Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Design Engineer’s Reference Guide السبت 14 نوفمبر 2020, 12:09 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Design Engineer’s Reference Guide Mathematics, Mechanics, and Thermodynamics Keith L. Richards
و المحتوى كما يلي :
Contents Preface xv Author xvii Acknowledgement .xix Chapter 1 Mathematics .1 1.1 Trigonometry .1 1.1.1 Right-Angled Triangle 1 1.1.2 Oblique-Angled Triangles 2 1.1.3 Trigonometric Relations .2 1.2 Hyperbolic Functions 3 1.2.1 Inverse Hyperbolic Functions 3 1.3 Solution of the Quadratic Equation .4 1.4 Solution of Simultaneous Equations (Two Unknowns) .4 1.5 Laws of Exponents 4 1.6 Expansions .5 1.7 Real Root of the Equation f(x) = 0 Using the Newton–Raphson Method .5 1.8 Series .6 1.9 Logarithms 6 1.10 Differential Calculus .7 1.11 Integral Calculus .7 1.11.1 Integration Is the Inverse of Differentiation .7 1.11.2 Indefinite Integrals . 10 1.11.3 Determination of an Area 10 1.11.4 Approximate Integration 12 1.12 Laplace Transforms . 13 1.12.1 First Derivative . 14 1.12.2 Second Derivative 14 1.12.3 Higher Derivatives . 15 1.13 Parallel Axis Theorem . 15 1.13.1 Calculation of the Moment of Inertia Using the Parallel Axis Theorem . 15 1.14 Complex Numbers . 17 1.14.1 Introduction 17 1.14.2 Argand Diagram . 18 1.14.3 Manipulation of Complex Numbers . 19 1.14.3.1 Addition and Subtraction 19 1.14.3.2 Multiplication 19 1.14.3.3 Division .20 1.14.4 Polar Form of a Complex Number .20 1.14.5 Exponential Form of a Complex Number 22 1.15 Determinates .23 1.15.1 Introduction 23 1.15.2 Description .23 1.15.3 Determinant Order .24 1.15.4 Properties of the Determinant 24vi Contents 1.15.5 Minors and Cofactors .25 1.16 Matrices .25 1.16.1 Introduction 25 1.16.2 Definitions 25 1.16.2.1 Square Matrix .26 1.16.2.2 Row Matrix .26 1.16.2.3 Column Matrix .26 1.16.2.4 Diagonal Matrix 26 1.16.2.5 Unit Matrix .26 1.16.2.6 Symmetric Matrix 27 1.16.2.7 Skew Symmetric Matrix—That Is, Anti-Symmetric (aij = −aji) .27 1.16.2.8 Null Matrix .27 1.16.3 Matrix Algebra .27 1.16.3.1 Additions of Matrices .27 1.16.3.2 Multiplication of Matrices 27 1.16.3.3 Transposition of a Matrix .28 1.16.3.4 Adjoint of a Matrix .28 1.16.3.5 Inverse of a Square Matrix .28 1.16.3.6 Transformation from Cylindrical Coordinates to Cartesian Coordinates 28 Chapter 2 Introduction to Numerical Methods .29 2.1 Introduction .29 2.2 Numerical Methods for Integration .29 2.2.1 Manual Method 30 2.2.2 Mid-Ordinate Rule .30 2.2.3 Trapezoidal Rule 32 2.2.4 Simpson’s Rule .34 2.3 Evaluation of Errors .36 2.4 Round-Off and Truncation Errors .36 2.4.1 Round-Off Errors .36 2.4.2 Truncation Errors .36 2.5 Errors Arising from Differentiation 38 2.6 Integration Errors 38 2.7 Series .39 2.8 Newton–Raphson Method .39 2.8.1 Demonstration of the Method 39 2.9 Iterative Methods for Solving Linear Equations . 