كتاب Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18996
التقييم : 35494
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems  Empty
مُساهمةموضوع: كتاب Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems    كتاب Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems  Emptyالإثنين 01 مارس 2021, 11:57 pm

أخوانى فى الله
أحضرت لكم كتاب
Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems
Edited by
Klaus Brun
Director Research & Development, Elliott Group, Jeannette,
Pennsylvania, United States
Timothy Allison
Director Research & Development, Machinery Department, Southwest
Research Institute, San Antonio, Texas, United States
Richard Dennis
Technology Manager for Advanced Turbines and Supercritical Carbon
Dioxide Power Cycle Programs, U.S. Department of Energy’s
National Energy Technology Laboratory (NETL), Morgantown,
West Virginia, United States  

كتاب Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems  T_m_a_11
و المحتوى كما يلي :


Nomenclature
a speed of sound [m/s]
A amplitude
AF amplification factor
b impeller exit width
C flow heat capacity ð Þ mc _ P
c flow velocity in absolute reference frame
c specific heat capacity for a solid or incompressible fluid
Ceffective effective damping ¼ Cxx – Kxy/ω
c
v, cP specific heat capacity at constant volume and specific heat at
constant pressure, respectively
C
xx direct damping coefficient
C
xy cross-coupled damping coefficient
D diameter
D2 impeller tip diameter
e energy per unit mass
E elastic modulus (Young’s modulus)
f frequency
G shear modulus (modulus of rigidity)
h enthalpy
^h convective heat transfer film coefficient
h height
H head
i, I irreversibility per unit mass and total irreversibility (entropy),
respectively
I electrical current
J polar moment of inertia
K stiffness
k isentropic exponent
k
xx direct stiffness coefficient
k
xy cross-coupled stiffness coefficient
L length
m mass
m_ mass flow rate
Ma Mach number
MW molecular weight
xxiiin polytrophic exponent
N rotational speed
N
c critical speed
Nu Nusselt number
P power
p pressure
pe potential energy per unit mass (gz, where z represents elevation)
ρ density
Pr Prandtl number of the fluid
q, Q heat transfer per unit mass, total heat transfer
Q volume flow rate
r
v specific volume ratio
R gas constant for a specific gas
R universal gas constant
Re Reynolds number
SQ std. flow
s entropy
T temperature
u internal energy per unit mass
U^ overall heat transfer coefficient
U2 impeller tip speed
V voltage
v flow velocity in stationary reference frame
vd specific volume at discharge
vi specific volume at inlet
w flow velocity in rotating reference frame
W weight
W work
X reactive impedance
Z total impedance
ΔP pressure drop
ε heat exchanger effectiveness
Φ exergy
η efficiency
ρ density
ψ head coefficient
μ absolute (dynamic) viscosity
φ phase angle
ϕ flow coefficient
υ kinematic viscosity
Γ torque
xxiv Nomenclatureθ angular displacement
δ ratio of specific heats (cP/cv), Fluid thermal conductivity
α absolute flow angle
β relative flow angle
Abbreviations
CSR critical speed ratio
FFT fast Fourier transfer
HP horsepower
ke kinetic energy per unit mass (v2/2, where v represents velocity)
MCOS maximum continuous operating speed
PF power factor
Subscripts
1, 2, 3 property at defined point
I,
II first law (or energy) and second law (or exergy) basis, respectively
C, H heat exchanger cold and hot fluids, respectively
C, T compressor, turbine, respectively
f saturated liquid
fg difference in property for vaporization from liquid to vapor
g saturated vapor
H heat source
o dead state
p polytropic
r rejected heat
R, S heat rejected and supplied, respectively
S state point that would be reached in an isentropic process
s, d suction, discharge
S isentropic
th thermal efficiency (refers to energy transformations within the
working fluid)
Over dot
□_ rate or time derivative
! vector
 matrix
Index
Note: Page numbers followed by f indicate figures and t indicate tables.
