Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Engineering Thermodynamics الأربعاء 10 فبراير 2021, 9:08 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Engineering Thermodynamics [For Engineering Students of All Indian Universities and Competitive Examinations] S.I. UNITS By R.K. RAJPUT M.E. (Heat Power Engg.) Hons.–Gold Medallist ; Grad. (Mech. Engg. & Elect. Engg.) ; M.I.E. (India) ; M.S.E.S.I. ; M.I.S.T.E. ; C.E. (India) Principal (Formerly) Punjab College of Information Technology PATIALA, Punjab
و المحتوى كما يلي :
Contents Chapter Pages Introduction to S.I. Units and Conversion Factors (xvi)—(xx) Nomenclature (xxi)—(xxii) 1. INTRODUCTION—OUTLINE OF SOME DESCRIPTIVE SYSTEMS . 1—13 1.1. Steam Power Plant . 1 1.1.1. Layout . 1 1.1.2. Components of a modern steam power plant . 2 1.2. Nuclear Power Plant . 3 1.3. Internal Combustion Engines . 4 1.3.1. Heat engines . 4 1.3.2. Development of I.C. engines . 4 1.3.3. Different parts of I.C. engines . 4 1.3.4. Spark ignition (S.I.) engines . 5 1.3.5. Compression ignition (C.I.) engines . 7 1.4. Gas Turbines . 7 1.4.1. General aspects . 7 1.4.2. Classification of gas turbines . 8 1.4.3. Merits and demerits of gas turbines . 8 1.4.4. A simple gas turbine plant . 9 1.4.5. Energy cycle for a simple-cycle gas turbine . 10 1.5. Refrigeration Systems . 10 Highlights . 12 Theoretical Questions . 13 2. BASIC CONCEPTS OF THERMODYNAMICS . 14—62 2.1. Introduction to Kinetic Theory of Gases . 14 2.2. Definition of Thermodynamics . 18 2.3. Thermodynamic Systems . 18 2.3.1. System, boundary and surroundings . 18 2.3.2. Closed system . 18 2.3.3. Open system . 19 2.3.4. Isolated system . 19 2.3.5. Adiabatic system . 19 2.3.6. Homogeneous system . 19 2.3.7. Heterogeneous system . 19 2.4. Macroscopic and Microscopic Points of View . 19 2.5. Pure Substance . 20 2.6. Thermodynamic Equilibrium . 20 2.7. Properties of Systems . 21 2.8. State . 21DHARM M-therm\TITLE.PM5 v i i Chapter Pages ( vii ) 2.9. Process . 21 2.10. Cycle . 22 2.11. Point Function . 22 2.12. Path Function . 22 2.13. Temperature . 23 2.14. Zeroth Law of Thermodynamics . 23 2.15. The Thermometer and Thermometric Property . 24 2.15.1. Introduction . 24 2.15.2. Measurement of temperature . 24 2.15.3. The international practical temperature scale . 31 2.15.4. Ideal gas . 33 2.16. Pressure . 33 2.16.1. Definition of pressure . 33 2.16.2. Unit for pressure . 34 2.16.3. Types of pressure measurement devices . 34 2.16.4. Mechanical type instruments . 34 2.17. Specific Volume . 45 2.18. Reversible and Irreversible Processes . 46 2.19. Energy, Work and Heat . 46 2.19.1. Energy . 46 2.19.2. Work and heat . 46 2.20. Reversible Work . 48 Highlights . 58 Objective Type Questions . 59 Theoretical Questions . 61 Unsolved Examples . 61 3. PROPERTIES OF PURE SUBSTANCES . 63—100 3.1. Definition of the Pure Substance . 63 3.2. Phase Change of a Pure Substance . 64 3.3. p-T (Pressure-temperature) Diagram for a Pure Substance . 66 3.4. p-V-T (Pressure-Volume-Temperature) Surface . 67 3.5. Phase Change Terminology and Definitions . 67 3.6. Property Diagrams in Common Use . 68 3.7. Formation of Steam . 68 3.8. Important Terms Relating to Steam Formation . 70 3.9. Thermodynamic Properties of Steam and Steam Tables . 72 3.10. External Work Done During Evaporation . 73 3.11. Internal Latent Heat . 73 3.12. Internal Energy of Steam . 73 3.13. Entropy of Water . 73 3.14. Entropy of Evaporation . 73 3.15. Entropy of Wet Steam . 74 3.16. Entropy of Superheated Steam . 