoding scheme, 118, 119 fitness and penalty functions, 118, 120, 121 irregular tensegrity structure, 117 global minimum value, polynomial function, 111 MATLAB code, maximum value of polynomial function, 114–116 mutation, 109, 113 numerical optimization algorithm, 108 pairing of parents, 112 polynomial function, minimum values, 110 population, 112 H Homogeneous matrix, 24 Horizontal matrix equations, 29 Hybrid tensegrity bridge, 5 I Inconsistent matrix equations, 25, 27, 29, 31 Indefinite matrix equations, 26, 30 Indefinite rectangle matrix, 29 Initial tangent stiffness matrix, 72 Irregular tensegrity structure, 117 L Layered N-plex cylindrical tensegrity, 160, 161 Least squares solution, 37 Local coordinate system, 179 M Mathematical modeling FEM (see Finite element method (FEM)) harp, FEM, 7 physical system, 6 Mechanical engineering, 5 Million instructions per second (MIPS), 2 Index211 N N-polygon cylindrical tensegrity, 141 Nucleated cell, 194–198 Null-space matrix, 72, 78, 88, 99 Null-space vector, 30, 33 Numerical form-finding method approximation of force densities, 108 approximation of nodal coordinates, 107 force density prototype, 106 Numerical technique eight-node irregular tensegrity structure, 121, 124, 125 MATLAB code, irregular tensegrity, 122–134 six-node irregular tensegrity structure, 121–123 ten-node irregular tensegrity structure, 122, 126–128 P Paraboloid tensegrity, 158, 159 Probability-based mutation, 121 Pseudoinverse, 37, 39 R Rank conditions, 69, 70, 108 deficiency, 78, 88, 98, 107, 120 deficient rank matrix, 31, 56, 59, 64 full rank matrix, 30 Rectangular matrix horizontal, 28, 29 vertical, 27, 28 Red blood cell, 201 Rhombicuboctahedron tensegrity, 14, 16 Rule of connection, 7 S Self-stressing, 1 Singular value decomposition (SVD) characteristics of matrices, 37 inverse matrix, 38, 39 InverseOfRectangularMatrices.m, 40 physical interpretation, equilibrium matrix, 44, 45 pseudoinverse, 37 vertical matrix, 38 Singular values, 32, 37, 50 Singular vectors, 32, 37, 44 Six-node irregular tensegrity structure, 121–123 Skew hexagonal cylindrical tensegrity, 16, 20 Skylon, 4 Spectral analysis method (SAM), 171 Spectral element matrix, 179, 180 Spectral element method (SEM), 172 Spectral element modeling dynamic shape function, 175, 176 governing equations, frequency domain, 174 spectral element equation, 177–179 spectral nodal DOFs, forces and moments, 175 weak form, governing equation, 177 Sphere geometry, 141 Spiral tensegrity, 166–169 Stacked cylindrical tensegrity, 158–162 Structural analysis, 43, 138 Structural system Class I, 52–55 Class II, 55–59 Class III, 59–63 Class IV, 63–67 classification, 43, 44 configuration, 43 equilibrium concept, 49–51 equilibrium matrix, 48, 49 Struts and cables, 8 T Ten-node irregular tensegrity structure, 122, 126–128 Tensegrity art and architecture, 4 classification, 8, 9 definition, 1 initial stiffness, 70, 72 mechanical engineering, 5 nature and biology, 3, 4 rank condition and nullity, 69, 70 struts and cables, 9 3D geometric transformation, 162, 163 Triangular icosahedron tensegrity, 10–14, 198–199 Cartesian coordinate axes, 92 Cartesian coordinates of nodes, 96 coordinate system, 93 form finding conditions, 96, 98–100 Lagrange multiplier, 94 MATLAB code, form finding, 99–102 tension coefficient, calculations, 95 Index Triplex Cartesian coordinates of nodes, 75 creation, triangular prism, 72 form finding conditions, 77–79 MATLAB code, form finding, 79, 81 nodal coordinates, 72, 74, 75 polar coordinates of nodes, 73 symmetrical constraints, 74 tension coefficients, calculations, 76, 77 Truncated cone (T-cone) tensegrity Cartesian coordinates of nodes, 85 connectivity configurations, 150, 151 constrained optimization problem, 83 creation, square cone, 82 enumeration of 3-9 plex, 151 form finding conditions, 87–89 MATLAB code, form finding, 90, 92 nodal coordinates, 148, 151 N-plexTconeTensegrityGenerator program list, 153–154 polar coordinates of nodes, 83 shifting/rotation angle, 149 struts and braces, 148 tension coefficient, calculations, 85 tension coefficients, 85, 86, 150 Truncated tetrahedron tensegrity, 14 V Vertical matrix equation, 27, 28 Vibration modes, 171 W Workshop material, 10 rhombicuboctahedron tensegrity, 14, 16 skew hexagonal cylindrical tensegrity, 16, 20 triangular icosahedron tensegrity, 10–14 truncated tetrahedron tensegrity, 14
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Computational Modeling of Tensegrity Structures رابط مباشر لتنزيل كتاب Computational Modeling of Tensegrity Structures
|
|