A
Active magnetic bearing (AMB), 581, 581f
Additive manufacturing (AM), 201
Adiabatic and polytropic efficiencies, 42
Adiabatic compressed air energy storage
(ACAES), 84, 414–419, 416–417f,
420–421f, 468–470, 469–470f
ADELE project, 417, 417f, 420f
high-temperature, 414–415, 414–415f
low-temperature, 415–416, 416f
thermal storage systems for, 415–416
Advanced Adiabatic Compressed Air systems,
306
Advanced Environmental Burner
(AEB), 400
Ancillary services, 455–456, 516
black start, 459–460
cooptimization, 565–567
Federal Electricity Regulatory Commission
(FERC), 455
frequency regulation, 457–459
voltage support, 459
Andasol-1, 38, 38f
Argon, 320–321, 571–572
ASME Power Test Code (PTC), 497
Auxiliary bearings, 230–231
B
BaO2/BaO, 266–267
Barrel-type high-pressure centrifugal
compressor, 434–435, 436f
Battery energy storage systems (BESS), 532
Bearingless motor
for flywheel energy storage, 217–222,
218f
operation, 224–226
sizing laws, 223–226
Bearing losses, 231–233
Bearings, 201–209, 580–584, 581–583f
Behind-the-Meter (BTM) ES applications,
519
BES. See Buoyancy energy storage (BES)
Black start, 518
Boiling-water reactors (BWRs), 482
Bottom-up cost model, 530, 531f
Brayton battery, 28, 28f, 37–49, 37t, 37f
entropy metric, 41–42
heat exchanger entropy generation, 44–49,
45–47f, 47t
land use, 59
molten nitrate salt technology, 38–41, 38f,
39–40t, 41f
turbomachinery entropy generation, 42–44,
43–44f
Brayton cycle, gas turbine power
plants, 465, 466f
Building air conditioning, 117–118
Building space conditioning, 118–122,
118–120f
Buoyancy energy storage (BES), 238–242,
240–241f
C
California duck curve, 514, 514f
California Independent System Operator
(CAISO), 452, 516
Capacity markets, 452–455
Capacity payments, 516
Capital costs, 529–530
Capital markets, 528
Carbon monoxide (CO), 386–387
Carnot cycle, 297–299, 298–299f
Carnot efficiency, 300
Cash flow, 523–525, 527f
Chemical energy storage, 17–18
hydrocarbon fuels, 250–251
hydrogen storage, 252–286
reversible solid-state hydrogen storage
materials, 253–265, 254–256f
thermochemical energy storage,
266–286
prevalent forms, 249–250
volumetric vs. gravimetric energy
densities, 249–250, 250f
Chemisorption, 255
Claude cycle, 308
Closed-cycle Brayton engine, 50
Closed-loop reversible reactions, 281–285
Codes and standards, energy storage, 503–508
597Cold exchanger (CE), 578
Combined cycle gas turbine (CCGT) power
plant, 468, 469f
Combustion system, 392–393, 393f
Commercial-scale markets, 520–521
Commodity risk, 528
Composite flywheels, 185–201
additive manufacturing, 201
flywheel stress analysis, 196
future trends, 199
multiring flywheels, 198–199
nanomaterials, 199–201
single-ring flywheels, 196–198
Compressed air energy storage (CAES), 22–24,
306, 408–410, 467–472, 467f, 534
adiabatic, 414–419, 414–417f, 420–421f,
468–470, 469–470f
compression train, 436–438, 438–439f
constant pressure, 573–575, 574f
current power plants, 427–433, 428–429t,
431–433f, 434t
diabatic, 470–472, 471t, 472–473f
distributed, 576–577, 576f
efficiency, 538–539
gas turbine integration, 421–427, 423f,
425–426t, 425f, 427f
heat exchanger requirements, 442–444, 443f
isothermal, 419–421, 468
poly-generation with, 575–576, 575f
porous media with cushion gas, 578–579,
578f
recuperated cycle, 412–413, 413f
rotating equipment requirements, 433–442,
435–441f
simple-cycle, 410–412, 411–412f
supercritical, 577–578, 577f
Compressor, 433–435, 435f, 589, 591–592
Computer-aided molecular design (CAMD),
301
Concentrated solar power
heat transfer fluids, 492–493
high-temperature tower with PCM, 496
solar salt molten salt power tower, 494–495
thermal energy storage, 490–492, 491–492f
high-temperature tower with direct,
495–496
high-temperature tower with indirect, 496
and turbine ΔT, 493–494
Concentrated solar power (CSP), 66, 533
thermal energy storage with, 570, 571f
Constant pressure (CP-CAES) system, 573–575
Contact-type bearings, 201–203
Conventional motor/generator design
bearingless motors, 217–222
magnetic bearing control, 212–217, 212f,
214f
motor/generator control, 211–212
motor types and function, 209–210, 211f
Conveyable solid
direct contact, 370, 370f
with batch feeding, 371, 372f
with continuous airlock feeders, 370, 370f
indirect contact, 369, 369f