74 3.17. Enthalpy-Entropy (h-s) Chart or Mollier Diagram . 75DHARM M-therm\TITLE.PM5 v i i i Chapter Pages ( viii ) 3.18. Determination of Dryness Fraction of Steam . 89 3.18.1. Tank or bucket calorimeter . 89 3.18.2. Throttling calorimeter . 92 3.18.3. Separating and throttling calorimeter . 93 Highlights . 96 Objective Type Questions . 97 Theoretical Questions . 99 Unsolved Examples . 99 4. FIRST LAW OF THERMODYNAMICS . 101—226 4.1. Internal Energy . 101 4.2. Law of Conservation of Energy . 101 4.3. First Law of Thermodynamics . 101 4.4. Application of First Law to a Process . 103 4.5. Energy—A Property of System . 103 4.6. Perpetual Motion Machine of the First Kind-PMM1 . 104 4.7. Energy of an Isolated System . 105 4.8. The Perfect Gas . 105 4.8.1. The characteristic equation of state . 105 4.8.2. Specific heats . 106 4.8.3. Joule’s law . 107 4.8.4. Relationship between two specific heats . 107 4.8.5. Enthalpy . 108 4.8.6. Ratio of specific heats . 109 4.9. Application of First Law of Thermodynamics to Non-flow or Closed System . 109 4.10. Application of First Law to Steady Flow Process . 150 4.11. Energy Relations for Flow Process . 152 4.12. Engineering Applications of Steady Flow Energy Equation (S.F.E.E.) . 155 4.12.1. Water turbine . 155 4.12.2. Steam or gas turbine . 156 4.12.3. Centrifugal water pump . 157 4.12.4. Centrifugal compressor . 157 4.12.5. Reciprocating compressor . 158 4.12.6. Boiler . 159 4.12.7. Condenser . 159 4.12.8. Evaporator . 160 4.12.9. Steam nozzle . 161 4.13. Throttling Process and Joule-Thompson Porous Plug Experiment . 162 4.14. Heating-Cooling and Expansion of Vapours . 183 4.15. Unsteady Flow Processes . 210 Highlights . 215 Objective Type Questions . 216 Theoretical Questions . 219 Unsolved Examples . 219DHARM M-therm\TITLE.PM5 i x Chapter Pages ( ix ) 5. SECOND LAW OF THERMODYNAMICS AND ENTROPY . 227—305 5.1. Limitations of First Law of Thermodynamics and Introduction to Second Law . 227 5.2. Performance of Heat Engines and Reversed Heat Engines . 227 5.3. Reversible Processes . 228 5.4. Statements of Second Law of Thermodynamics . 229 5.4.1. Clausius statement . 229 5.4.2. Kelvin-Planck statement . 229 5.4.3. Equivalence of Clausius statement to the Kelvin-Planck statement . 229 5.5. Perpetual Motion Machine of the Second Kind . 230 5.6. Thermodynamic Temperature . 231 5.7. Clausius Inequality . 231 5.8. Carnot Cycle . 233 5.9. Carnot’s Theorem . 235 5.10. Corollary of Carnot’s Theorem . 237 5.11. Efficiency of the Reversible Heat Engine . 237 5.12. Entropy . 252 5.12.1. Introduction . 252 5.12.2. Entropy—a property of a system . 252 5.12.3. Change of entropy in a reversible process . 253 5.13. Entropy and Irreversibility . 254 5.14. Change in Entropy of the Universe . 255 5.15. Temperature Entropy Diagram . 257 5.16. Characteristics of Entropy . 257 5.17. Entropy Changes for a Closed System . 258 5.17.1. General case for change of entropy of a gas . 258 5.17.2. Heating a gas at constant volume . 259 5.17.3. Heating a gas at constant pressure . 260 5.17.4. Isothermal process . 260 5.17.5. Adiabatic process (reversible) . 261 5.17.6. Polytropic process . 262 5.17.7. Approximation for heat absorbed . 263 5.18. Entropy Changes for an Open System . 264 5.19. The Third Law of Thermodynamics . 265 Highlights . 298 Objective Type Questions . 299 Theoretical Questions . 302 Unsolved Examples . 302 6. AVAILABILITY AND IRREVERSIBILITY . 306—340 6.1. Available and Unavailable Energy . 306 6.2. Available Energy Referred to a Cycle . 306 6.3. Decrease in Available Energy When Heat is Transferred Through a Finite Temperature Difference . 308 6.4. Availability in Non-flow Systems . 310DHARM M-therm\TITLE.PM5 x Chapter Pages ( x ) 6.5. Availability in Steady-flow Systems . 311 6.6. Helmholtz and Gibb’s Functions . 311 6.7. Irreversibility . 312 6.8. Effectiveness . 313 Highlights . 336 Objective Type Questions . 337 Theoretical Questions . 338 Unsolved Examples . 338 7. THERMODYNAMIC RELATIONS . 341—375 7.1. General Aspects . 341 7.2. Fundamentals of Partial Differentiation . 341 7.3. Some General Thermodynamic Relations . 343 7.4. Entropy Equations (Tds Equations) . 344 7.5. Equations for Internal Energy and Enthalpy . 345 7.6. Measurable Quantities . 346 7.6.1. Equation of state . 346 7.6.2. Co-efficient of expansion and compressibility . 347 7.6.3. Specific heats . 348 7.6.4. Joule-Thomson co-efficient . 351 7.7. Clausius-Claperyon Equation . 353 Highlights . 373 Objective Type Questions . 374 Exercises . 375 8. IDEAL AND REAL GASES . 376—410 8.1. Introduction . 376 8.2. The Equation of State for a Perfect Gas . 376 8.3. p-V-T Surface of an Ideal Gas . 379 8.4. Internal Energy and Enthalpy of a Perfect Gas . 379 8.5. Specific Heat Capacities of an Ideal Gas . 380 8.6. Real Gases . 381 8.7. Van der Waal’s Equation . 381 8.8. Virial Equation of State . 390 8.9. Beattie-Bridgeman Equation . 390 8.10. Reduced Properties . 391 8.11. Law of Corresponding States . 392 8.12. Compressibility Chart . 392 Highlights . 407 Objective Type Questions . 408 Theoretical Questions . 408 Unsolved Examples . 409 9. GASES AND VAPOUR MIXTURES . 411—448 9.1. Introduction . 411DHARM M-therm\TITLE.PM5 x i Chapter Pages ( xi ) 9.2. Dalton’s Law and Gibbs-Dalton Law . 411 9.3. Volumetric Analysis of a Gas Mixture . 413 9.4. The Apparent Molecular Weight and Gas Constant . 414 9.5. Specific Heats of a Gas Mixture . 417 9.6. Adiabatic Mixing of Perfect Gases . 418 9.7. Gas and Vapour Mixtures . 419 Highlights . 444 Objective Type Questions . 444 Theoretical Questions . 445 Unsolved Examples . 445 10. PSYCHROMETRICS . 449—486 10.1. Concept of Psychrometry and Psychrometrics . 449 10.2. Definitions . 449 10.3. Psychrometric Relations . 450 10.4. Psychrometers . 455 10.5. Psychrometric Charts . 456 10.6. Psychrometric Processes . 458 10.6.1. Mixing of air streams . 458 10.6.2. Sensible heating . 459 10.6.3. Sensible cooling . 460 10.6.4. Cooling and dehumidification . 461 10.6.5. Cooling and humidification . 462 10.6.6. Heating and dehumidification . 463 10.6.7. Heating and humidification . 463 Highlights . 483 Objective Type Questions . 483 Theoretical Questions . 484 Unsolved Examples . 485 11. CHEMICAL THERMODYNAMICS . 487—592 11.1. Introduction . 487 11.2. Classification of Fuels . 487 11.3. Solid Fuels . 488 11.4. Liquid Fuels . 489 11.5. Gaseous Fuels . 489 11.6. Basic Chemistry . 490 11.7. Combustion Equations . 491 11.8. Theoretical Air and Excess Air . 493 11.9. Stoichiometric Air Fuel (A/F) Ratio . 493 11.10. Air-Fuel Ratio from Analysis of Products . 494 11.11. How to Convert Volumetric Analysis to Weight Analysis . 494 11.12. How to Convert Weight Analysis to Volumetric Analysis . 494 11.13. Weight of Carbon in Flue Gases . 494 11.14. Weight of Flue Gases per kg of Fuel Burnt . 495 11.15. Analysis of Exhaust and Flue Gas . 495DHARM M-therm\TITLE.PM5 x i i Chapter Pages ( xii ) 11.16. Internal Energy and Enthalpy of Reaction . 497 11.17. Enthalpy of Formation (∆Hf) . 500 11.18. Calorific or Heating Values of Fuels . 501 11.19. Determination of Calorific or Heating Values . 501 11.19.1. Solid and Liquid Fuels . 502 11.19.2. Gaseous Fuels . 504 11.20. Adiabatic Flame Temperature . 506 11.21. Chemical Equilibrium . 506 11.22. Actual Combustion Analysis . 507 Highlights . 537 Objective Type Questions . 538 Theoretical Questions . 539 Unsolved Examples . 540 12. VAPOUR POWER CYCLES . 543—603 12.1. Carnot Cycle . 543 12.2. Rankine Cycle . 544 12.3. Modified Rankine Cycle . 557 12.4. Regenerative Cycle . 562 12.5. Reheat Cycle . 576 12.6. Binary Vapour Cycle . 584 Highlights . 601 Objective Type Questions . 601 Theoretical Questions . 602 Unsolved Examples . 603 13. GAS POWER CYCLES . 604—712 13.1. Definition of a Cycle . 604 13.2. Air Standard Efficiency . 604 13.3. The Carnot Cycle . 605 13.4. Constant Volume or Otto Cycle . 613 13.5. Constant Pressure or Diesel Cycle . 629 13.6. Dual Combustion Cycle . 639 13.7. Comparison of Otto, Diesel and Dual Combustion Cycles . 655 13.7.1. Efficiency versus compression ratio . 655 13.7.2. For the same compression ratio and the same heat input . 655 13.7.3. For constant maximum pressure and heat supplied . 656 13.8. Atkinson Cycle . 657 13.9. Ericsson Cycle . 660 13.10. Gas Turbine Cycle-Brayton Cycle . 661 13.10.1. Ideal Brayton cycle . 661 13.10.2. Pressure ratio for maximum work . 663 13.10.3. Work ratio . 664 13.10.4. Open cycle gas turbine-actual brayton cycle . 665 13.10.5. Methods for improvement of thermal efficiency of open cycle gas turbine plant . 667DHARM M-therm\TITLE.PM5 x i i i Chapter Pages ( xiii ) 13.10.6. Effect of operating variables on thermal efficiency . 671 13.10.7. Closed cycle gas turbine . 674 13.10.8. Gas turbine fuels . 679 Highlights . 706 Theoretical Questions . 707 Objective Type Questions . 707 Unsolved Examples . 709 14. REFRIGERATION CYCLES . 713—777 14.1. Fundamentals of Refrigeration . 713 14.1.1. Introduction . 713 14.1.2. Elements of refrigeration systems . 714 14.1.3. Refrigeration systems . 714 14.1.4. Co-efficient of performance (C.O.P.) . 714 14.1.5. Standard rating of a refrigeration machine . 715 14.2. Air Refrigeration System . 715 14.2.1. Introduction . 715 14.2.2. Reversed Carnot cycle . 716 14.2.3. Reversed Brayton cycle . 722 14.2.4. Merits and demerits of air refrigeration system . 724 14.3. Simple Vapour Compression System . 730 14.3.1. Introduction . 730 14.3.2. Simple vapour compression cycle . 730 14.3.3. Functions of parts of a simple vapour compression system . 731 14.3.4. Vapour compression cycle on temperature-entropy (T-s) diagram . 732 14.3.5. Pressure-enthalpy (p-h) chart . 734 14.3.6. Simple vapour compression cycle on p-h chart . 735 14.3.7. Factors affecting the performance of a vapour compression system . 736 14.3.8. Actual vapour compression cycle . 737 14.3.9. Volumetric efficiency . 739 14.3.10. Mathematical analysis of vapour compression refrigeration . 740 14.4. Vapour Absorption System . 741 14.4.1. Introduction . 741 14.4.2. Simple vapour absorption system . 742 14.4.3. Practical vapour absorption system . 743 14.4.4. Comparison between vapour compression and vapour absorption systems . 744 14.5. Refrigerants . 764 14.5.1. Classification of refrigerants . 764 14.5.2. Desirable properties of an ideal refrigerant . 766 14.5.3. Properties and uses of commonly used refrigerants . 768 Highlights . 771 Objective Type Questions . 772 Theoretical Questions . 773 Unsolved Examples . 774DHARM M-therm\TITLE.PM5 x i v Chapter Pages ( xiv ) 15. HEAT TRANSFER . 778—856 15.1. Modes of Heat Transfer . 778 15.2. Heat Transmission by Conduction . 778 15.2.1. Fourier’s law of conduction . 778 15.2.2. Thermal conductivity of materials . 780 15.2.3. Thermal resistance (Rth) . 782 15.2.4. General heat conduction equation in cartesian coordinates . 783 15.2.5. Heat conduction through plane and composite walls . 787 15.2.6. The overall heat transfer coefficient . 790 15.2.7. Heat conduction through hollow and composite cylinders . 799 15.2.8. Heat conduction through hollow and composite spheres . 805 15.2.9. Critical thickness of insulation . 808 15.3. Heat Transfer by Convection . 812 15.4. Heat Exchangers . 815 15.4.1. Introduction . 815 15.4.2. Types of heat exchangers . 815 15.4.3. Heat exchanger analysis . 820 15.4.4. Logarithmic temperature difference (LMTD) . 821 15.5. Heat Transfer by Radiation . 832 15.5.1. Introduction . 832 15.5.2. Surface emission properties . 833 15.5.3. Absorptivity, reflectivity and transmittivity . 834 15.5.4. Concept of a black body . 836 15.5.5. The Stefan-Boltzmann law . 836 15.5.6. Kirchhoff ’s law . 837 15.5.7. Planck’s law . 837 15.5.8. Wien’s displacement law . 839 15.5.9. Intensity of radiation and Lambert’s cosine law . 840 15.5.10. Radiation exchange between black bodies separated by a non-absorbing medium . 843 Highlights . 851 Objective Type Questions . 852 Theoretical Questions . 854 Unsolved Examples . 854 16. COMPRESSIBLE FLOW . 857—903 16.1. Introduction . 857 16.2. Basic Equations of Compressible Fluid Flow . 857 16.2.1. Continuity equation . 857 16.2.2. Momentum equation . 858 16.2.3. Bernoulli’s or energy equation . 858 16.3. Propagation of Disturbances in Fluid and Velocity of Sound . 862 16.3.1. Derivation of sonic velocity (velocity of sound) . 862 16.3.2. Sonic velocity in terms of bulk modulus . 864 16.3.3. Sonic velocity for isothermal process . 864 16.3.4. Sonic velocity for adiabatic process . 865DHARM M-therm\TITLE.PM5 x v 16.4. Mach Number . 865 16.5. Propagation of Disturbance in Compressible Fluid . 866 16.6. Stagnation Properties . 869 16.6.1. Expression for stagnation pressure (ps) in compressible flow . 869 16.6.2. Expression for stagnation density (ρs) . 872 16.6.3. Expression for stagnation temperature (Ts) . 872 16.7. Area—Velocity Relationship and Effect of Variation of Area for Subsonic, Sonic and Supersonic Flows . 876 16.8. Flow of Compressible Fluid Through a Convergent Nozzle . 878 16.9. Variables of Flow in Terms of Mach Number . 883 16.10. Flow Through Laval Nozzle (Convergent-divergent Nozzle) . 886 16.11. Shock Waves . 892 16.11.1. Normal shock wave . 892 16.11.2. Oblique shock wave . 895 16.11.3. Shock Strength . 895 Highlights . 896 Objective Type Questions . 899 Theoretical Questions . 901 Unsolved Examples . 902 Competitive Examinations Questions with Answers . 904—919 Index . 920—922 Steam Tables and Mollier Diagram . (i)—(xx) Index A Adiabatic flame temperature, 506 Air refrigeration system, 715 Air stand and efficiency, 604 Atkinson cycle, 657 Available and unavailable energy, 306 Availability in non-flow systems, 310 Availability in steady-flow systems, 311 B Beattie-Bridgeman equation, 390 Binary vapour cycle, 584 Brayton cycle, 661 C Calorific values of fuels, 501 Carnot cycle, 233, 543, 605 Carnot’s theorem, 235 corollary of, 237 Chemical equilibrium, 506 Chemical thermodynamics, 487 Clausius inequality, 231 Clausius-Claperyon equation, 353 Closed cycle gas turbine, 674 Coefficient of performance, 714 Compressibility chart, 392 Compressible flow, 857 - basic equations of, 857 - compressibility correction factor, 871 - Mach number, 865 - propagation of disturbance, 866 - Rankine-Hugoniot equation, 893 - shock waves, 892 - stagnation properties, 869 - through a convergent nozzle, 878 - through a convergent-divergent nozzle, 878 D Dalton’s law, 411 920 Diesel cycle, 629 Dual combustion cycle, 639 E Effectiveness, 312 Energy, 46 Energy—a property of system, 103 Energy relations for flow process, 152 Enthalpy, 108 Enthalpy-entropy chart, 75 Enthalpy of formation (∆Hf), 500 Entropy, 252 Erricson cycle, 660 F Fano Line equation, 776 First Law of thermodynamics, 227 limitations of, 227 G Gas power cycles, 604 Gas turbines, 7 Gas turbine fuels, 679 H Heat transfer, 778 by convection, 812 by radiation, 832 - Kirchhoff’s law, 837 - Lambert’s cosine law, 842 - Planck’s law, 837 - Wien’s law, 839 critical thickness of insulation, 808 heat exchangers, 815 heat transmission by conduction, 778 modes of, 778 overall heat transfer coefficient, 790 thermal resistance, 782INDEX 921 DHARM M-Therm\Index.pm5 I Ideal gas, 33 Internal combustion engines, 4 Internal energy, 101 Irreversibility, 312 J Joule’s law, 107 Joule’s-Thompson porous plug experiment, 162 K Kinetic theory of gases, 14 L Law of conservation of energy, 101 Law of corresponding states, 392 M Mollier diagram, 75 N Nuclear power plant, 3 O Open cycle gas turbine, 665 P Path function, 22 Perfect gas, 105 PMM1, 104 PMM2, 230 Point function, 22 Pressure, 33 Process, 21 Properties of systems, 21 Psychrometers, 449 Psychrometrics, 449 Psychrometric charts, 455 Psychrometric processes, 456 - cooling and dehumidification, 461 - cooling and humidification, 462 - heating and dehumidification, 463 - heating and humidification, 463 - mixing of air streams, 458 - sensible cooling, 460 - sensible heating, 459 Psychrometric relations, 450 R Rankine cycle, 544 modified, 557 Rankine-Hugoniot equations, 893 Real gases, 381 Refrigeration systems, 10, 714 Refrigerants, 764 Refrigeration cycles, 713 Regenerative cycle, 562 Reheat cycle, 576 Reversible and irreversible processes, 46, 228 Reversed Brayton cycle, 722 Reversed Carnot cycle, 716 S Second law of thermodynamics, 29 - Clausius statement, 229 - Kelvin-Planck statement, 229 Shock waves, 892 Simple vapour compression system, 730 - actual vapour compression cycle, 737 - p-h chart, 734 - simple vapour compression cycle, 730 - volumetric efficiency, 739 Specific heats, 106 Specific volume, 45 State, 21 Steam formation, 68 dryness fraction, 89 - determination of, 89 important terms relating to, 70 Standard rating of a refrigeration machine, 715 Steam power plant, 1 Stoichiometric Air-Fuel (A/F) ratio, 493 T Temperature, 23 Temperature-entropy diagram, 257 Thermodynamics, 18 definition of, 18 Thermodynamic equilibrium, 20 Thermodynamic relations, 341DHARM M-Therm\Index.pm5 922 ENGINEERING THERMODYNAMICS Clausi-Claperyon equation, 353 entropy equations, 344 some general, 341 Thermodynamic systems, 18 - adiabatic system, 19 - closed system, 18 - heterogeneous system, 19 - homogeneous system, 19 - isolated system, 19 - open system, 18 - system, boundary and surroundings, 18 Thermodynamic temperature, 231 Third law of thermodynamics, 265 Throttling process, 162 U Unsteady flow processes, 210 V Vander Waal’s equation, 390 Vapour absorption system, 741 Vapour power cycles, 543 W Work and heat, 46 Z Zenoth law of thermodynamics,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Engineering Thermodynamics رابط مباشر لتنزيل كتاب Engineering Thermodynamics
|
|