Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Elements of Mechanical Engineering الإثنين 01 مارس 2021, 11:51 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Elements of Mechanical Engineering As per latest syllabus of Punjab Technical University, Jalandhar S.I. UNITS By Er. R.K. RAJPUT M.E. (Hons.), Gold Medallist; Grad. (Mech. Engg. & Elect. Engg.); M.I.E. (India); M.S.E.S.I.; M.I.S.T.E.; C.E. (India) Recipient of: Best Teacher (Academic) Award’’ ‘‘Distinguished Author Award’’ ‘‘Jawahar Lal Nehru Memorial Gold Medal’’ for an outstanding research paper (Institution of Engineers–India) Principal (Formerly): • Thapar Polytechnic College • Punjab College of Information Technology PATIALA
و المحتوى كما يلي :
CONTENTS Chapters Pages Syllabus (xii)—(xiv) PART A 1. BASIC CONCEPTS OF THERMODYNAMICS 3—45 1.1. Definition of Thermodynamics . 3 1.2. Thermodynamic Systems . 3 1.2.1. System, boundary and surroundings . 3 1.2.2. Closed system . 4 1.2.3. Open system . 4 1.2.4. Isolated system . 4 1.2.5. Adiabatic system . 4 1.2.6. Homogeneous system . 5 1.2.7. Heterogeneous system . 5 1.3. Macroscopic and Microscopic Points of View . 5 1.4. Pure Substance . 6 1.5. Thermodynamic Equilibrium . 6 1.6. Properties of Systems . 6 1.7. State . 6 1.8. Process . 7 1.9. Cycle . 7 1.10. Point Function . 7 1.11. Path Function . 7 1.12. Temperature . 8 1.13. Zeroth Law of Thermodynamics . 8 1.14. The Thermometer and Thermometric Property . 8 1.14.1. Introduction . 8 1.14.2. Measurement of temperature . 9 1.14.3. The international practical temperature scale . 14 1.14.4. Ideal gas . 18 1.15. Pressure . 18 1.15.1. Definition of pressure . 18 1.15.2. Unit for pressure . 19 1.15.3. Types of pressure measurement devices . 19 1.15.4. Mechanical-type instruments . 19 1.15.5. Important types of pressure gauges . 24 1.16. Specific Volume . 25 1.17. Reversible and Irreversible Processes . 29 ( v )1.18. Energy, Work and Heat . 30 1.18.1. Energy . 30 1.18.2. Work and heat . 30 1.19. Reversible Work . 32 Highlights . 41 Objective Type Questions . 42 Theoretical Questions . 44 Unsolved Examples . 44 2. FIRST LAW OF THERMODYNAMICS AND ITS APPLICATIONS 46—158 2.1. Internal Energy . 46 2.2. Law of Conservation of Energy . 46 2.3. First Law of Thermodynamics . 46 2.4. Application of First Law to a Process . 48 2.5. Energy—A Property of System . 48 2.6. Perpetual Motion Machine of the First Kind-PMM1 . 49 2.7. Energy of an Isolated System . 50 2.8. The Perfect Gas . 50 2.8.1. The characteristic equation of state . 50 2.8.2. Specific heats . 51 2.8.3. Joule’s law . 52 2.8.4. Relationship between two specific heats . 52 2.8.5. Enthalpy . 53 2.8.6. Ratio of specific heats . 53 2.9. Application of First Law of Thermodynamics to a Non-flow or Closed System . 54 2.10. Application of First Law to Steady Flow Process . 90 2.11. Energy Relations for Flow Process . 92 2.12. Engineering Applications of Steady Flow Energy Equation . 95 2.12.1. Water turbine . 95 2.12.2. Steam or gas turbine . 96 2.12.3. Centrifugal water pump . 97 2.12.4. Centrifugal compressor . 97 2.12.5. Reciprocating compressor . 98 2.12.6. Boiler . 98 2.12.7. Condenser . 99 2.12.8. Evaporator . 100 2.12.9. Steam nozzle . 100 2.13. Throttling Process and Joule-Thomson Porous Plug Experiment . 101 2.14. Heating-Cooling and Expansion of Vapours . 