Co3O4/CoO, 271–272
Cost
of power-related plant and energy storage
components, 534, 534f
working fluids, 304, 305t
“Creep cliff,” 41
Cryogenic energy storage
charging system, 308, 309–310f
discharging system, 309–310
LAES system, 307–308
Cryogenic feed pump, 314
CuO/Cu2O, 267–270
Cushion gas, CAES system, 578–579, 578f
Cycle temperature effect
on cycle minimum temperature, 337, 339f
on heat exchange, 336, 338f
on machinery volume flow, 340, 341f
on pressure ratio, 336, 339f
on round-trip efficiency, 336, 338f
on thermal store size requirement, 337–340,
340f
D
Day-ahead (DA) vs. real-time markets,
550–552
Demand management, 460–461
Diabatic compressed air energy storage
(DCAES), 470–472, 471t, 472–473f
Direct contact liquid, 371–372, 372f
Dispatch model
energy markets, 546–556
energy price variation, 546–556
formal mathematical optimization, 562–567
price array sorting method, 556–559, 557f
stored resource valuation method, 559–562,
561f
Distributed CAES, 576–577, 576f
Dry low emission (DLE) combustor, 411–412
Duration
vs. energy capacity, 540, 540f
vs. power requirement, 541, 541f
Dynamic ice storage, 133–135, 133f, 136f
598 IndexE
Economics
levelized cost methods, 522–527, 524t,
525–527f
market modeling, 522
risk and financing, 528–529
Electrical energy storage
supercapacitor, 586–587, 586f
superconducting magnetic energy storage
(SMES) systems, 587–588, 587f
Electrical generator, 465
Electricity markets, 452–453
Electric power markets, in United States,
546–547, 546f
Electric Reliability Council of Texas (ERCOT),
516
price stack, 547, 548f
Electrode entropy creation, 33–36
electrical resistance, 35
irrelevant losses, 36
viscous flow resistance, 33–35
Energy arbitrage, 451–452, 515
Energy markets, 546–556
Energy price, 546–556
in day-ahead markets, 452, 453–454f
Energy storage devices (ESD), 186
Energy Storage Integration Council
(ESIC), 498
Energy storage system
chemical, 17–18
codes and standards, 503–508
commissioning standards, 507t
incident preparedness, 507t
installation standards, 505–506t
operation and maintenance standards, 507t
operation on market, 461–462
opportunities and challenges, 8–9, 8f, 10–11t
renewable variability and demand mismatch,
4–7, 5–7f
safety standards and certification, 504–508
standards at component level, 504t
standards at system level, 505t
technologies, 18–24, 18–20f, 22f
testing laboratory capabilities, 501–502t
thermal, 14–17
chemical reaction materials, 17
phase change materials, 15–16
sensible heat storage materials, 14–15
sorption heat storage materials, 16–17
thermodynamics
first law, 11–12, 12f
second law, 13–14
wholesale energy time-shifting and arbitrage,
451–461
worldwide power generation mix and trends,
2–4, 2–4f
Energy-to-power (E/P) ratio, 540–541
Engineer Procurement and Construction (EPC),
529–530
Entropy, 13
Entso-E electricity markets, reserve services,
458, 458f
Environmental risk, 529
Euler-Bernoulli beam equation, 52
Euler turbine equation, 58
Exergy, 13–14, 300
F
Federal Electricity Regulatory Commission
(FERC), 455
Fe2O3/Fe3O4, 270
FESS. See Flywheel energy storage systems
(FESS)
Financial benefits, 515–519
ancillary services, 516
behind-the-meter (BTM), 519
capacity payments, 516
energy arbitrage, 515
frequency regulation (FR), 517–518
grid benefits, 518–519
small-scale grids, 519
First Law of Thermodynamics, 11, 12f
Flame speed, 388–389, 388f
Flame temperature, 386f, 389
Flow batteries, in grid energy storage
technology, 31–37
electrode entropy creation, 33–36, 34t, 35f
membrane cost constraint, 32–33, 33f, 34t
thermal engine, 36–37, 36–37f
thermodynamic reversibility, 32, 32f
Flywheel energy storage systems (FESS), 579
application, 166–170, 166f, 169f
auxiliary components, 226–231
vacuum systems, 226–231
comparison, 170–172, 172–173f
electrical design, 209–226
conventional motor/generator design,
209–226
loss mechanisms, 231–234
bearing losses, 231–233
motor/generator losses, 234
windage loss, 231
mechanical design, 175–209
bearings and rotordynamics, 201–209
Index 599Flywheel energy storage systems (FESS)
(Continued)
composite flywheels, 185–201
steel flywheels, 175–185
technology projections, 172–175, 174f
Flywheel/lead-acid battery system, 585
Flywheels, 579
bearing development, 580–584, 581–583f