41 2.9.1 Gauss Elimination Method 41 2.9.2 Jacobi Iterative Method 41 2.9.3 Gauss–Seidel Method . 45 2.10 Non-Linear Equations . 47 2.10.1 Newton’s Method 47 Chapter 3 Properties of Sections and Figures . 51 3.1 Centroid C x, Cy, Cz . 51 3.2 Moment of Inertia/Second Moment of Area . 51 3.3 Polar Moment of Inertia of a Plane Area 51Contents vii Chapter 4 Statics . 57 4.1 Force, Mass and Moments . 57 4.1.1 System of Units 58 4.1.2 Free-Body Diagrams 58 4.1.3 Forces and Moments 58 4.1.3.1 Force .58 4.1.3.2 Moments .59 4.1.3.3 Couples .60 4.1.3.4 Rigid-Body Equilibrium .60 4.2 Structures .60 4.2.1 Pin Joint 62 4.2.1.1 Struts and Ties 62 4.2.1.2 Bow’s Notation 62 4.2.2 Solving Forces in Pin-Jointed Frames 64 4.2.3 Method of Joints .66 4.2.4 Graphical Methods as Applied to a 2-Dimensional Framework 66 4.2.5 Method of Sections as Applied to a Plane Framework 67 4.3 Vectors and Vector Analysis .70 4.3.1 Vector Addition 70 4.3.2 Vector Subtraction 70 4.3.3 Resolving a Vector into Components .70 4.3.4 Analytical Determination of the Components of the Vector . 71 4.3.5 Resultant of a Number of Coplanar Vectors (More than Two Vectors) .72 4.3.6 Analytical Solution to Figure 4.22 .73 4.3.7 Product of Vectors 73 4.3.7.1 Multiplication of a Vector ‘P’ by a Scalar ‘K’ 73 4.3.7.2 Scalar Product of Two Vectors .73 4.3.8 Vector (or Cross) Product . 74 Chapter 5 Dynamics . 75 5.1 Kinematics . 75 5.2 Nomenclature . 75 5.3 Newton’s Laws of Motion (Constant Acceleration) . 75 5.3.1 Linear Motion Equations 75 5.3.2 Angular Motion Equations . 76 5.4 Rectilinear Motions . 76 5.4.1 Uniform Linear Motion 76 5.4.2 Non-Uniform Linear Motion 77 5.4.3 Variable Velocity 77 5.4.4 Variable Acceleration .77 5.5 Circular Motion . 78 5.5.1 Motion on a Circular Path 78 5.5.2 Rolling Wheel 79 5.6 Absolute and Relative Motion .79 5.7 Rotating Unit Vector 79 5.8 Vector of Point in a Rotating Reference Frame .80 5.9 Velocity of a Point in a Moving Reference Frame 81 5.10 Acceleration of a Particle 82 5.11 Kinematics of Rigid Bodies in One Plane .82viii Contents 5.12 Instantaneous Centre of Rotation 83 5.13 Kinematics of Rigid Bodies in Three Dimensions 84 5.14 Theorems .84 5.15 Translation Motion 85 5.16 Rotation about a Fixed Axis 85 5.17 Rotation about a Fixed Point .86 5.18 General Motion 87 Chapter 6 Mechanical Vibrations .89 6.1 Introduction .89 6.2 Single Degree of Freedom: Free Vibrations 89 6.2.1 Free Natural Vibrations 89 6.2.2 Simple Harmonic Motion . 91 6.2.2.1 Angular Frequency, Frequency and Periodic Time 92 6.2.2.2 Equations for SHM .93 6.2.2.3 Free Natural Vibrations of a Single-Degree-ofFreedom System .95 6.2.2.4 Elementary Parts of a Vibrating System 97 6.2.2.5 Linear Elastic Oscillations 97 6.2.2.6 Transverse Vibrations .99 6.2.2.7 Energy Methods (Rayleigh) 102 6.3 Damped Vibrations 105 6.3.1 Viscous Damping . 