Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Fire Safety Engineering Design of Structures الإثنين 25 يناير 2021, 2:45 am | |
|
أخوانى فى الله أحضرت لكم كتاب Fire Safety Engineering Design of Structures Third Edition John A. Purkiss and Long-yuan Li
و المحتوى كما يلي :
Contents Preface xvii Acknowledgements xix List of Acronyms xxi Notation xxiii 1 Fire safety engineering 1 1.1 Design concerns 2 1.1.1 Control of ignition 2 1.1.1.1 Control of flammability 3 1.1.1.2 Control of fire growth 3 1.1.1.3 Fire safety management 4 1.1.2 Means of escape 4 1.1.3 Fire detection and control 6 1.1.3.1 Fire detection 6 1.1.3.2 Smoke control 7 1.1.3.3 Fire-fighting systems 7 1.1.4 Compartmentation 9 1.1.5 Fire spread between structures 9 1.1.6 Structure collapse 9 1.2 Regulatory control 10 1.3 Fire precautions during construction and maintenance 11 1.4 Summary 11 1.4.1 Active measures 12 1.4.2 Passive measures 12 2 Design philosophies 13 2.1 Ambient limit state design 13viii Contents 2.2 Fire limit states 15 2.2.1 Load-bearing capacity criterion 16 2.2.2 Insulation criterion 16 2.2.3 Determination of partial safety factors 17 2.3 Assessment models 18 2.3.1 Assessment method: level 1 19 2.3.2 Assessment method: level 2 20 2.3.3 Assessment method: level 3 20 2.3.4 Practical considerations 20 2.4 Applicability of assessment levels 21 2.5 Interaction between active and passive measures 22 3 Prescriptive approach 25 3.1 Standard fire test 25 3.2 Drawbacks of fire test 31 3.2.1 Expense 31 3.2.2 Specimen limitations 31 3.2.3 Effects of restraint and continuity 31 3.2.4 Confidentiality of results 32 3.2.5 Loading 32 3.2.6 Failure modes 34 3.2.7 Reproducibility 34 3.3 Prescriptive determination of fire resistance 36 3.3.1 Concrete 37 3.3.2 Structural steelwork 39 3.3.3 Masonry 39 3.3.4 Timber 40 4 Behaviour of natural fires 41 4.1 Development of compartment fires 41 4.1.1 Pre-flashover period 41 4.1.2 Post-flashover period 42 4.1.3 Decay phase 43 4.2 Factors affecting growth phase 43 4.3 Calculation of compartment temperature–time responses 45 4.3.1 Basic formulation 45 4.3.1.1 Rate of heat release ( ) hC . 46 4.3.1.2 Rate of heat loss by radiation through openings ( ) hR . 46 4.3.1.3 Rate of heat loss from convection ( ) hL . 46Contents ix 4.3.1.4 Rate of heat loss through compartment walls ( ) hW . 46 4.3.1.5 Compartment temperature– time characteristics 47 4.3.2 Modifications for allowing other compartment configurations 47 4.3.2.1 Vertical openings 47 4.3.2.2 Horizontal openings 47 4.3.2.3 Compartment construction 50 4.3.3 Calculation of fire load 50 4.3.3.1 Full calculation 50 4.3.3.2 Generic data 51 4.3.4 Parametric equation approach 51 4.3.4.1 Formulation of Lie (1974) 52 4.3.4.2 EN 1991-1-2 approach 53 4.4 Estimation of fire characteristics 55 4.5 Fire severity and time equivalence 58 4.5.1 Fire severity 58 4.5.2 Time equivalence 59 4.5.2.1 Temperature base 59 4.5.2.2 Normalized heat load base 63 4.6 Localized fires 71 4.6.1 Plume fires 71 4.6.2 5 MW design fire 72 4.7 Zone modelling and computational fluid dynamics (CFD) 72 4.7.1 Zone modelling 72 4.7.2 Computational fluid dynamics (CFD) 72 5 Properties of materials at elevated temperatures 75 5.1 Thermal data 75 5.1.1 Steel 76 5.1.1.1 Density 76 5.1.1.2 Specific heat 76 5.1.1.3 Thermal conductivity 77 5.1.1.4 Thermal diffusivity 78 5.1.2 Concrete 78 5.1.2.1 Density 79 5.1.2.2 Specific heat 79 5.1.2.3 Thermal conductivity 81 5.1.2.4 Thermal diffusivity 82x Contents 5.1.3 Masonry 83 5.1.3.1 Density 83 5.1.3.2 Specific heat 83 5.1.3.3 Thermal conductivity 84 5.1.4 Timber 84 5.1.5 Aluminium 85 5.1.5.1 Density 85 5.1.5.2 Specific heat 86 5.1.5.3 Thermal conductivity 86 5.1.5.4 Emissivity 86 5.2 Materials data 87 5.2.1 Testing régimes 87 5.2.2 Steel 88 5.2.2.1 Strength characteristics 89 5.2.2.2 Unrestrained thermal expansion 