composite, 584, 584f
energy system, 579–580, 580f
hybrid renewable energy systems, 585
material development, 584–585, 584f
operation cost and maintenance of, 534–535
power quality, 585
Flywheel stress analysis, 196
Formal mathematical optimization, 562–567
Fossil fuel power plants, 464
compressed air energy storage, 467–472,
467f
adiabatic, 468–470, 469–470f
diabatic, 470–472, 471t, 472–473f
generic thermal energy storage system for,
475f
principles of operation
gas turbine power plants, 465–466, 466f
steam turbine power plants, 465, 466f
thermal energy storage, 472–477
for combined cycle power plants, 475–477,
477f
for conventional power plants, 474,
474–476f
Frequency regulation (FR), 457–459, 517–518,
552–556
G
Garrett flywheel, 193
Gas-phase intermediate fluid, 374–375
Gas turbine
air injection in, 422
integrated compressed air energy storage
(CAES), 421–427, 423f, 425–426t, 425f,
427f
rotor in open casing, 439–440, 440f
Siemens SGT-800, 440–441, 441f
split, 427, 427f
Gas turbine combustion systems, 385–391,
385–386f, 387t
combustion stability, 389
components, 385–386, 385f
flame speed, 388–389, 388f
flame temperature, 386f, 389
flammability range, 389–390
gas group, 390
hydrogen diffusivity, 390
hydrogen embrittlement, 390–391
maximum experimental safe gap
(MESG), 390
Gas turbine power plants, 465–466, 466f
GES. See Gravity energy storage (GES)
Global warming potential (GWP), 304
Glycol-based fluids, 372–373
Graetz equation, 47–48
Gravity energy storage (GES), 236–238, 237f,
239f
Grid energy storage technology
Brayton battery, 28, 28f, 37–49, 37t, 37f
entropy metric, 41–42
heat exchanger entropy generation, 44–49,
45–47f, 47t
Molten nitrate salt technology, 38–41, 38f,
39–40t, 41f
turbomachinery entropy generation,
42–44, 43–44f
charge mode, 27–28, 28f
flow batteries, 31–37
electrode entropy creation, 33–36,
34t, 35f
membrane cost constraint, 32–33, 33f, 34t
thermal engine, 36–37, 36–37f
thermodynamic reversibility, 32, 32f
generation mode, 27–28
importance, 28
problem
pricing, 30, 31f
renewable load leveling, 29–30, 30f
safety, 31
world energy budget, 29, 29f
reversible turbomachinery, 56–59, 56f
stage loading, 57, 57f
velocity triangles, 57–59
salt tank breach, 28
semiconductor interface, 28
steam technology precedents, 49–56
bearings and seals, 53–54, 53f
cooling, 54–56, 55f
high pressure and power, 49–51, 50f
motor/generator speed limitation, 51–53,
51–52f
H
Heat and material balance (HMB), 334–336
Heat engine-based storage systems
compressed air energy storage, 408–444
cryogenic energy storage, 305–317
600 Indexhydrogen storage, 384–407
pumped heat, 317–383
thermodynamic cycles and systems, 294–305
Heat engines, 294–297, 295–296f
Heat exchange, 334, 334t
cycle temperature effect on, 336, 338f
Heat exchanger, 315–316
in compressed air energy storage (CAES),
442–444, 443f
entropy generation, 44–49, 45–47f, 47t
equation, 333
optimization, 48–49
service integration, 375, 376f
Heating value, 388
Heat pumps, 294–297, 295–296f
Heat rejection, 343–346
ideal gas cycle with, 345f
overlapped ideal gas cycle with, 347f
recuperated ideal gas cycle with, 346f
Heat rejection, ideal gas cycle, 328–329
Heat transfer fluids (HTFs), 66, 106, 492–493,
493f
Hexane, 364
High-temperature gas-cooled reactors
(HTGRs), 483
High-temperature superconductor bearings
(HTSBs), 581, 582f
Hot exchanger (HE), 578
Huntorf CAES plant, 430, 431f, 471–472, 471t
HVAC, 532
Hybrid adsorption-assisted compression cycle,
589, 589f
Hybrid compression-assisted absorption cycle,
590–591, 590–591f
Hybrid energy storage systems (HESS),
592–593
hybrid energy storage systems (HESS),
592–593
thermal-chemical with mechanical, 588–592,
589–591f
thermochemical sorption-compression
hybrid energy system, 592
Hybrid processes, 286
Hydrogen
blending system, 402f
compressibility factor of, 404
diffusivity, 390
direct testing of, 399–400
dynamic viscosity, 404, 405f
embrittlement, 390–391
on power plant systems, 393–395, 394f
on transportation efficiency, 405
Hydrogen gas, 403–407
Hydrogen storage, 252–286
CO2 emissions reduction, 402–403
gas turbine combustion systems, 385–401,
385–386f, 387t
combustion stability, 389
configured with diffusion flame
combustors, 392–395
configured with lean premixed combustion