106 6.3.2 Coulomb Damping . 111 6.3.3 Inertial Damping 112 6.3.4 Internal Damping . 112 6.4 Single Degree of Freedom: Forced Vibrations 113 6.4.1 Forced Vibrations . 114 6.4.1.1 Disturbing Force Acting on Mass . 114 6.4.1.2 Phasor Representation 115 6.5 Natural Frequency of Beams and Shafts . 116 6.5.1 Degrees of Freedom . 117 6.5.2 Beams Subject to Transverse Vibrations 118 6.5.3 Simply Supported Beam Subject to Transverse Vibration . 118 6.5.4 Torsional Frequency of a Cantilevered Shaft Carrying a Mass at the Free End . 118 6.5.5 Torsional Frequency of a Shaft Carrying Two Masses 119 6.5.6 Torsionally Equivalent Shafts 120 6.5.7 Torsional Frequency of a Geared Shaft Carrying Two Masses 123 6.5.8 Torsional Frequency of a Shaft Carrying Three Masses . 128 6.6 Forced Vibrations 129 6.6.1 Overview 129 6.6.2 External Forcing . 130 6.6.3 Frequency Response Diagrams 132 6.6.4 Harmonic Movement of the Support 136 6.6.5 Magnification Factor 137 6.6.6 Transmissibility 140 6.6.7 Using Forced Vibration Response to Measure the Properties of a Structure 141Contents ix Chapter 7 Introduction to Control Systems Modelling . 145 7.1 Introduction . 145 7.1.1 Basics of Control Theory . 145 7.1.2 Open-Loop Control System . 145 7.1.3 Closed-Loop Control System . 146 7.1.4 Control System Definitions 146 7.1.4.1 System . 146 7.1.4.2 Input 146 7.1.4.3 Output . 147 7.1.4.4 Open Loop 147 7.1.4.5 Closed Loop 147 7.1.4.6 Feedback . 147 7.1.4.7 Servomechanism . 147 7.1.4.8 Regulator . 147 7.1.5 Feedback Characteristics 147 7.1.6 Control Models . 148 7.1.7 Block Diagrams and Transfer Functions 148 7.2 Engineering System Models 149 7.2.1 Similarities of Elements between Systems . 149 7.2.1.1 Capacitance . 149 7.2.1.2 Resistance . 150 7.2.1.3 Inductance, Inertia and Inertance . 150 7.2.1.4 Other Symbols Used . 150 7.2.2 Laplace Transforms 150 7.2.3 Transfer Functions 150 7.2.4 Linear Mechanical Systems . 151 7.2.4.1 Spring 151 7.2.4.2 Damper or Dashpot . 151 7.2.4.3 Mass 152 7.2.4.4 Mass–Spring System 152 7.2.4.5 Spring–Damper System 154 7.2.4.6 Mass–Spring–Damper System . 155 7.2.5 Rotary Mechanical Systems . 157 7.2.5.1 Torsion Bar 157 7.2.5.2 Torsion Damper 158 7.2.5.3 Moment of Inertia . 158 7.2.5.4 Geared Systems 158 7.2.6 Thermal Systems 162 7.2.6.1 Heating and Cooling . 162 7.2.6.2 Process Heating System 164 7.2.7 Hydraulic System . 166 7.2.7.1 Hydraulic Motor . 166 7.2.7.2 Hydraulic Cylinder . 168 7.2.7.3 Directional Valve and Actuator 169 7.2.7.4 Directional Control Valve and Actuator Connected to a Mass . 171 7.2.8 Electrical System Models . 174 7.2.8.1 Resistance . 174 7.2.8.2 Capacitance . 175 7.2.8.3 Inductance . 176x Contents 7.2.8.4 Potentiometer 176 7.2.8.5 R–C Series Circuit 177 7.2.8.6 L–C–R in Series . 