121 2.15. Unsteady Flow Processes . 143 Highlights . 147 Objective Type Questions . 148 Theoretical Questions . 151 Unsolved Examples . 151 Chapters Pages ( vi )3. SECOND LAW OF THERMODYNAMICS AND ENTROPY 159—223 3.1. Limitations of First Law of Thermodynamics and Introduction to Second Law . 159 3.2. Performance of Heat Engine and Reversed Heat Engine . 159 3.3. Reversible Processes . 160 3.4. Statements of Second Law of Thermodynamics . 161 3.4.1. Clausius statement . 161 3.4.2. Kelvin-Planck statement . 161 3.4.3. Equivalence of Clausius statement to the Kelvin-Planck statement . 161 3.5. Perpetual Motion Machine of the Second Kind (PMM2) . 162 3.6. Thermodynamic Temperature . 162 3.7. Clausius Inequality . 163 3.8. Carnot Cycle . 165 3.9. Carnot’s Theorem . 167 3.10. Corollary of Carnot’s Theorem . 168 3.11. Efficiency of the Reversible Heat Engine . 168 3.12. Entropy . 182 3.12.1. Introduction . 182 3.12.2. Entropy–a property of system . 182 3.12.3. Change of entropy in a reversible process . 183 3.13. Entropy and Irreversibility . 184 3.14. Change in Entropy of the Universe . 185 3.15. Temperature Entropy Diagram . 186 3.16. Characteristics of Entropy . 187 3.17. Entropy Changes for a Closed System . 187 3.17.1. General case for change of entropy of a gas . 187 3.17.2. Heating a gas at constant volume . 189 3.17.3. Heating a gas at constant pressure . 189 3.17.4. Isothermal process . 190 3.17.5. Adiabatic process (reversible) . 191 3.17.6. Polytropic process . 191 3.17.7. Approximation for heat absorbed . 193 3.18. Entropy Changes for an Open System . 194 3.19. The Third Law of Thermodynamics . 196 Highlights . 217 Objective Type Questions . 218 Theoretical Questions . 220 Unsolved Examples . 221 PART B 4. GAS POWER CYCLES 227—318 4.1. Definition of a Cycle . 227 4.2. Air Standard Efficiency . 227 4.3. The Carnot Cycle . 228 4.4. Constant Volume or Otto Cycle . 235 Chapters Pages ( vii )4.5. Constant Pressure or Diesel Cycle . 250 4.6. Dual Combustion Cycle . 259 4.7. Comparison of Otto, Diesel and Dual Combustion Cycles . 274 4.7.1. Efficiency versus compression ratio . 274 4.7.2. For the same compression ratio and the same heat input . 275 4.7.3. For constant maximum pressure and heat supplied . 275 4.8. Atkinson Cycle . 276 4.9. Ericsson Cycle . 279 4.10. Gas Turbine Cycle—Brayton Cycle . 279 4.10.1. Ideal Brayton cycle . 279 4.10.2. Pressure ratio for maximum work . 281 4.10.3. Work ratio . 282 4.10.4. Open cycle gas turbine—actual brayton cycle . 282 4.10.5. Methods for improvement of thermal efficiency of open cycle gas turbine plant . 284 4.10.6. Effect of operating variables on thermal efficiency . 287 4.10.7. Closed cycle gas turbine . 289 4.10.8. Gas turbine fuels . 291 Highlights . 312 Objective Type Questions . 313 Theoretical Questions . 315 Unsolved Examples . 315 5. INTERNAL COMBUSTION ENGINES 319—360 5.1. Heat Engines . 319 5.2. Development of I.C. Engines . 320 5.3. Classification of I.C. Engines . 320 5.4. Applications of I.C. Engines . 321 5.5. Basic Idea of I.C. Engine . 321 5.6. Different Parts of I.C. Engines . 322 5.7. Terms Connected with I.C. Engines . 346 5.8. Working Cycles . 347 5.9. Indicator Diagram . 348 5.10. Four Stroke Cycle Engines . 348 5.11. Two Stroke Cycle Engines . 354 5.12. Comparison of Four Stroke and Two Stroke Cycle Engines . 356 5.13. Comparison of Spark Ignition (S.I.) and Compression Ignition (C.I.) Engines . 357 5.14. Comparison between a Petrol Engine and a Diesel Engine . 358 5.15. How to Tell a Two Stroke Cycle Engine from a Four Stroke Cycle Engine ? . 359 Theoretical Questions . 359 Chapters Pages ( viii )6. ENGINEERING MATERIALS 361—419 6.1. Classification of Materials . 361 6.1.1. Classification of electrical engineering materials . 363 6.1.2. Biomaterials . 365 6.1.3. Advanced materials . 365 6.1.4. Materials of future—“Smart Materials” . 365 6.1.5. Nanotechnology and nanomaterials . 366 6.2. Mechanical Properties of Metals . 368 6.3. Ferrous Metals and Alloys . 371 6.3.1. Introduction . 371 6.3.2. Pig iron . 373 6.3.3. Cast iron . 374 6.3.4. Wrought iron . 377 6.3.5. Composition, properties and uses of carbon steels . 377 6.3.6. Comparison of cast iron, wrought iron, mild steel and hard steel . 378 6.3.7. Alloy steels . 379 6.4. Non-Ferrous Metals and Alloys . 384 6.4.1. Aluminium . 384 6.4.2. Copper . 386 6.4.3. Copper alloys . 387 6.4.4. Aluminium alloys . 390 6.5. Polymers/Plastics . 393 6.5.1. Introduction . 393 6.5.2. Classification of plastics . 393 6.5.3. Thermoplastic materials . 394 6.5.4. Thermosetting materials . 395 6.5.5. Trade names and typical applications of some important plastics 395 6.5.6. Laminated plastics . 396 6.5.7. Fiber glass reinforced plastics . 396 6.6. Ceramic Materials . 397 6.6.1. Introduction . 397 6.6.2. Classification of ceramics . 397 6.6.3. Advantages of ceramic materials . 398 6.6.4. Applications of ceramics . 398 6.6.5. Properties of ceramic materials . 399 6.6.6. Glass . 401 6.6.7. Cements . 404 6.6.8. Advanced ceramics . 406 6.7. Composite Materials/Composites . 407 6.7.1. General aspects . 407 6.7.2. Classification . 408 6.7.3. Particle-reinforced composites . 409 6.7.4. Fiber-reinforced composites . 410 6.7.5. Structural composites . 411 Chapters Pages ( ix )Chapters Pages 6.8. Conductors, Semiconductors and Insulators . 412 6.8.1. Conductors . 412 6.8.2. Semiconductors . 413 6.8.3. Insulators (or dielectrics) . 415 6.9. Selection of Materials . 416 Theoretical Questions . 418 7. CENTRE OF GRAVITY AND CENTROID 420—456 7.1. Centre of Gravity of a Body . 420 7.2. Determination of Centre of Gravity . 421 7.3. Centroid . 421 7.4. Positions of Centroids of Plane Geometrical Figures . 422 7.5. Positions of Centre of Gravity of Regular Solids . 423 7.6. (a) Centroids of Composite Areas . 424 7.6. (b) Centre of Gravity of Simple Solids . 424 7.7. Areas and Volumes—Centroid Method . 425 7.8. Centre of Gravity in a Few Simple Cases . 426 Highlights . 450 Objective Type Questions . 450 Exercises . 451 Theoretical Questions . 451 Unsolved Examples . 451 8. MOMENT OF INERTIA 457—483 8.1. Moment of Inertia . 457 8.2. Theorem of Parallel Axes . 459 8.3. Theorem of Perpendicular Axes . 459 8.4. Radius of Gyration of the Section . 460 8.5. Moment of Inertia of Laminae of Different Shapes . 461 Highlights . 479 Objective Type Questions . 480 Exercises . 480 Theoretical Questions . 480 Unsolved Examples . 480 Additional Typical Worked Examples 485—500 Examination Pap
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Elements of Mechanical Engineering رابط مباشر لتنزيل كتاب Elements of Mechanical Engineering
|
|