systems, 395–401
flame speed, 388–389, 388f
flame temperature, 389
flammability range, 389–390
gas group, 390
hydrogen diffusivity, 390
hydrogen embrittlement, 390–391
maximum experimental safe gap (MESG),
390
package impacts, 401–402
pipeline transportation, 403–407
reversible solid-state hydrogen storage
materials, 253–265, 254–256f
I
Ideal gas cycle, 320–322, 321f
charging cycle, 320
discharging cycle, 320–322
heat rejection, 328–329
inventory control in, 329–332, 331–332f
overlap, 324–326, 325–326f
pressure, influence of, 326–327
with recuperation, 322–324, 323f
temperatures, influence of, 327–328
Independent System Operators (ISOs), 452
Indirect contact liquid, 372–373, 373f
Industrial scale markets, 520
Installed (capital) costs, 529–530
Institute of Electrical and Electronics Engineers
(IEEE), 497
Integrally geared compressor (IGC), 436, 437f
Integrated gasification combined cycle
(IGCC) power plant, 475, 477f
Intermediate fluid thermocline, 373–374, 374f
Inverter Cooling, 532
Isothermal compressed air energy storage
(ICAES), 419–421, 468
Isothermal Compressed Air systems, 306
L
Land use, 542, 543f
Latent heat, 572–573
Lean premixed combustion systems, 397–401
Index 601Levelized cost methods, 522–527
Levelized cost of electricity (LCOE), 478,
522–523, 524t, 525f
sensitivity analysis for, 523, 526f
Levelized cost of storage (LCOS), 523
Light water reactors (LWRs), 482
Li-ion batteries (LIB), 186–187
for renewable integration, 461–462, 462f
Linde cycle, 308
Liquefier, 314
Liquid Air Energy Storage (LAES), 22–24,
306–308
charging phase, 308, 309f
temperature-entropy diagram for, 308,
310f
discharging system, 309–310, 311f
engineering considerations, 315–316
performance, 312–313
pilot plant, 310–311, 311–312f
scale, 313–315
working fluids, alternative, 316
first generation CAES, 306, 307f
Liquid Organic Hydrogen Carriers (LOHCs),
250–251
Liquid thermal energy storage, 66–67, 66–67f
Locational marginal prices (LMPs), 515
Loss mechanisms, 231–234
bearing losses, 231–233
motor/generator losses, 234
windage loss, 231
Low-temperature cool thermal storage,
116–135
applications
building air conditioning, 117–118
building space conditioning, 118–122,
118–120f
turbine inlet air cooling, 122–124
dynamic ice storage, 133–135, 133f, 136f
technologies
encapsulated ice and PCMs, 129–130, 130f
latent energy change, 126–129, 127f
sensible energy change, 124–126
unitary air conditioning systems, 130–132,
131–132f
M
Magnetic bearings, 203–207, 581
Malta’s 10 MW Pilot System, 571–572, 572f
Market modeling, 522
Market place
conditions, 514
financial benefits, 515–519
opportunities and scale, 519–521
Maximum experimental safe gap (MESG), 390
McIntosh CAES plant, 430–431, 432f
Mechanical energy storage
buoyancy energy storage, 238–242, 240–241f
CAES system
constant pressure, 573–575, 574f
distributed, 576–577, 576f
poly-generation with, 575–576, 575f
porous media with cushion gas, 578–579,
578f
supercritical, 577–578, 577f
flywheel energy storage
application, 166–170, 166f, 169f
auxiliary components, 226–231
comparison, 170–172, 172–173f
electrical design, 209–226
loss mechanisms, 231–234
mechanical design, 175–209
technology projections, 172–175, 174f
gravity energy storage, 236–238, 237f, 239f
pumped hydroelectric storage
application, 160–166, 162–165f
basics design parameters, 139–166
historical development, 147–150, 148f
power unit concepts and main operation
modes, 150–160
types, 143–147, 144–147f
working principle, 140–143, 141–143f
Mechanical vapor compression cycle, 588–589
Micro grids, 461
Microscopic quantum, 41–42
Mixed metal oxides redox systems
alkaline earth carbonates, 279–280
carbonation reactions, 278–279
closed-loop reversible reactions, 281–285
doping Co3O4/CoO redox couple, 272–273
doping Mn2O3/Mn3O4 redox couple, 273
hydration reactions, 275–278
perovskites, 273–274
spinels/monoxide, 274–275
Mn2O3/Mn3O4, 270–271
Molten nitrate salt, 481
storage, 570
technology, 38–41, 38f, 39–40t, 41f
thermal properties for, 484, 485t
Molten salt, 348
Molten salt reactors (MSRs), 482–483
Monatomic gas, 320–321
Motor/generator losses, 234
Motor types and function, 209–210
Multiring flywheels, 198–199
602 IndexN
National Fire Protection Agency (NFPA), 503
Natural gas, 464