178 7.2.9 Closed-Loop System Transfer Function with a Unity Feedback . 179 7.3 Block Diagram and Transfer Function Manipulations 181 7.3.1 Open-Loop Control System . 181 7.3.2 Closed-Loop Control System . 181 7.3.3 Summing Junctions 182 7.3.4 Closed-Loop System Transfer Functions . 183 7.3.5 Velocity Feedback 185 7.3.6 Disturbance 186 7.3.6.1 To Eliminate the Effect of a Disturbance . 188 7.3.7 Proportional and Differential Control 188 7.3.8 Simplifying Complex Systems . 190 Chapter 8 Heat and Temperature 193 8.1 Heat 193 8.1.1 Temperature 193 8.1.1.1 Temperature Scales . 193 8.1.2 Thermal Expansion 194 8.1.3 Heat Capacity . 196 8.1.4 Heat Transfer 197 8.1.4.1 Conduction 197 8.1.4.2 Convection 198 8.1.4.3 Radiation . 198 Chapter 9 Thermodynamic Basics 201 9.1 Introduction . 201 9.1.1 What Is Thermodynamics? 201 9.1.2 Brief History . 201 9.2 Basic Thermodynamics . 201 9.2.1 Basic Concepts . 201 9.2.2 Extensive 202 9.2.3 Intensive .202 9.2.4 Specific and Total Quantities .203 9.2.5 Energy Forms .203 9.2.6 Internal Energy .203 9.2.7 Gravitational or Potential Energy .203 9.2.8 Kinetic Energy .204 9.2.9 Flow Energy .204 9.2.10 Enthalpy .204 9.2.11 Gas Laws 205 9.2.12 Theory 205 9.2.13 Pressure 205 9.2.14 A Perfect Gas .205 9.2.15 Boyle’s Law 206 9.2.16 Charles’s Law .207 9.2.17 Universal Gas Law .208 9.2.18 Specific Heat Capacity . 210 9.2.19 Specific Heat Capacity at Constant Volume (Cv) . 211Contents xi 9.2.20 Specific Heat Capacity at Constant Pressure (Cp) 212 9.2.21 Relationship between the Specific Heats . 213 9.2.22 Specific Heat Ratio ‘γ’ . 214 9.3 Laws of Thermodynamics . 215 9.3.1 Conservation of Energy 215 9.3.2 First Law of Thermodynamics . 215 9.3.3 Steady Flow Process . 215 9.3.4 Flow Process 215 9.3.5 Consider a Boiler at Constant Pressure 216 9.3.6 Nozzle . 218 9.3.7 Pump 220 9.3.8 Turbine 221 9.3.9 Throttling .222 9.3.10 Equation of Continuity .224 9.3.11 Non-Flow Processes .224 9.3.12 Constant Temperature (Isothermal) Process (pV – C) .225 9.3.12.1 Work Transfer .226 9.3.12.2 Heat Transfer 226 9.3.13 Adiabatic Process (Q = 0) .227 9.3.13.1 Work Transfer .228 9.3.13.2 Heat Transfer 229 9.3.14 Polytropic Process (pVn = C) 230 9.3.14.1 Work Transfer . 231 9.3.14.2 Heat Transfer 232 9.3.15 Constant Volume Process . 233 9.3.15.1 Work Transfer .234 9.3.15.2 Heat Transfer 234 9.3.16 Constant Pressure Process 235 9.3.16.1 Work Transfer .236 9.3.16.2 Heat Transfer 236 Chapter 10 Fluid Mechanics . 239 10.1 Fluid Properties . 239 10.1.1 Density 239 10.1.2 Pressure 240 10.1.3 Static Pressure and Head 241 10.1.4 Viscosity .242 10.1.4.1 Coefficient of Dynamic Viscosity 243 10.1.4.2 Kinematic Viscosity .243 10.1.4.3 Other Units .243 10.1.5 Compressibility 243 10.2 Fluid Flow 244 10.2.1 Patterns of Flow .244 10.2.2 Types of Flow .244 10.2.2.1 Internal Flow 244 10.2.2.2 External Flow .244 10.2.2.3 Laminar Flow .245 10.2.2.4 Turbulent Flow 245 10.2.3 Laminar Flow .245 10.2.4 Derivation of Poiseuille’s Equation for Laminar Flow 246xii Contents 10.2.5 Turbulent Flow .250 10.2.6 Fluid Resistance . 