90 5.2.2.3 Isothermal creep 92 5.2.2.4 Anisothermal creep data 93 5.2.3 Concrete 93 5.2.3.1 Stress–strain data 95 5.2.3.2 Creep 99 5.2.3.3 Free thermal expansion 99 5.2.3.4 Transient tests 101 5.2.3.5 Tensile strength of concrete at elevated temperatures 103 5.2.3.6 Bond strength 103 5.2.3.7 High strength concrete (HSC) and self-compacting concrete (SCC) 103 5.2.3.8 Fibre concretes 107 5.2.3.9 Multiaxial behaviour 110 5.2.4 Timber 113 5.2.4.1 Rate of charring 113 5.2.4.2 Strength and elasticity loss 115 5.2.5 Masonry 116 5.2.6 Aluminium 117 5.2.6.1 Strength characteristics 117 5.2.6.2 Thermal expansion 120 5.3 Constitutive stress–strain laws 122 5.3.1 Steel 122 5.3.1.1 Elastic strain 122Contents xi 5.3.1.2 Creep 126 5.3.1.3 Design curves 127 5.3.2 Concrete 131 5.3.2.1 Anderberg and Thelandersson 134 5.3.2.2 Deiderichs 136 5.3.2.3 Khoury and Terro 136 5.3.2.4 Khennane and Baker 137 5.3.2.5 Schneider 139 5.3.2.6 Li and Purkiss 141 5.3.3 Design code provisions for stress–strain behaviour 142 6 Calculation approach 145 6.1 Thermal analysis 146 6.1.1 Governing equation and boundary conditions 146 6.1.2 Finite element solution of heat transfer problem 150 6.2 Calculation of temperatures in timber elements 156 6.3 Structural analysis 156 6.3.1 Calculation of structural responses using simple approaches 157 6.3.2 Calculation of structural responses using finite element analysis packages 160 6.3.3 Examples 163 6.4 Coupled heat and mass transfer in concrete 170 6.4.1 Volumetric fractions of solid, liquid, and gaseous phases 171 6.4.2 Mass transfer of free water and gaseous mixture 173 6.4.3 Heat transfer in multiphase medium 174 6.4.4 Numerical results 175 7 Design of concrete elements 181 7.1 Calculation of temperatures 182 7.1.1 Graphical data 182 7.1.1.1 ISE and Concrete Society Design Guide (1978) 182 7.1.1.2 FIP/CEB Report (1978) 182 7.1.1.3 EN 1992-1-2 182 7.1.2 Empirical methods 182 7.1.2.1 Wickström method 183 7.1.2.2 Hertz method 184xii Contents 7.1.3 Values of thermal diffusivity 186 7.1.4 Position of 500°C isotherm 186 7.2 Simple calculation methods 187 7.2.1 Calculation of load effects 187 7.2.1.1 Direct calculation 187 7.2.1.2 Indirect calculation 188 7.2.2 Partial safety factors 188 7.2.3 Methods for determining section capacity 188 7.2.3.1 Reduced section method (500°C isotherm) 188 7.2.3.2 Method of slices (zone method) 191 7.2.3.3 Calibration of 500°C isotherm and zone methods 194 7.3 Columns 200 7.4 Comparisons of methods of calculation 205 7.5 Design and detailing considerations 205 7.5.1 Shear 205 7.5.2 Bond 206 7.5.3 Spalling 206 7.5.3.1 Moisture content 206 7.5.3.2 Concrete porosity and permeability 207 7.5.3.3 Stress conditions 208 7.5.3.4 Aggregate type 208 7.5.3.5 Section profile and cover 209 7.5.3.6 Heating rate 209 7.5.3.7 Concrete strength 209 7.5.4 High strength and self-compacting concretes 210 7.5.5 Detailing 210 8 Design of steel elements 211 8.1 Calculation of temperatures 211 8.1.1 Basic principles 211 8.1.2 Heat flow in uninsulated steelwork 213 8.1.3 Heat flow in insulated steelwork 213 8.1.3.1 ECCS method of calculation 213 8.1.3.2 EN 1993-1-2 approach 214 8.1.4 Effect of moisture 215 8.1.4.1 Effective density of insulation 215 8.1.4.2 Delay time 216Contents xiii 8.1.5 Empirical approach for temperature calculation 216 8.1.5.1 Bare steelwork 216 8.1.5.2 Protected steelwork 216 8.1.6 Calculation of Am/V 217 8.1.7 Thermal properties of insulation materials 217 8.2 Design of noncomposite steel work 226 8.2.1 Determination of structural load in fire limit state 227 8.2.2 EN 1993-1-2 approach for determining structural fire capacity 227 8.2.2.1 Background of Eurocode method 227 8.2.2.2 Eurocode methods 229 8.3 Other steelwork constructions 247 8.3.1 External steelwork 247 8.3.2 Shelf angle floors 247 8.3.2.1 Calculation of temperature response 248 8.3.2.2 Calculation of moment capacity 249 8.4 Stainless steel 252 8.5 Cold-formed steel sections 252 8.6 Methods of protection 254 8.6.1 Types of protection 254 8.6.1.1 Board systems 254 8.6.1.2 Spray protection 254 8.6.1.3 Intumescent paints 255 8.6.1.4 Brickwork and blockwork 255 8.6.1.5 Concrete encasement 255 8.6.1.6 Manufacturer data 255 8.6.2 Connections 257 8.6.3 Aging and partial loss of protection 258 8.6.3.1 Aging effects 258 8.6.3.2 Partial loss of protection 258 9 Composite construction 261 9.1 Composite slabs 261 9.1.1 Insulation requirement 261 9.1.1.1 Calculation approach 261 9.1.1.2 Effective thickness 262 9.1.2 Load-bearing capacity 264 9.1.2.1 Calculation of moment capacity 264xiv Contents 9.2 Composite beams 272 9.2.1 Critical temperature approach 273 9.2.2 Full moment calculation 274 9.3 Concrete-filled steel I and H section columns 280 9.4 Concrete-filled steel tube columns 281 9.4.1 Design of unprotected CFST columns using SCI–Corus guides 281 9.4.2 Empirical design methods of CFST columns 285 9.4.3 Finite element analysis of fire performance of CFST columns 286 10 Design of timber elements 289 10.1 Design to EN 1995-1-2 289 10.1.1 Depth of charring 289 10.1.1.1 Exposure to standard furnace curve 289 10.1.1.2 Charring to natural fire exposure 290 10.1.2 Calculation of structural capacity 292 10.1.2.1 Effective section method (standard furnace exposure) 292 10.1.2.2 Reduced strength and stiffness method (standard furnace exposure) 293 10.1.2.3 Residual strength and stiffness method (parametric exposure) 293 10.2 Empirical approaches 297 10.2.1 Approach of Ödeen 297 10.2.2 Lie’s approach for beams 299 10.2.3 ASCE empirical approach for beams 300 10.2.4 Empirical determination of fire endurance for columns 301 10.2.5 ASCE empirical approach for columns 303 10.2.6 Approach of Stiller 304 10.2.6.1 Beams 304 10.2.6.2 Columns 305 10.3 Timber floors and protected timber systems 307 10.3.1 Timber floors 307 10.3.2 Protected timber systems 307 11 Masonry, aluminium, plastics, and glass 311 11.1 Masonry 311 11.1.1 Masonry construction insulation requirements 312Contents xv 11.1.2 Thermal bowing 317 11.1.3 Load-bearing cavity walls 318 11.2 Aluminium 319 11.2.1 Temperature calculations 319 11.2.2 Structural design of aluminium members 322 11.3 Plastics and plastic-based composites 323 11.4 Glass 324 12 Frames 327 12.1 Tests on isolated frames 327 12.2 Tests on large frame structures at Cardington 328 12.2.1 Timber frame structures 328 12.2.2 Concrete frame structures 328 12.2.3 Composite steel frames 330 12.3 Fire behaviours of connections 336 12.3.1 Tests on beam and column assemblies 336 12.3.2 Moment–curvature relationships 337 12.3.3 Whole connection behaviours 337 12.3.3.1 Fin plates 338 12.3.3.2 Web cleats 338 12.3.3.3 Partial end plates 338 12.3.3.4 Full end plates 338 12.3.3.5 Extended end plates 338 12.4 Pitched roof portals 339 12.5 Finite element analysis of frames 345 12.5.1 Steel frames 345 12.5.2 Reinforced concrete frames 347 13 Assessment and repair of fire-damaged structures 351 13.1 Visual inspection 351 13.1.1 Stability 351 13.1.2 Estimation of fire severity 352 13.2 Damage assessment 353 13.2.1 Structural survey 354 13.2.2 Materials testing 355 13.2.2.1 Concrete 355 13.2.2.2 Steel 363 13.3 Assessment of strength of structure 363 13.3.1 Residual properties 364 13.3.1.1 Concrete 364xvi Contents 13.3.1.2 Structural steel 367 13.3.1.3 Reinforcing and pre-stressing steels 368 13.3.1.4 Cast and wrought iron 368 13.3.1.5 Masonry 369 13.3.2 Determination of temperatures within elements 369 13.4 Methods of repair 371 13.5 Demolition 373 References 375
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Fire Safety Engineering Design of Structures رابط مباشر لتنزيل كتاب Fire Safety Engineering Design of Structures
|
|