Navier-Stokes equation, 45–47
Nernst equation, 32
Net metering rules, 521
Next generation nuclear power (NGNP)
reactors, 481
Nonbinding, 563–564
Nonspinning reserve, 457–458, 518
NO
x, 386–387, 393, 394f, 398f
Nuclear energy systems, thermal energy storage
(TES) for, 478–490
challenges, 478
energy density, 488–490, 489–490t, 495t
exergy recovery and efficiency, 488
sensible heat storage, 483–488
solutions, 478–479
storage integration, 481–483
storage methods, 479–481, 481f
Nuclear power plants, 464
O
Once Through Steam Generator
(OTSG), 73–74
Open cycle gas turbine (OCGT), 316
Open-loop pumped storage systems, 144
Operational and maintenance (O&M) costs,
530–535
Operational (part load) flexibility, 543–544
Organic Rankine cycle (ORC), 301
Ozone depletion potential (ODP), 304
P
Packed bed thermal storage system, 484–485,
486–487f
alternative design, 88–90, 88–89f
application, 84–86, 84–86f, 90–91, 91f
description, 82–83, 83f
stacked bricks, 90
technical challenges, 86–87, 87f
Permanent magnetic bearing (PMB), 581
Phase change materials (PCMs), 374, 494
latent heat thermal energy storage, 572–573
2-phase working fluids, 104–105, 105f
Plate-type exchanger, 376f
Poly-generation with CAES, 575–576, 575f
Power conditioning subsystem (PCS), 587–588
Power cycles. See Heat engines
Power purchase agreement (PPA), 461–462,
515
Power turbine, 314
Power unit concepts, 150–160
reversible power units, 150–153, 151–153f,
158–160
ternary power units with fixed speed,
155–160, 155–157f
variable speed technology, 153–155, 154f
Pressure
ideal gas cycle, 326–327
influence of ideal gas cycle, 326–327
working fluids, 301–302
Pressure Control Valve (PCV), 73–74
Pressure ratio, cycle temperature effect on, 336,
339f
Pressurized-water reactors (PWRs), 482
Price array sorting method, 556–559, 557f
Pumped heat energy storage (PHES), 22–24,
317–320, 318f
direct contact solid stationary thermocline,
365–366, 366f
engine efficiency, 319
heat exchanger service integration, 375, 376f
heat pump coefficient of performance, 318
heat rejection, 343–344
ideal gas cycle, 320–322, 321f
charging cycle, 320
discharging cycle, 320–322
heat and material balance data for, 348,
350–351t
heat rejection, 328–329
inventory control in, 329–332, 331–332f
overlap, 324–326, 325–326f
pressure, influence of, 326–327
process schematic for, 349f
with recuperation, 322–324, 323f
temperatures, influence of, 327–328
indirect contact conveyable solid, 369, 369f
parametric sensitivity for recuperated cycle,
333–343
round-trip efficiency, 319
shared heat exchanger configuration,
375–383, 377–380f
thermal stores, 365–375
trans-critical CO2 cycle, 346–364, 352f,
353–358t
using heat exchangers, 571, 572f
Pumped hydroelectric storage
application, 160–166, 162–165f
basics design parameters, 139–166
historical development, 147–150, 148f
power unit concepts and main operation
modes, 150–160
Index 603Pumped hydroelectric storage (Continued)
reversible power units, 150–153,
151–153f, 158–160
ternary power units with fixed speed,
155–160, 155–157f
variable speed technology, 153–155, 154f
types, 143–147, 144–147f
working principle, 140–143, 141–143f
Pumped hydro plants, 461, 462f
Pumped Hydro technology, 533
Pure metal oxides redox systems, 266–272
BaO2/BaO, 266–267
Co3O4/CoO, 271–272
CuO/Cu2O, 267–270
Fe2O3/Fe3O4, 270
Mn2O3/Mn3O4, 270–271
PV/wind farms, output firming of, 460
R
Rankine cycles, 301
Rankine cycle, steam turbine power plants, 465,
466f
Reactor coolant (RC), 481–482
Recuperated cycle compressed air energy
storage (CAES), 412–413, 413f
Recuperated cycle, parametric sensitivity for,
333–343
Recuperation, ideal gas cycle with, 322–324,
323f
Redispatch, 163–164
Refrigerant vapor, 590–591
Regional Transmission Operators (RTOs), 452
Regulatory risk, 528–529
Residential-scale markets, 521
Retailers, 547
Reverse Carnot cycle, 297–299, 298–299f
Reversible power units, 150–153, 151–153f,
158–160
Reversible solid-state hydrogen storage,
253–265, 254–256f
chemisorption materials, 256–258
low-density, 263–265
physisorption materials, 258–263
ultra-high surface area storage, 263–265
Reversible turbomachinery, 56–59, 56f
stage loading, 57, 57f
velocity triangles, 57–59
Euler turbine equation, 58
half-reaction condition, 58
minimal-loss condition, 58