251 10.2.7 Moody’s Diagram . 252 10.3 Continuity Equation 254 10.3.1 Conservation of Mass .254 10.3.2 Conservation of Energy 255 10.3.2.1 Flow Energy 255 10.3.2.2 Potential Energy . 255 10.3.2.3 Kinetic Energy 255 10.3.2.4 Specific Energy .256 10.3.2.5 Energy Head .256 10.3.3 Bernoulli’s Equation .256 10.3.4 Stagnation Point .259 10.4 Hydrostatics .260 10.4.1 Buoyancy 260 10.4.2 Metacentre and Metacentre Height 262 10.4.3 Pressure in Liquids .264 10.4.4 Pressure Due to the Weight of a Liquid . 267 10.4.5 Forces on Submerged Surfaces 269 10.4.6 Centre of Pressure 270 10.5 Dimension Analysis . 273 10.5.1 Dimensions . 273 10.5.2 Dimensional Equations 274 10.6 Fluid Drag 275 10.6.1 Form Drag 275 10.6.2 Skin Friction Drag 276 10.6.3 Estimating Skin Drag .277 10.6.4 General Notes on Drag Coefficients 278 10.6.5 Total Drag .280 10.6.6 Drag on a Cylinder . 281 10.7 Properties of Water 284 10.7.1 Specific Heat Capacity of Water 286 10.7.2 Enthalpy of Fusion .287 10.7.3 Enthalpy of Vaporisation 287 10.8 Channel Flow .288 10.8.1 Channel Flow .288 10.8.2 Hydraulic Radius 289 10.8.3 Flow Rate .289 10.8.4 Roughness 290 10.9 Orifice Plate .292 10.9.1 Description .292 10.9.2 Measurement 293 10.10 Fluid Machines 294 10.10.1 Positive Displacement Machines 294 10.10.1.1 Single Rotor 294 10.10.1.2 Double Rotor .296 Chapter 11 Introduction to Linkages 301 11.1 Introduction . 301 11.2 Brief History 301Contents xiii 11.3 Kinematic Definitions .302 11.3.1 Kinematic Chain 302 11.3.2 Mechanism .302 11.3.3 Machine 302 11.3.4 DOF 302 11.3.5 Rigid Links .303 11.3.6 Order of a Link .303 11.3.7 Joints .303 11.3.8 Kinematic Pairs 303 11.3.9 Mobility 304 11.4 Kinematic Pairs .304 11.4.1 Relative Motion between Kinematic Pairs .304 11.4.1.1 Lower Pairs .304 11.4.1.2 Higher Pairs 305 11.4.2 Nature of Kinematic Constraints .306 11.4.3 Closed Pair .306 11.4.4 Open Pair 306 11.5 Planar, Spherical and Spatial Mechanisms .307 11.5.1 Planar Mechanism 307 11.5.2 Spherical Mechanism .307 11.5.3 Spatial Mechanism .308 11.6 Mobility .309 11.7 Chebyshev–Gruber–Kutzbach Criterion .309 11.8 Grashof’s Law 310 11.8.1 Classification 311 11.9 Four-Bar Linkage 313 11.9.1 Planar Four-Bar Linkages 313 11.9.2 Inversion . 313 11.9.3 Slider–Crank Linkage 314 11.9.3.1 Link 1 Fixed . 315 11.9.3.2 Link 2 Fixed . 315 11.10 Mechanical Advantage of a Four-Bar Linkage . 317 11.11 Freudenstein’s Equation . 318 11.12 Drawing Velocity Vectors for Linkages 323 11.13 Drawing Acceleration Vectors
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Design Engineer’s Reference Guide رابط مباشر لتنزيل كتاب Design Engineer’s Reference Guide
|
|