Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Design, Modeling and Control of Nanopositioning Systems السبت 14 نوفمبر 2020, 12:23 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Design, Modeling and Control of Nanopositioning Systems Advances in Industrial Control Andrew J. Fleming Kam K. Leang
و المحتوى كما يلي :
Contents 1 Introduction 1 1.1 Introduction to Nanotechnology . 1 1.2 Introduction to Nanopositioning . 2 1.3 Scanning Probe Microscopy 3 1.4 Challenges with Nanopositioning Systems 7 1.4.1 Hysteresis . 7 1.4.2 Creep . 7 1.4.3 Thermal Drift . 8 1.4.4 Mechanical Resonance . 9 1.5 Control of Nanopositioning Systems 10 1.5.1 Feedback Control 10 1.5.2 Feedforward Control 12 1.6 Book Summary . 13 1.6.1 Assumed Knowledge 13 1.6.2 Content Summary 13 References . 14 2 Piezoelectric Transducers 17 2.1 The Piezoelectric Effect . 17 2.2 Piezoelectric Compositions 20 2.3 Manufacturing Piezoelectric Ceramics . 22 2.4 Piezoelectric Transducers 23 2.5 Application Considerations 26 2.5.1 Mounting 27 2.5.2 Stroke Versus Force 27 2.5.3 Preload and Flexures 29 2.5.4 Electrical Considerations . 30 2.5.5 Self-Heating Considerations . 30 2.6 Response of Piezoelectric Actuators 31 2.6.1 Hysteresis . 31 2.6.2 Creep . 32 2.6.3 Temperature Dependence . 33 2.6.4 Vibrational Dynamics . 34 2.6.5 Electrical Bandwidth 35 ix2.7 Modeling Creep and Vibration in Piezoelectric Actuators . 35 2.8 Chapter Summary . 39 References . 39 3 Types of Nanopositioners 43 3.1 Piezoelectric Tube Nanopositioners . 43 3.1.1 63 mm Piezoelectric Tube 45 3.1.2 40 mm Piezoelectric Tube Nanopositioner . 46 3.2 Piezoelectric Stack Nanopositioners 47 3.2.1 Phyisk Instrumente P-734 Nanopositioner . 49 3.2.2 Phyisk Instrumente P-733.3DD Nanopositioner 49 3.2.3 Vertical Nanopositioners . 50 3.2.4 Rotational Nanopositioners 51 3.2.5 Low Temperature and UHV Nanopositioners . 53 3.2.6 Tilting Nanopositioners 53 3.2.7 Optical Objective Nanopositioners 53 References . 55 4 Mechanical Design: Flexure-Based Nanopositioners . 57 4.1 Introduction . 57 4.2 Operating Environment . 58 4.3 Methods for Actuation 61 4.4 Flexure Hinges . 62 4.4.1 Introduction 62 4.4.2 Types of Flexures 64 4.4.3 Flexure Hinge Compliance Equations 65 4.4.4 Stiff Out-of-Plane Flexure Designs 73 4.4.5 Failure Considerations . 74 4.4.6 Finite Element Approach for Flexure Design . 75 4.5 Material Considerations . 75 4.5.1 Materials for Flexure and Platform Design . 75 4.5.2 Thermal Stability of Materials . 77 4.6 Manufacturing Techniques . 78 4.7 Design Example: A High-Speed Serial-Kinematic Nanopositioner . 79 4.7.1 State-of-the-Art Designs 79 4.7.2 Tradeoffs and Limitations in Speed 81 4.7.3 Serial- Versus Parallel-Kinematic Configurations 83 4.7.4 Piezoactuator Considerations 84 4.7.5 Preloading Piezo-Stack Actuators . 85 4.7.6 Flexure Design for Lateral Positioning 86 4.7.7 Design of Vertical Stage . 94 4.7.8 Fabrication and Assembly 97 x Contents4.7.9 Drive Electronics 98 4.7.10 Experimental Results 99 4.8 Chapter Summary . 100 References . 101 5 Position Sensors . 103 5.1 Introduction . 103 5.2 Sensor Characteristics 105 5.2.1 Calibration and Nonlinearity . 105 5.2.2 Drift and Stability 107 5.2.3 Bandwidth . 109 5.2.4 Noise . 110 5.2.5 Resolution . 113 5.2.6 Combining Errors 116 5.2.7 Metrological Traceability . 117 5.3 Nanometer Position Sensors 118 5.3.1 Resistive Strain Sensors 118 5.3.2 Piezoresistive Strain Sensors 121 5.3.3 Piezoelectric Strain Sensors . 123 5.3.4 Capacitive Sensors . 127 5.3.5 MEMs Capacitive and Thermal Sensors . 133 5.3.6 Eddy-Current Sensors . 134 5.3.7 Linear Variable Displacement Transformers 137 5.3.8 Laser Interferometers 140 5.3.9 Linear Encoders . 144 5.4 Comparison and Summary . 147 5.5 Outlook and Future Requirements 148 References . 150 6 Shunt Control 155 6.1 Introduction . 155 6.2 Shunt Circuit Modeling . 157 6.2.1 Open-Loop . 157 6.2.2 Shunt Damping 159 6.3 Implementation . 164 6.4 Experimental Results . 165 6.4.1 Tube Dynamics 166 6.4.2 Amplifier Performance 167 6.4.3 Shunt Damping Performance 168 6.5 Chapter Summary . 173 References . 173 Contents xi7 Feedback Control 175 7.1 Introduction . 175 7.2 Experimental Setup 178 7.3 PI Control 180 7.4 PI Control with Notch Filters . 181 7.5 PI Control with IRC Damping 183 7.6 Performance Comparison 187 7.7 Noise and Resolution 188 7.8 Analog Implementation . 193 7.9 Application to AFM Imaging . 195 7.10 Repetitive Control . 196 7.10.1 Introduction 196 7.10.2 Repetitive Control Concept and Stability Considerations 198 7.10.3 Dual-Stage Repetitive Control . 201 7.10.4 Handling Hysteresis . 205 7.10.5 Design and Implementation . 205 7.10.6 Experimental Results and Discussion . 214 7.11 Summary . 216 References . 216 8 Force Feedback Control . 221 8.1 Introduction . 221 8.2 Modeling . 223 8.2.1 Actuator Dynamics . 223 8.2.2 Sensor Dynamics 225 8.2.3 Sensor Noise . 226 8.2.4 Mechanical Dynamics . 227 8.2.5 System Properties 228 8.2.6 Example System . 230 8.3 Damping Control . 230 8.4 Tracking Control . 232 8.4.1 Relationship Between Force and Displacement 233 8.4.2 Integral Displacement Feedback 235 8.4.3 Direct Tracking Control 235 8.4.4 Dual Sensor Feedback . 237 8.4.5 Low Frequency Bypass 239 8.4.6 Feedforward Inputs . 240 8.4.7 Higher-Order Modes 241 8.5 Experimental Results . 241 8.5.1 Experimental Nanopositioner 241 8.5.2 Actuators and Force Sensors . 242 xii Contents8.5.3 Control Design 244 8.5.4 Noise Performance . 245 8.6 Chapter Summary . 247 References . 248 9 Feedforward Control . 251 9.1 Why Feedforward? 251 9.2 Modeling for Feedforward Control . 252 9.3 Feedforward Control of Dynamics and Hysteresis . 252 9.3.1 Simple DC-Gain Feedforward Control 252 9.3.2 An Inversion-Based Feedforward Approach for Linear Dynamics 253 9.3.3 Frequency-Weighted Inversion: The Optimal Inverse 256 9.3.4 Application to AFM Imaging 256 9.4 Feedforward and Feedback Control . 258 9.4.1 Application to AFM Imaging 261 9.5 Iterative Feedforward Control . 261 9.5.1 The ILC Problem 263 9.5.2 Model-Based ILC 265 9.5.3 Nonlinear ILC 267 9.5.4 Conclusions 271 References . 271 10 Command Shaping . 275 10.1 Introduction . 275 10.1.1 Background 275 10.1.2 The Optimal Periodic Input . 279 10.2 Signal Optimization . 280 10.3 Frequency Domain Cost Functions . 282 10.3.1 Background: Discrete Fourier Series . 282 10.3.2 Minimizing Signal Power . 283 10.3.3 Minimizing Frequency Weighted Power 284 10.3.4 Minimizing Velocity and Acceleration 285 10.3.5 Single-Sided Frequency Domain Calculations . 286 10.4 Time Domain Cost Function . 286 10.4.1 Minimum Velocity . 287 10.4.2 Minimum Acceleration 288 10.4.3 Frequency Weighted Objectives 288 10.5 Application to Scan Generation . 288 10.5.1 Choosing b and K 290 10.5.2 Improving Feedback and Feedforward Controllers . 292 10.6 Comparison to Other Techniques 293 Contents xiii10.7 Experimental Application 295 10.8 Chapter Summary . 297 References . 297 11 Hysteresis Modeling and Control 299 11.1 Introduction . 299 11.2 Modeling Hysteresis . 300 11.2.1 Simple Polynomial Model 300 11.2.2 Maxwell Slip Model 300 11.2.3 Duhem Model . 301 11.2.4 Preisach Model 302 11.2.5 Classical Prandlt-Ishlinksii Model . 306 11.3 Feedforward Hysteresis Compensation 307 11.3.1 Feedforward Control Using the Presiach Model . 307 11.3.2 Feedforward Control Using the Prandlt-Ishlinksii Model . 309 11.4 Chapter Summary . 315 References . 315 12 Charge Drives 317 12.1 Introduction . 317 12.2 Charge Drives . 318 12.3 Application to Piezoelectric Stack Nanopositioners 322 12.4 Application to Piezoelectric Tube Nanopositioners 325 12.5 Alternative Electrode Configurations 328 12.5.1 Grounded Internal Electrode . 328 12.5.2 Quartered Internal Electrode . 330 12.6 Charge Versus Voltage . 332 12.6.1 Advantages . 332 12.6.2 Disadvantages . 333 12.7 Impact on Closed-Loop Control . 334 12.8 Chapter Summary . 335 References . 335 13 Noise in Nanopositioning Systems 337 13.1 Introduction . 337 13.2 Review of Random Processes . 338 13.2.1 Probability Distributions . 339 13.2.2 Expected Value, Moments, Variance, and RMS . 339 13.2.3 Gaussian Random Variables . 341 13.2.4 Continuous Random Processes . 343 13.2.5 Joint Density Functions and Stationarity 343 13.2.6 Correlation Functions . 344 13.2.7 Gaussian Random Processes . 344 xiv Contents13.2.8 Power Spectral Density 345 13.2.9 Filtered Random Processes 347 13.2.10 White Noise 348 13.2.11 Spectral Density in V/ ffiffiffiffiffiffi pHz . 349 13.2.12 Single- and Double-Sided Spectra . 349 13.3 Resolution and Noise 351 13.4 Sources of Nanopositioning Noise . 352 13.4.1 Sensor Noise . 353 13.4.2 External Noise 354 13.4.3 Amplifier Noise . 354 13.5 Closed-Loop Position Noise 359 13.5.1 Noise Sensitivity Functions . 359 13.5.2 Closed-Loop Position Noise Spectral Density . 360 13.5.3 Closed-Loop Noise Approximations with Integral Control 361 13.5.4 Closed-Loop Position Noise Variance 362 13.5.5 A Note on Units . 364 13.6 Simulation Examples . 364 13.6.1 Integral Controller Noise Simulation . 364 13.6.2 Noise Simulation with Inverse Model Controller . 366 13.6.3 Feedback Versus Feedforward Control 369 13.7 Practical Frequency Domain Noise Measurements 370 13.7.1 Preamplification . 370 13.7.2 Spectrum Estimation 372 13.7.3 Direct Measurement of Position Noise 373 13.7.4 Measurement of the External Disturbance . 375 13.8 Experimental Demonstration . 375 13.9 Time-Domain Noise Measurements . 379 13.9.1 Total Integrated Noise . 379 13.9.2 Estimating the Position Noise 381 13.9.3 Practical Considerations 383 13.9.4 Experimental Demonstration . 384 13.10 A Simple Method for Measuring the Resolution of Nanopositioning Systems 386 13.11 Techniques for Improving Resolution . 388 13.12 Chapter Summary . 390 References . 391 14 Electrical Considerations 395 14.1 Introduction . 395 14.2 Bandwidth Limitations . 396 14.2.1 Passive Bandwidth Limitations . 396 14.2.2 Amplifier Bandwidth 398 14.2.3 Current and Power Limitations . 398 Contents xv14.3 Dual-Amplifier . 399 14.3.1 Circuit Operation 399 14.3.2 Range Considerations . 401 14.4 Electrical Design . 402 14.4.1 High-Voltage Stage . 402 14.4.2 Low-Voltage Stage . 404 14.4.3 Cabling and Interconnects 405 14.5 Chapter Summary . 407 References . 407 Index 40 Index A Acceleration, 285, 288 Actuation, 61 Actuator dynamics, 223 AFM imaging, 3, 195, 256, 261, 268, 308 Amplifier bandwidth, 398 Amplifier noise, 354 Analog implementation, 193 Atomic force microscope (AFM), 3 B Bandwidth, 109, 396 C Cables, 405 Calibration and nonlinearity, 105 Capacitive sensor, 127, 133 Charge drives, 317 Charge versus voltage, 332 Classical Prandlt-Ishlinksii model, 306 Closed-loop noise, 359 Closed-loop noise spectrum, 360 Command shaping, 275 Compliance, 65 Connectors, 405 Continuous random processes, 343 Correlation functions, 344 Creep, 7, 32, 35 Current, 398 D Damping control, 230 Drift, 107 Dual-amplifier, 399 Dual-stage repetitive control, 201 Duhem model, 301 Dynamics inversion, 253 E Eddy-current sensor, 134 Electrical considerations, 395 Electrothermal sensor, 133 Environment, 58 Expected value, 339 External noise, 354 F Failure considerations, 74 Feedback control, 10, 277, 292 Feedback versus feedforward control, 369 Feedforward and feedback control, 258 Feedforward control, 12, 240, 251, 292 Feedforward hysteresis compensation, 307 Filtered random processes, 347 Finite element analysis, 75 Flexure hinges, 62 Force feedback control, 221 Force sensor dynamics, 225 Force sensor noise, 226 Fourier series, 282 Frequency domain cost functions, 282 Frequency weighted objectives, 288 G Gaussian random processes, 344 Gaussian random variables, 341 A. J. Fleming and K. K. Leang, Design, Modeling and Control 409 of Nanopositioning Systems, Advances in Industrial Control, DOI: 10.1007/978-3-319-06617-2, Springer International Publishing Switzerland 2014410 Index H Hysteresis, 7, 31, 205, 252 Hysteresis modeling and control, 299 I Interferometer, 140 Inversion, 276 Iterative feedforward control, 261 J Joint density functions, 343 L Laser interferometer, 140 Linear encoder, 144 Linear variable displacement transformers (LVDTs), 137 M Manufacturing, 78 Materials, 75 Maxwell slip model, 300 Mechanical design, 57 Mechanical dynamics, 227 MEMs sensors, 133 Metrological traceability, 117 Minimizing signal power, 283 Minimizing velocity and acceleration, 285 Minimum acceleration, 288 Minimum velocity, 287 Model-based ILC, 265 Modeling, 223, 252 Modeling hysteresis, 300 Moments, 339 N Nanometer position sensors, 118 Nanopositioner types, 43 Noise, 188, 337, 351 Noise measurement, 370, 373, 382, 386 Noise performance, 245 Noise sensitivity functions, 359 Nonlinear ILC, 267 O Optimal inputs, 279 P Parallel kinematic, 83 PI control, 180, 364 PI control with IRC damping, 183 PI control with notch filters, 181, 366 Piezoelectric actuator mounting, 27, 84 Piezoelectric compositions, 20 Piezoelectric manufacture, 22 Piezoelectric sensor, 123 Piezoelectric stack, 47, 322 Piezoelectric transducers, 17, 23 Piezoelectric tube, 43, 45, 166, 325 Piezoelectricity, 17 Piezoresistive sensors, 121 Polynomial model, 300 Position sensors, 103 Power, 398 Power spectral density, 345 Prandlt-Ishlinksii model, 309 Preamplification, 370 Preisach model, 302 Preload, 29, 85 Presiach model, 307 Probability distributions, 339 R Random processes, 338 Repetitive control, 196 Resistive strain sensors, 118 Resolution, 113, 188, 351 Resonance, 9 Root-mean-square (RMS), 339 S Scan generation, 288 Scanning probe microscope (SPM), 3 Self heating, 30 Sensor characteristics, 105 Sensor comparison, 147 Sensor noise, 110, 353 Serial kinematic, 79, 83 Shunt circuit implementation, 164 Shunt circuit modeling, 157 Shunt control, 155 Shunt damping, 159 Shunt design, 163 Signal optimization, 280 Spectral density, 349 Spectrum estimation, 372 Speed limitations, 81 Stability, 107Index 411 Stationarity, 343 Synthetic impedance, 164 T Temperature dependence, 33 Thermal drift, 8 Thermal sensor, 133 Thermal stability, 77 Time domain cost function, 286 Time domain noise, 379 Total integrated noise, 379 Tracking control, 232 V Variance, 339 Velocity, 285, 287 Vibration, 35 W White noise, 348
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Design, Modeling and Control of Nanopositioning Systems رابط مباشر لتنزيل كتاب Design, Modeling and Control of Nanopositioning Systems
|
|