prototype values, 59
Reynolds number, 327
Risk and financing
capital markets, 528
commodity, 528
environmental, 529
regulatory, 528–529
Roller bearings, 53
Rotordynamics, 201–209
Round-trip efficiency (RTE), 299–300, 452,
537, 537t
cycle temperature effect on, 336, 338f
heat exchanger design effect on, 343, 343f
heat rejection temperature effect on, 340,
342f
machinery efficiency effect on, 340–343,
342f
pumped heat energy storage (PHES) process,
319
Round-trip storage efficiency, 42–43
S
SCO2 power cycle, 493–494
Second law of thermodynamics, 13–14
Self-discharge rate, 498–500, 499t
Self-Generation Incentive Program (SGIP), 519
Self-synchronizing overrun clutch (SSS), 430
Sensible heat liquid thermal energy storage
liquid thermal energy storage, 66–67, 66–67f
with nuclear power, 71–74, 73f
single-tank thermal energy storage, 70–71,
72f
two-tank thermal energy storage, 67–70, 70f
Sensible heat storage, 483–488
Sensible storage, 570–572
Shale gas, 464
Shell-and-tube type exchanger, 376f
Silicone-based fluids, 371–372
Single-ring flywheels, 196–198
Single-tank thermal energy storage, 70–71, 72f
Sizing, 542–543
Small-scale grids, 519
Sodium-cooled fast reactors (SFRs), 482
Solar one thermocline thermal storage system,
108
SolarPaces database, 38, 39–40t
Solar Salt costs, 68
Solid thermal energy storage
analysis methods, 91–100
calculation method, 99–100
3D/2D simulation, 92–93
1D model example, 93–99, 95f, 97–98f
1D simulation, 93, 94f
governing equations, 92
604 Indexdefinition, 74
design
direct vs. indirect heat exchange, 103–104,
104f
2-phase working fluids, 104–105, 105f
temperature gradient effects, 100f,
101–103, 102–103f
materials and structure, 74–75
packed beds
alternative design, 88–90, 88–89f
application, 84–86, 84–86f
applications, 90–91, 91f
description, 82–83, 83f
stacked bricks, 90
technical challenges, 86–87, 87f
technology, 80–82, 81f
tube-in-concrete
advantages and disadvantages, 76–78, 77f
description, 75–76, 76f
technical challenges, 78–80, 79–80f
Southwest Research Institute (SwRI), 571–572
Spinning reserve, 457–458, 517
Split gas turbine, 427, 427f
Stacked bricks, 90
description, 90, 90f
State of charge (SOC), 167
State of power (SOP), 167
Static ice external-melt, 128–129, 129f
Static ice internal-melt thermal storage device,
127–128, 128f
Steam technology precedents, 49–56
bearings and seals, 53–54, 53f
cooling, 54–56, 55f
high pressure and power, 49–51, 50f
motor/generator speed limitation, 51–53,
51–52f
Steam turbine power plants, 465, 466f
Steel flywheels, 175–185
geometry and construction, 175, 175f
material properties
annular flywheel versus shaftless flywheel,
177–178, 178f
fatigue strength, 178–183
steel vs. composite flywheels, 184–185
yield strength, 176–177
Storage tanks, 313
Stored resource valuation method, 559–562,
561f
Supercapacitor, 188, 586–587, 586f
Superconducting magnetic energy storage
(SMES) systems, 587–588, 587f
Superconductor magnetic bearing (SMB), 583,
583f
Supercritical CAES, 577–578, 577f
Supercritical carbon dioxide (sCO2) cycles,
301–302
System inertia, 458–459
T
Technology, energy storage (ES)
efficiency, 535–540, 537t
installed (capital) costs, 529–530
operational and maintenance (O&M) costs,
530–535
operational (part load) flexibility, 543–544,
544t
sizing and siting, 542–543, 542–543f
storage duration, 540–541, 540–541f
Technology Readiness Levels (TRLs), 496–497
Temperature
ideal gas cycle, 327–328
working fluids, 301, 302–303f
Ternary power units, with fixed speed,
155–158, 155–157f
Terrafore’s TerraKlineTM technology,
110–111, 111f
TES. See Thermal energy storage (TES)
Testing, of energy storage systems
facilities, 500–502, 501–502t, 504–507t
performance metrics, 498–502
phases of, 496–498
standards and procedures, 497–498, 498f
types of, 498–502
Thermal-driven sorption cycles, 588–589
Thermal energy storage (TES), 14–17
chemical reaction materials, 17
with concentrated solar power (CSP), 570,
571f
for fossil fuel power plants, 472–477
combined cycle power plants, 475–477,
477f
conventional power plants, 474, 474–476f
generic conventional power plant without,
474f
latent heat research, 572–573, 573f
low-temperature cool thermal storage,
116–135
applications, 117–124
dynamic ice storage, 133–135, 133f, 136f
technologies, 124–130
unitary air conditioning systems, 130–132,
131–132f
for nuclear energy systems, 478–490
challenges, 478
energy density, 488–490, 489–490t, 495t
Index 605Thermal energy storage (TES) (Continued)
exergy recovery and efficiency, 488
sensible heat storage, 483–488
solutions, 478–479
storage integration, 481–483
storage methods, 479–481, 481f
phase change materials, 15–16
plant efficiency under discharge conditions,
476f
sensible heat liquid
liquid thermal energy storage, 66–67,
66–67f
with nuclear power, 71–74, 73f
single-tank thermal energy storage, 70–71,
72f
two-tank thermal energy storage, 67–70,
70f
sensible heat storage materials, 14–15
sensible storage research/facilities, 570–572
solid
analysis methods, 91–100
definition, 74
design, 101–105
materials and structure, 74–75
packed beds, 82–91, 83f
technology, 80–82, 81f
tube-in-concrete, 75–80, 76–77f, 79–80f
sorption heat storage materials, 16–17
thermocline dual-media
calculations, 111–116
degradation, 110–111, 111–112f
design, 107–110, 108f
motivation, 105–107, 106–107f
Thermal leak, 48
Thermal ratcheting, 110
Thermal storage, 533–534
Thermochemical energy storage, 266–286
hybrid processes, 286
hydrogen production, multistep reactions for,
285–286
mixed metal oxides redox systems
alkaline earth carbonates, 279–280
carbonation reactions, 278–279
closed-loop reversible reactions, 281–285
doping Co3O4/CoO redox couple, 272–273
doping Mn2O3/Mn3O4 redox couple, 273
hydration reactions, 275–278
perovskites, 273–274
spinels/monoxide, 274–275
pure metal oxides redox systems, 266–272
BaO2/BaO, 266–267
Co3O4/CoO, 271–272
CuO/Cu2O, 267–270
Fe2O3/Fe3O4, 270
Mn2O3/Mn3O4, 270–271
redox reactions, 266
Thermocline dual-media thermal energy
storage
calculations, 111–116
degradation, 110–111, 111–112f
design, 107–110, 108f
motivation, 105–107, 106–107f
Thermodynamic cycles and systems
Carnot and reverse Carnot cycle, 297–299,
298–299f
exergy, 300
heat engines, 294–297, 295–296f
heat pumps, 294–297, 295–296f
round-trip efficiency, 299–300
working fluids, 300–301
Thermodynamics energy storage
first law, 11–12, 12f
second law, 13–14
Trans-critical CO2 cycle, 346–364, 352f,
353–358t
charging cycle, 362
coefficient of performance (COP), 348
discharging cycle, 362
machinery volume flows, 349
pressure containment for, 349
recuperated ideal gas vs., 359–361t
round-trip efficiency (RTE), 348
solid-phase media, 364
water/ice low-temperature, 362
Transient thermal storage, 306
Transmission Operator’s restoration plan,
459
Tube-in-concrete
advantages and disadvantages, 76–78, 77f
description, 75–76, 76f
technical challenges, 78–80, 79–80f
Turbine inlet air cooling, 122–124
Turbomachinery entropy generation, 42–44,
43–44f
Two-tank molten salt storage, 484
Two-tank thermal energy storage, 67–70,
70f
U
Ultracapacitor, 188, 535
Unburned hydrocarbons (UHC), 386–387
Uninterruptable power supply (UPS), 585
Unitary air conditioning systems, 130–132,
131–132f
Utility scale markets, 520
606 IndexV
Vacuum systems, 226–231
auxiliary bearings, 230–231
containment, 229–230
support structure, 227–229, 228–229f
Variable energy resources (VER), 451–453, 456
Variable speed technology, 153–155, 154f
Viscous flow resistance, 45–47
Voltage support, 518
W
Waste heat recovery unit (WHRU), 421–422
Wholesale energy time-shifting and
arbitrage
ancillary services, 455–460
behind meter and renewable integration,
460–461
capacity, 452–455
Windage loss, 231
Working fluids, 300–301
cost, 304, 305t
degradation, 305
heat transfer properties, 302–303
material compatibility, 305
power density, 304
pressure range, 301–302
safety/environmental impact,
303–304
temperature range, 301, 302–303f
Index 607


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems
رابط مباشر لتنزيل كتاب Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» طلب كتاب في thermal energy storage
» كتاب Optimum Design of Renewable Energy Systems
» كتاب Power Electronics for Renewable and Distributed Energy Systems
» بحث بعنوان Flywheel Power Generation and Multiplication for Electrical Energy Storage Applications & Technologies
» كتاب Efficiency Evaluation of Energy Systems

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى كتب ومحاضرات الأقسام الهندسية المختلفة-
انتقل الى: