Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Scikit-learn User Guide السبت 01 مايو 2021, 1:11 am | |
|
أخوانى فى الله أحضرت لكم كتاب Scikit-learn User Guide Scikit-learn Developers
و المحتوى كما يلي :
CONTENTS 1 Welcome to scikit-learn 1 1.1 Installing scikit-learn . 1 1.2 Frequently Asked Questions . 2 1.3 Support 7 1.4 Related Projects . 8 1.5 About us . 10 1.6 Who is using scikit-learn? 14 1.7 Release history 21 2 scikit-learn Tutorials 91 2.1 An introduction to machine learning with scikit-learn 91 2.2 A tutorial on statistical-learning for scientific data processing . 97 2.3 Working With Text Data . 124 2.4 Choosing the right estimator . 131 2.5 External Resources, Videos and Talks 131 3 User Guide 133 3.1 Supervised learning . 133 3.2 Unsupervised learning 269 3.3 Model selection and evaluation . 352 3.4 Dataset transformations . 480 3.5 Dataset loading utilities . 516 3.6 Strategies to scale computationally: bigger data . 542 3.7 Computational Performance . 545 4 General examples 553 4.1 Plotting Cross-Validated Predictions . 553 4.2 Isotonic Regression . 554 4.3 Concatenating multiple feature extraction methods . 556 4.4 Pipelining: chaining a PCA and a logistic regression 557 4.5 Selecting dimensionality reduction with Pipeline and GridSearchCV 559 4.6 Imputing missing values before building an estimator 561 4.7 Face completion with a multi-output estimators . 563 4.8 Multilabel classification . 565 4.9 The Johnson-Lindenstrauss bound for embedding with random projections 568 4.10 Comparison of kernel ridge regression and SVR 573 4.11 Feature Union with Heterogeneous Data Sources 577 4.12 Explicit feature map approximation for RBF kernels 580 5 Examples based on real world datasets 585 5.1 Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation . 585 i5.2 Outlier detection on a real data set 587 5.3 Compressive sensing: tomography reconstruction with L1 prior (Lasso) 589 5.4 Faces recognition example using eigenfaces and SVMs . 592 5.5 Model Complexity Influence . 595 5.6 Species distribution modeling 600 5.7 Visualizing the stock market structure 605 5.8 Wikipedia principal eigenvector . 610 5.9 Libsvm GUI . 614 5.10 Prediction Latency 620 5.11 Out-of-core classification of text documents . 626 6 Biclustering 637 6.1 A demo of the Spectral Co-Clustering algorithm 637 6.2 A demo of the Spectral Biclustering algorithm . 639 6.3 Biclustering documents with the Spectral Co-clustering algorithm . 642 7 Calibration 647 7.1 Comparison of Calibration of Classifiers 647 7.2 Probability Calibration curves 650 7.3 Probability calibration of classifiers . 654 7.4 Probability Calibration for 3-class classification . 656 8 Classification 661 8.1 Recognizing hand-written digits . 661 8.2 Normal and Shrinkage Linear Discriminant Analysis for classification . 663 8.3 Plot classification probability 665 8.4 Classifier comparison 668 8.5 Linear and Quadratic Discriminant Analysis with confidence ellipsoid . 671 9 Clustering 675 9.1 A demo of the mean-shift clustering algorithm . 675 9.2 Feature agglomeration 677 9.3 Demonstration of k-means assumptions . 678 9.4 A demo of structured Ward hierarchical clustering on a raccoon face image 680 9.5 Online learning of a dictionary of parts of faces . 682 9.6 Demo of affinity propagation clustering algorithm . 685 9.7 Hierarchical clustering: structured vs unstructured ward 687 9.8 Agglomerative clustering with and without structure 690 9.9 K-means Clustering . 692 9.10 Segmenting the picture of a raccoon face in regions . 694 9.11 Demo of DBSCAN clustering algorithm 697 9.12 Spectral clustering for image segmentation . 699 9.13 Vector Quantization Example 702 9.14 Various Agglomerative Clustering on a 2D embedding of digits 704 9.15 Color Quantization using K-Means . 706 9.16 Agglomerative clustering with different metrics . 709 9.17 Comparison of the K-Means and MiniBatchKMeans clustering algorithms 713 9.18 Feature agglomeration vs. univariate selection . 715 9.19 Compare BIRCH and MiniBatchKMeans 718 9.20 Empirical evaluation of the impact of k-means initialization 720 9.21 Adjustment for chance in clustering performance evaluation 723 9.22 A demo of K-Means clustering on the handwritten digits data . 726 9.23 Comparing different clustering algorithms on toy datasets . 729 9.24 Selecting the number of clusters with silhouette analysis on KMeans clustering 732 ii10 Covariance estimation 737 10.1 Ledoit-Wolf vs OAS estimation . 737 10.2 Sparse inverse covariance estimation 739 10.3 Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood . 742 10.4 Outlier detection with several methods 745 10.5 Robust covariance estimation and Mahalanobis distances relevance 747 10.6 Robust vs Empirical covariance estimate 750 11 Cross decomposition 755 11.1 Compare cross decomposition methods . 755 12 Dataset examples 761 12.1 The Digit Dataset . 761 12.2 The Iris Dataset 762 12.3 Plot randomly generated classification dataset 763 12.4 Plot randomly generated multilabel dataset . 765 13 Decomposition 769 13.1 PCA example with Iris Data-set . 769 13.2 Incremental PCA . 770 13.3 Comparison of LDA and PCA 2D projection of Iris dataset . 772 13.4 Blind source separation using FastICA . 774 13.5 FastICA on 2D point clouds . 776 13.6 Kernel PCA 778 13.7 Principal components analysis (PCA) 780 13.8 Model selection with Probabilistic PCA and Factor Analysis (FA) . 782 13.9 Sparse coding with a precomputed dictionary 785 13.10 Faces dataset decompositions 787 13.11 Image denoising using dictionary learning 793 14 Ensemble methods 799 14.1 Decision Tree Regression with AdaBoost 799 14.2 Pixel importances with a parallel forest of trees . 800 14.3 IsolationForest example . 802 14.4 Feature importances with forests of trees 804 14.5 Plot the decision boundaries of a VotingClassifier 806 14.6 Comparing random forests and the multi-output meta estimator 808 14.7 Gradient Boosting regression 810 14.8 Prediction Intervals for Gradient Boosting Regression . 813 14.9 Plot class probabilities calculated by the VotingClassifier 815 14.10 Gradient Boosting regularization 817 14.11 OOB Errors for Random Forests . 819 14.12 Two-class AdaBoost . 821 14.13 Hashing feature transformation using Totally Random Trees 824 14.14 Partial Dependence Plots . 826 14.15 Discrete versus Real AdaBoost . 829 14.16 Multi-class AdaBoosted Decision Trees . 831 14.17 Feature transformations with ensembles of trees 833 14.18 Gradient Boosting Out-of-Bag estimates 836 14.19 Single estimator versus bagging: bias-variance decomposition . 839 14.20 Plot the decision surfaces of ensembles of trees on the iris dataset . 844 15 Tutorial exercises 849 15.1 Digits Classification Exercise 849 15.2 Cross-validation on Digits Dataset Exercise . 849 iii15.3 SVM Exercise 851 15.4 Cross-validation on diabetes Dataset Exercise 853 16 Feature Selection 857 16.1 Pipeline Anova SVM . 857 16.2 Recursive feature elimination 857 16.3 Comparison of F-test and mutual information 859 16.4 Recursive feature elimination with cross-validation . 860 16.5 Feature selection using SelectFromModel and LassoCV 862 16.6 Univariate Feature Selection . 863 16.7 Test with permutations the significance of a classification score 867 17 Gaussian Process for Machine Learning 871 17.1 Illustration of Gaussian process classification (GPC) on the XOR dataset . 871 17.2 Gaussian process classification (GPC) on iris dataset 872 17.3 Comparison of kernel ridge and Gaussian process regression 874 17.4 Gaussian process regression (GPR) on Mauna Loa CO2 data 877 17.5 Illustration of prior and posterior Gaussian process for different kernels 880 17.6 Iso-probability lines for Gaussian Processes classification (GPC) 883 17.7 Probabilistic predictions with Gaussian process classification (GPC) 886 17.8 Gaussian process regression (GPR) with noise-level estimation 889 17.9 Gaussian Processes regression: basic introductory example . 891 18 Generalized Linear Models 895 18.1 Lasso path using LARS . 895 18.2 Plot Ridge coefficients as a function of the regularization 896 18.3 Path with L1- Logistic Regression 898 18.4 SGD: Maximum margin separating hyperplane . 900 18.5 SGD: convex loss functions . 902 18.6 Plot Ridge coefficients as a function of the L2 regularization 903 18.7 Ordinary Least Squares and Ridge Regression Variance 905 18.8 Logistic function . 906 18.9 Polynomial interpolation . 908 18.10 Linear Regression Example . 910 18.11 Logistic Regression 3-class Classifier 912 18.12 SGD: Weighted samples . 914 18.13 Lasso on dense and sparse data . 915 18.14 Lasso and Elastic Net for Sparse Signals 916 18.15 Sparsity Example: Fitting only features 1 and 2 . 919 18.16 Joint feature selection with multi-task Lasso 920 18.17 Comparing various online solvers 922 18.18 Robust linear model estimation using RANSAC 924 18.19 HuberRegressor vs Ridge on dataset with strong outliers 926 18.20 SGD: Penalties 928 18.21 Bayesian Ridge Regression . 930 18.22 Automatic Relevance Determination Regression (ARD) 933 18.23 Orthogonal Matching Pursuit 935 18.24 Plot multi-class SGD on the iris dataset . 939 18.25 Theil-Sen Regression . 941 18.26 L1 Penalty and Sparsity in Logistic Regression . 944 18.27 Plot multinomial and One-vs-Rest Logistic Regression . 947 18.28 Robust linear estimator fitting 949 18.29 Lasso and Elastic Net 951 18.30 Lasso model selection: Cross-Validation / AIC / BIC 954 iv18.31 Sparse recovery: feature selection for sparse linear models . 958 19 Manifold learning 963 19.1 Swiss Roll reduction with LLE . 963 19.2 Multi-dimensional scaling 964 19.3 Comparison of Manifold Learning methods . 967 19.4 Manifold Learning methods on a severed sphere 969 19.5 Manifold learning on handwritten digits: Locally Linear Embedding, Isomap.. . 973 20 Gaussian Mixture Models 981 20.1 Density Estimation for a Gaussian mixture . 981 20.2 Gaussian Mixture Model Ellipsoids . 982 20.3 Gaussian Mixture Model Selection . 984 20.4 GMM covariances 987 20.5 Gaussian Mixture Model Sine Curve 990 20.6 Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture 994 21 Model Selection 997 21.1 Plotting Validation Curves 997 21.2 Underfitting vs. Overfitting . 998 21.3 Train error vs Test error . 1000 21.4 Receiver Operating Characteristic (ROC) with cross validation . 1002 21.5 Parameter estimation using grid search with cross-validation 1004 21.6 Confusion matrix . 1006 21.7 Comparing randomized search and grid search for hyperparameter estimation . 1009 21.8 Nested versus non-nested cross-validation 1010 21.9 Sample pipeline for text feature extraction and evaluation . 1013 21.10 Precision-Recall . 1015 21.11 Receiver Operating Characteristic (ROC) 1018 21.12 Plotting Learning Curves . 1022 22 Nearest Neighbors 1027 22.1 Nearest Neighbors regression 1027 22.2 Nearest Neighbors Classification 1028 22.3 Nearest Centroid Classification . 1030 22.4 Kernel Density Estimation 1032 22.5 Kernel Density Estimate of Species Distributions 1034 22.6 Simple 1D Kernel Density Estimation 1037 22.7 Hyper-parameters of Approximate Nearest Neighbors . 1040 22.8 Scalability of Approximate Nearest Neighbors . 1043 23 Neural Networks 1047 23.1 Visualization of MLP weights on MNIST 1047 23.2 Restricted Boltzmann Machine features for digit classification . 1049 23.3 Compare Stochastic learning strategies for MLPClassifier . 1053 23.4 Varying regularization in Multi-layer Perceptron 1057 24 Preprocessing 1061 24.1 Using FunctionTransformer to select columns 1061 24.2 Robust Scaling on Toy Data . 1063 25 Semi Supervised Classification 1065 25.1 Label Propagation learning a complex structure . 1065 25.2 Label Propagation digits: Demonstrating performance . 1066 25.3 Decision boundary of label propagation versus SVM on the Iris dataset 1069 v25.4 Label Propagation digits active learning . 1071 26 Support Vector Machines 1077 26.1 Support Vector Regression (SVR) using linear and non-linear kernels . 1077 26.2 Non-linear SVM . 1078 26.3 SVM: Maximum margin separating hyperplane . 1080 26.4 SVM: Separating hyperplane for unbalanced classes 1081 26.5 SVM-Anova: SVM with univariate feature selection 1083 26.6 SVM with custom kernel . 1085 26.7 SVM: Weighted samples . 1086 26.8 SVM-Kernels . 1088 26.9 SVM Margins Example . 1090 26.10 Plot different SVM classifiers in the iris dataset . 1092 26.11 One-class SVM with non-linear kernel (RBF) 1094 26.12 Scaling the regularization parameter for SVCs . 1096 26.13 RBF SVM parameters 1099 27 Working with text documents 1105 27.1 FeatureHasher and DictVectorizer Comparison . 1105 27.2 Classification of text documents: using a MLComp dataset . 1107 27.3 Clustering text documents using k-means 1109 27.4 Classification of text documents using sparse features . 1113 28 Decision Trees 1119 28.1 Decision Tree Regression 1119 28.2 Multi-output Decision Tree Regression . 1121 28.3 Plot the decision surface of a decision tree on the iris dataset 1122 28.4 Understanding the decision tree structure 1124 29 API Reference 1129 29.1 sklearn.base: Base classes and utility functions 1129 29.2 sklearn.cluster: Clustering 1133 29.3 sklearn.cluster.bicluster: Biclustering . 1169 29.4 sklearn.covariance: Covariance Estimators . 1174 29.5 sklearn.model_selection: Model Selection 1203 29.6 sklearn.datasets: Datasets 1249 29.7 sklearn.decomposition: Matrix Decomposition 1295 29.8 sklearn.dummy: Dummy estimators . 1349 29.9 sklearn.ensemble: Ensemble Methods 1354 29.10 sklearn.exceptions: Exceptions and warnings . 1383 29.11 sklearn.feature_extraction: Feature Extraction . 1386 29.12 sklearn.feature_selection: Feature Selection 1413 29.13 sklearn.gaussian_process: Gaussian Processes 1444 29.14 sklearn.isotonic: Isotonic regression 1476 29.15 sklearn.kernel_approximation Kernel Approximation . 1481 29.16 sklearn.kernel_ridge Kernel Ridge Regression 1489 29.17 sklearn.discriminant_analysis: Discriminant Analysis 1492 29.18 sklearn.linear_model: Generalized Linear Models . 1501 29.19 sklearn.manifold: Manifold Learning 1606 29.20 sklearn.metrics: Metrics . 1622 29.21 sklearn.mixture: Gaussian Mixture Models . 1686 29.22 sklearn.multiclass: Multiclass and multilabel classification 1697 29.23 sklearn.multioutput: Multioutput regression and classification 1705 29.24 sklearn.naive_bayes: Naive Bayes . 1709 29.25 sklearn.neighbors: Nearest Neighbors 1719 vi29.26 sklearn.neural_network: Neural network models . 1770 29.27 sklearn.calibration: Probability Calibration 1783 29.28 sklearn.cross_decomposition: Cross decomposition 1787 29.29 sklearn.pipeline: Pipeline 1801 29.30 sklearn.preprocessing: Preprocessing and Normalization . 1808 29.31 sklearn.random_projection: Random projection . 1845 29.32 sklearn.semi_supervised Semi-Supervised Learning . 1851 29.33 sklearn.svm: Support Vector Machines . 1857 29.34 sklearn.tree: Decision Trees 1890 29.35 sklearn.utils: Utilities . 1912 29.36 Recently deprecated . 1915 30 Developer’s Guide 1973 30.1 Contributing . 1973 30.2 Developers’ Tips for Debugging . 1987 30.3 Utilities for Developers . 1988 30.4 How to optimize for speed 1992 30.5 Advanced installation instructions 1999 30.6 Maintainer / core-developer information . 2005 Bibliography 2007 Index INDEX Symbols __init__() (sklearn.base.BaseEstimator method), 1129 __init__() (sklearn.base.ClassifierMixin method), 1130 __init__() (sklearn.base.ClusterMixin method), 1131 __init__() (sklearn.base.RegressorMixin method), 1131 __init__() (sklearn.base.TransformerMixin method), 1132 __init__() (sklearn.calibration.CalibratedClassifierCV method), 1784 __init__() (sklearn.cluster.AffinityPropagation method), 1134 __init__() (sklearn.cluster.AgglomerativeClustering method), 1137 __init__() (sklearn.cluster.Birch method), 1139 __init__() (sklearn.cluster.DBSCAN method), 1142 __init__() (sklearn.cluster.FeatureAgglomeration method), 1145 __init__() (sklearn.cluster.KMeans method), 1150 __init__() (sklearn.cluster.MeanShift method), 1156 __init__() (sklearn.cluster.MiniBatchKMeans method), 1153 __init__() (sklearn.cluster.SpectralClustering method), 1159 __init__() (sklearn.cluster.bicluster.SpectralBiclustering method), 1171 __init__() (sklearn.cluster.bicluster.SpectralCoclustering method), 1173 __init__() (sklearn.covariance.EllipticEnvelope method), 1179 __init__() (sklearn.covariance.EmpiricalCovariance method), 1176 __init__() (sklearn.covariance.GraphLasso method), 1182 __init__() (sklearn.covariance.GraphLassoCV method), 1186 __init__() (sklearn.covariance.LedoitWolf method), 1188 __init__() (sklearn.covariance.MinCovDet method), 1192 __init__() (sklearn.covariance.OAS method), 1195 __init__() (sklearn.covariance.ShrunkCovariance method), 1198 __init__() (sklearn.cross_decomposition.CCA method), 1797 __init__() (sklearn.cross_decomposition.PLSCanonical method), 1794 __init__() (sklearn.cross_decomposition.PLSRegression method), 1789 __init__() (sklearn.cross_decomposition.PLSSVD method), 1800 __init__() (sklearn.cross_validation.LabelShuffleSplit method), 1940 __init__() (sklearn.decomposition.DictionaryLearning method), 1334 __init__() (sklearn.decomposition.FactorAnalysis method), 1314 __init__() (sklearn.decomposition.FastICA method), 1317 __init__() (sklearn.decomposition.IncrementalPCA method), 1303 __init__() (sklearn.decomposition.KernelPCA method), 1311 __init__() (sklearn.decomposition.LatentDirichletAllocation method), 1341 __init__() (sklearn.decomposition.MiniBatchDictionaryLearning method), 1337 __init__() (sklearn.decomposition.MiniBatchSparsePCA method), 1329 __init__() (sklearn.decomposition.NMF method), 1324 __init__() (sklearn.decomposition.PCA method), 1298 __init__() (sklearn.decomposition.ProjectedGradientNMF method), 1308 __init__() (sklearn.decomposition.RandomizedPCA method), 1945 __init__() (sklearn.decomposition.SparseCoder method), 1331 __init__() (sklearn.decomposition.SparsePCA method), 1326 __init__() (sklearn.decomposition.TruncatedSVD method), 1319 __init__() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis method), 1495 __init__() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis method), 1499 __init__() (sklearn.dummy.DummyClassifier method), 1350 2015scikit-learn user guide, Release 0.18.2 __init__() (sklearn.dummy.DummyRegressor method), 1353 __init__() (sklearn.ensemble.AdaBoostClassifier method), 1356 __init__() (sklearn.ensemble.AdaBoostRegressor method), 1361 __init__() (sklearn.ensemble.BaggingClassifier method), 1365 __init__() (sklearn.ensemble.BaggingRegressor method), 1369 __init__() (sklearn.ensemble.ExtraTreesClassifier method), 430 __init__() (sklearn.ensemble.ExtraTreesRegressor method), 436 __init__() (sklearn.ensemble.GradientBoostingClassifier method), 442 __init__() (sklearn.ensemble.GradientBoostingRegressor method), 449 __init__() (sklearn.ensemble.IsolationForest method), 1372 __init__() (sklearn.ensemble.RandomForestClassifier method), 418 __init__() (sklearn.ensemble.RandomForestRegressor method), 424 __init__() (sklearn.ensemble.RandomTreesEmbedding method), 1375 __init__() (sklearn.ensemble.VotingClassifier method), 1378 __init__() (sklearn.feature_extraction.DictVectorizer method), 1387 __init__() (sklearn.feature_extraction.FeatureHasher method), 1391 __init__() (sklearn.feature_extraction.image.PatchExtractor method), 1395 __init__() (sklearn.feature_extraction.text.CountVectorizer method), 1399 __init__() (sklearn.feature_extraction.text.HashingVectorizer method), 1404 __init__() (sklearn.feature_extraction.text.TfidfTransformer method), 1406 __init__() (sklearn.feature_extraction.text.TfidfVectorizer method), 1411 __init__() (sklearn.feature_selection.GenericUnivariateSelect method), 1414 __init__() (sklearn.feature_selection.RFE method), 1432 __init__() (sklearn.feature_selection.RFECV method), 1436 __init__() (sklearn.feature_selection.SelectFdr method), 1424 __init__() (sklearn.feature_selection.SelectFpr method), 1422 __init__() (sklearn.feature_selection.SelectFromModel method), 1426 __init__() (sklearn.feature_selection.SelectFwe method), 1429 __init__() (sklearn.feature_selection.SelectKBest method), 1419 __init__() (sklearn.feature_selection.SelectPercentile method), 1416 __init__() (sklearn.feature_selection.VarianceThreshold method), 1438 __init__() (sklearn.gaussian_process.GaussianProcess method), 1949 __init__() (sklearn.gaussian_process.GaussianProcessClassifier method), 1451 __init__() (sklearn.gaussian_process.GaussianProcessRegressor method), 1447 __init__() (sklearn.gaussian_process.kernels.CompoundKernel method), 1474 __init__() (sklearn.gaussian_process.kernels.ConstantKernel method), 1460 __init__() (sklearn.gaussian_process.kernels.DotProduct method), 1471 __init__() (sklearn.gaussian_process.kernels.ExpSineSquared method), 1469 __init__() (sklearn.gaussian_process.kernels.Exponentiation method), 1458 __init__() (sklearn.gaussian_process.kernels.Hyperparameter method), 1476 __init__() (sklearn.gaussian_process.kernels.Kernel method), 1454 __init__() (sklearn.gaussian_process.kernels.Matern method), 1465 __init__() (sklearn.gaussian_process.kernels.PairwiseKernel method), 1473 __init__() (sklearn.gaussian_process.kernels.Product method), 1457 __init__() (sklearn.gaussian_process.kernels.RBF method), 1463 __init__() (sklearn.gaussian_process.kernels.RationalQuadratic method), 1467 __init__() (sklearn.gaussian_process.kernels.Sum method), 1455 __init__() (sklearn.gaussian_process.kernels.WhiteKernel method), 1462 __init__() (sklearn.grid_search.GridSearchCV method), 1926 __init__() (sklearn.grid_search.RandomizedSearchCV method), 1931 __init__() (sklearn.isotonic.IsotonicRegression method), 1478 __init__() (sklearn.kernel_approximation.AdditiveChi2Sampler method), 1482 __init__() (sklearn.kernel_approximation.Nystroem method), 1485 __init__() (sklearn.kernel_approximation.RBFSampler method), 1486 2016 Indexscikit-learn user guide, Release 0.18.2 __init__() (sklearn.kernel_approximation.SkewedChi2Sampler method), 1488 __init__() (sklearn.kernel_ridge.KernelRidge method), 1491 __init__() (sklearn.lda.LDA method), 1916 __init__() (sklearn.linear_model.ARDRegression method), 1504 __init__() (sklearn.linear_model.BayesianRidge method), 1507 __init__() (sklearn.linear_model.ElasticNet method), 1511 __init__() (sklearn.linear_model.ElasticNetCV method), 367 __init__() (sklearn.linear_model.HuberRegressor method), 1515 __init__() (sklearn.linear_model.Lars method), 1519 __init__() (sklearn.linear_model.LarsCV method), 372 __init__() (sklearn.linear_model.Lasso method), 1522 __init__() (sklearn.linear_model.LassoCV method), 376 __init__() (sklearn.linear_model.LassoLars method), 1528 __init__() (sklearn.linear_model.LassoLarsCV method), 382 __init__() (sklearn.linear_model.LassoLarsIC method), 413 __init__() (sklearn.linear_model.LinearRegression method), 1530 __init__() (sklearn.linear_model.LogisticRegression method), 1535 __init__() (sklearn.linear_model.LogisticRegressionCV method), 386 __init__() (sklearn.linear_model.MultiTaskElasticNet method), 1546 __init__() (sklearn.linear_model.MultiTaskElasticNetCV method), 392 __init__() (sklearn.linear_model.MultiTaskLasso method), 1540 __init__() (sklearn.linear_model.MultiTaskLassoCV method), 398 __init__() (sklearn.linear_model.OrthogonalMatchingPursuit method), 1550 __init__() (sklearn.linear_model.OrthogonalMatchingPursuitCV method), 403 __init__() (sklearn.linear_model.PassiveAggressiveClassifier method), 1553 __init__() (sklearn.linear_model.PassiveAggressiveRegressor method), 1557 __init__() (sklearn.linear_model.Perceptron method), 1560 __init__() (sklearn.linear_model.RANSACRegressor method), 1572 __init__() (sklearn.linear_model.RandomizedLasso method), 1566 __init__() (sklearn.linear_model.RandomizedLogisticRegression method), 1569 __init__() (sklearn.linear_model.Ridge method), 1576 __init__() (sklearn.linear_model.RidgeCV method), 406 __init__() (sklearn.linear_model.RidgeClassifier method), 1579 __init__() (sklearn.linear_model.RidgeClassifierCV method), 409 __init__() (sklearn.linear_model.SGDClassifier method), 1584 __init__() (sklearn.linear_model.SGDRegressor method), 1590 __init__() (sklearn.linear_model.TheilSenRegressor method), 1594 __init__() (sklearn.manifold.Isomap method), 1610 __init__() (sklearn.manifold.LocallyLinearEmbedding method), 1608 __init__() (sklearn.manifold.MDS method), 1613 __init__() (sklearn.manifold.SpectralEmbedding method), 1615 __init__() (sklearn.manifold.TSNE method), 1619 __init__() (sklearn.mixture.BayesianGaussianMixture method), 1695 __init__() (sklearn.mixture.DPGMM method), 1954 __init__() (sklearn.mixture.GMM method), 1952 __init__() (sklearn.mixture.GaussianMixture method), 1689 __init__() (sklearn.mixture.VBGMM method), 1958 __init__() (sklearn.model_selection.GridSearchCV method), 1231 __init__() (sklearn.model_selection.GroupKFold method), 1207 __init__() (sklearn.model_selection.GroupShuffleSplit method), 1218 __init__() (sklearn.model_selection.KFold method), 1205 __init__() (sklearn.model_selection.LeaveOneGroupOut method), 1210 __init__() (sklearn.model_selection.LeaveOneOut method), 1213 __init__() (sklearn.model_selection.LeavePGroupsOut method), 1212 __init__() (sklearn.model_selection.LeavePOut method), 1215 __init__() (sklearn.model_selection.PredefinedSplit method), 1222 __init__() (sklearn.model_selection.RandomizedSearchCV method), 1236 __init__() (sklearn.model_selection.ShuffleSplit method), 1217 __init__() (sklearn.model_selection.StratifiedKFold method), 1208 __init__() (sklearn.model_selection.StratifiedShuffleSplit method), 1220 Index 2017scikit-learn user guide, Release 0.18.2 __init__() (sklearn.model_selection.TimeSeriesSplit method), 1223 __init__() (sklearn.multiclass.OneVsOneClassifier method), 1701 __init__() (sklearn.multiclass.OneVsRestClassifier method), 1699 __init__() (sklearn.multiclass.OutputCodeClassifier method), 1704 __init__() (sklearn.multioutput.MultiOutputClassifier method), 1708 __init__() (sklearn.multioutput.MultiOutputRegressor method), 1706 __init__() (sklearn.naive_bayes.BernoulliNB method), 1717 __init__() (sklearn.naive_bayes.GaussianNB method), 1710 __init__() (sklearn.naive_bayes.MultinomialNB method), 1714 __init__() (sklearn.neighbors.BallTree method), 1749 __init__() (sklearn.neighbors.DistanceMetric method), 1764 __init__() (sklearn.neighbors.KDTree method), 1754 __init__() (sklearn.neighbors.KNeighborsClassifier method), 1728 __init__() (sklearn.neighbors.KNeighborsRegressor method), 1737 __init__() (sklearn.neighbors.KernelDensity method), 1766 __init__() (sklearn.neighbors.LSHForest method), 1759 __init__() (sklearn.neighbors.NearestCentroid method), 1745 __init__() (sklearn.neighbors.NearestNeighbors method), 1722 __init__() (sklearn.neighbors.RadiusNeighborsClassifier method), 1732 __init__() (sklearn.neighbors.RadiusNeighborsRegressor method), 1741 __init__() (sklearn.neural_network.BernoulliRBM method), 1771 __init__() (sklearn.neural_network.MLPClassifier method), 1776 __init__() (sklearn.neural_network.MLPRegressor method), 1782 __init__() (sklearn.pipeline.FeatureUnion method), 1806 __init__() (sklearn.pipeline.Pipeline method), 1802 __init__() (sklearn.preprocessing.Binarizer method), 1809 __init__() (sklearn.preprocessing.FunctionTransformer method), 1811 __init__() (sklearn.preprocessing.Imputer method), 1813 __init__() (sklearn.preprocessing.KernelCenterer method), 1814 __init__() (sklearn.preprocessing.LabelBinarizer method), 1817 __init__() (sklearn.preprocessing.LabelEncoder method), 1820 __init__() (sklearn.preprocessing.MaxAbsScaler method), 1823 __init__() (sklearn.preprocessing.MinMaxScaler method), 1826 __init__() (sklearn.preprocessing.MultiLabelBinarizer method), 1821 __init__() (sklearn.preprocessing.Normalizer method), 1828 __init__() (sklearn.preprocessing.OneHotEncoder method), 1830 __init__() (sklearn.preprocessing.PolynomialFeatures method), 1833 __init__() (sklearn.preprocessing.RobustScaler method), 1835 __init__() (sklearn.preprocessing.StandardScaler method), 1837 __init__() (sklearn.qda.QDA method), 1918 __init__() (sklearn.random_projection.GaussianRandomProjection method), 1846 __init__() (sklearn.random_projection.SparseRandomProjection method), 1848 __init__() (sklearn.semi_supervised.LabelPropagation method), 1852 __init__() (sklearn.semi_supervised.LabelSpreading method), 1855 __init__() (sklearn.svm.LinearSVC method), 1865 __init__() (sklearn.svm.LinearSVR method), 1878 __init__() (sklearn.svm.NuSVC method), 1870 __init__() (sklearn.svm.NuSVR method), 1881 __init__() (sklearn.svm.OneClassSVM method), 1884 __init__() (sklearn.svm.SVC method), 1859 __init__() (sklearn.svm.SVR method), 1874 __init__() (sklearn.tree.DecisionTreeClassifier method), 1893 __init__() (sklearn.tree.DecisionTreeRegressor method), 1899 __init__() (sklearn.tree.ExtraTreeClassifier method), 1903 __init__() (sklearn.tree.ExtraTreeRegressor method), 1907 A accuracy_score() (in module sklearn.metrics), 1624 AdaBoostClassifier (class in sklearn.ensemble), 1355 AdaBoostRegressor (class in sklearn.ensemble), 1359 add_dummy_feature() (in module sklearn.preprocessing), 1839 additive_chi2_kernel() (in module sklearn.metrics.pairwise), 1672 AdditiveChi2Sampler (class in sklearn.kernel_approximation), 1482 2018 Indexscikit-learn user guide, Release 0.18.2 adjusted_mutual_info_score() (in module sklearn.metrics), 1658 adjusted_rand_score() (in module sklearn.metrics), 1659 affinity_propagation() (in module sklearn.cluster), 1164 AffinityPropagation (class in sklearn.cluster), 1133 AgglomerativeClustering (class in sklearn.cluster), 1135 aic() (sklearn.mixture.DPGMM method), 1954 aic() (sklearn.mixture.GaussianMixture method), 1689 aic() (sklearn.mixture.GMM method), 1952 aic() (sklearn.mixture.VBGMM method), 1958 apply() (sklearn.ensemble.ExtraTreesClassifier method), 430 apply() (sklearn.ensemble.ExtraTreesRegressor method), 436 apply() (sklearn.ensemble.GradientBoostingClassifier method), 442 apply() (sklearn.ensemble.GradientBoostingRegressor method), 449 apply() (sklearn.ensemble.RandomForestClassifier method), 418 apply() (sklearn.ensemble.RandomForestRegressor method), 424 apply() (sklearn.ensemble.RandomTreesEmbedding method), 1375 apply() (sklearn.tree.DecisionTreeClassifier method), 1893 apply() (sklearn.tree.DecisionTreeRegressor method), 1899 apply() (sklearn.tree.ExtraTreeClassifier method), 1903 apply() (sklearn.tree.ExtraTreeRegressor method), 1907 ARDRegression (class in sklearn.linear_model), 1502 auc() (in module sklearn.metrics), 1626 average_precision_score() (in module sklearn.metrics), 1626 B BaggingClassifier (class in sklearn.ensemble), 1363 BaggingRegressor (class in sklearn.ensemble), 1367 BallTree (class in sklearn.neighbors), 1747 BaseEstimator (class in sklearn.base), 1129 BayesianGaussianMixture (class in sklearn.mixture), 1691 BayesianRidge (class in sklearn.linear_model), 1505 BernoulliNB (class in sklearn.naive_bayes), 1716 BernoulliRBM (class in sklearn.neural_network), 1770 bic() (sklearn.mixture.DPGMM method), 1954 bic() (sklearn.mixture.GaussianMixture method), 1689 bic() (sklearn.mixture.GMM method), 1952 bic() (sklearn.mixture.VBGMM method), 1958 biclusters_ (sklearn.cluster.bicluster.SpectralBiclustering attribute), 1171 biclusters_ (sklearn.cluster.bicluster.SpectralCoclustering attribute), 1173 binarize() (in module sklearn.preprocessing), 1840 Binarizer (class in sklearn.preprocessing), 1809 Birch (class in sklearn.cluster), 1138 bounds (sklearn.gaussian_process.kernels.CompoundKernel attribute), 1474 bounds (sklearn.gaussian_process.kernels.ConstantKernel attribute), 1460 bounds (sklearn.gaussian_process.kernels.DotProduct attribute), 1471 bounds (sklearn.gaussian_process.kernels.Exponentiation attribute), 1458 bounds (sklearn.gaussian_process.kernels.ExpSineSquared attribute), 1469 bounds (sklearn.gaussian_process.kernels.Hyperparameter attribute), 1476 bounds (sklearn.gaussian_process.kernels.Kernel attribute), 1454 bounds (sklearn.gaussian_process.kernels.Matern attribute), 1465 bounds (sklearn.gaussian_process.kernels.PairwiseKernel attribute), 1473 bounds (sklearn.gaussian_process.kernels.Product attribute), 1457 bounds (sklearn.gaussian_process.kernels.RationalQuadratic attribute), 1467 bounds (sklearn.gaussian_process.kernels.RBF attribute), 1463 bounds (sklearn.gaussian_process.kernels.Sum attribute), 1455 bounds (sklearn.gaussian_process.kernels.WhiteKernel attribute), 1462 brier_score_loss() (in module sklearn.metrics), 1628 build_analyzer() (sklearn.feature_extraction.text.CountVectorizer method), 1399 build_analyzer() (sklearn.feature_extraction.text.HashingVectorizer method), 1404 build_analyzer() (sklearn.feature_extraction.text.TfidfVectorizer method), 1411 build_preprocessor() (sklearn.feature_extraction.text.CountVectorizer method), 1399 build_preprocessor() (sklearn.feature_extraction.text.HashingVectorizer method), 1404 build_preprocessor() (sklearn.feature_extraction.text.TfidfVectorizer method), 1411 build_tokenizer() (sklearn.feature_extraction.text.CountVectorizer method), 1400 build_tokenizer() (sklearn.feature_extraction.text.HashingVectorizer method), 1404 build_tokenizer() (sklearn.feature_extraction.text.TfidfVectorizer method), 1411 C CalibratedClassifierCV (class in sklearn.calibration), 1783 calibration_curve() (in module sklearn.calibration), 1786 Index 2019scikit-learn user guide, Release 0.18.2 calinski_harabaz_score() (in module sklearn.metrics), 1661 CCA (class in sklearn.cross_decomposition), 1796 ChangedBehaviorWarning (class in sklearn.exceptions), 1384 check_cv() (in module sklearn.cross_validation), 1967 check_cv() (in module sklearn.model_selection), 1226 check_estimator() (in module sklearn.utils.estimator_checks), 1913 check_increasing() (in module sklearn.isotonic), 1481 check_random_state() (in module sklearn.utils), 1912 chi2() (in module sklearn.feature_selection), 1440 chi2_kernel() (in module sklearn.metrics.pairwise), 1673 classification_report() (in module sklearn.metrics), 1629 ClassifierMixin (class in sklearn.base), 1130 clear_data_home() (in module sklearn.datasets), 1250 clone() (in module sklearn.base), 1132 clone_with_theta() (sklearn.gaussian_process.kernels.CompoundKernel method), 1474 clone_with_theta() (sklearn.gaussian_process.kernels.ConstantKernel method), 1460 clone_with_theta() (sklearn.gaussian_process.kernels.DotProduct method), 1471 clone_with_theta() (sklearn.gaussian_process.kernels.Exponentiation method), 1458 clone_with_theta() (sklearn.gaussian_process.kernels.ExpSineSquared method), 1469 clone_with_theta() (sklearn.gaussian_process.kernels.Kernel method), 1454 clone_with_theta() (sklearn.gaussian_process.kernels.Matern method), 1466 clone_with_theta() (sklearn.gaussian_process.kernels.PairwiseKernel method), 1473 clone_with_theta() (sklearn.gaussian_process.kernels.Product method), 1457 clone_with_theta() (sklearn.gaussian_process.kernels.RationalQuadratic method), 1467 clone_with_theta() (sklearn.gaussian_process.kernels.RBF method), 1463 clone_with_theta() (sklearn.gaussian_process.kernels.Sum method), 1455 clone_with_theta() (sklearn.gaussian_process.kernels.WhiteKernel method), 1462 ClusterMixin (class in sklearn.base), 1131 cohen_kappa_score() (in module sklearn.metrics), 1630 completeness_score() (in module sklearn.metrics), 1661 CompoundKernel (class in sklearn.gaussian_process.kernels), 1474 confusion_matrix() (in module sklearn.metrics), 1631 consensus_score() (in module sklearn.metrics), 1671 ConstantKernel (class in sklearn.gaussian_process.kernels), 1459 ConvergenceWarning (class in sklearn.exceptions), 1384 correct_covariance() (sklearn.covariance.EllipticEnvelope method), 1179 correct_covariance() (sklearn.covariance.MinCovDet method), 1192 cosine_distances() (in module sklearn.metrics.pairwise), 1680 cosine_similarity() (in module sklearn.metrics.pairwise), 1680 count() (sklearn.gaussian_process.kernels.Hyperparameter method), 1476 CountVectorizer (class in sklearn.feature_extraction.text), 1397 coverage_error() (in module sklearn.metrics), 1656 cross_val_predict() (in module sklearn.cross_validation), 1965 cross_val_predict() (in module sklearn.model_selection), 1243 cross_val_score() (in module sklearn.cross_validation), 1966 cross_val_score() (in module sklearn.model_selection), 1241 cross_validation() (in module sklearn.svm.libsvm), 1889 D data_min (sklearn.preprocessing.MinMaxScaler attribute), 1826 data_range (sklearn.preprocessing.MinMaxScaler attribute), 1826 DataConversionWarning (class in sklearn.exceptions), 1384 DataDimensionalityWarning (class in sklearn.exceptions), 1384 DBSCAN (class in sklearn.cluster), 1141 dbscan() (in module sklearn.cluster), 1165 decision_function() (in module sklearn.svm.libsvm), 1888 decision_function() (sklearn.covariance.EllipticEnvelope method), 1179 decision_function() (sklearn.discriminant_analysis.LinearDiscriminantAnal method), 1495 decision_function() (sklearn.discriminant_analysis.QuadraticDiscriminantA method), 1499 decision_function() (sklearn.ensemble.AdaBoostClassifier method), 1356 decision_function() (sklearn.ensemble.BaggingClassifier method), 1365 decision_function() (sklearn.ensemble.GradientBoostingClassifier method), 442 decision_function() (sklearn.ensemble.GradientBoostingRegressor method), 450 decision_function() (sklearn.ensemble.IsolationForest method), 1372 decision_function() (sklearn.grid_search.GridSearchCV method), 1926 2020 Indexscikit-learn user guide, Release 0.18.2 decision_function() (sklearn.grid_search.RandomizedSearchCV method), 1931 decision_function() (sklearn.lda.LDA method), 1916 decision_function() (sklearn.linear_model.ARDRegression method), 1504 decision_function() (sklearn.linear_model.BayesianRidge method), 1507 decision_function() (sklearn.linear_model.ElasticNet method), 1511 decision_function() (sklearn.linear_model.ElasticNetCV method), 367 decision_function() (sklearn.linear_model.HuberRegressor method), 1515 decision_function() (sklearn.linear_model.Lars method), 1519 decision_function() (sklearn.linear_model.LarsCV method), 372 decision_function() (sklearn.linear_model.Lasso method), 1522 decision_function() (sklearn.linear_model.LassoCV method), 376 decision_function() (sklearn.linear_model.LassoLars method), 1528 decision_function() (sklearn.linear_model.LassoLarsCV method), 382 decision_function() (sklearn.linear_model.LassoLarsIC method), 413 decision_function() (sklearn.linear_model.LinearRegression method), 1530 decision_function() (sklearn.linear_model.LogisticRegression method), 1535 decision_function() (sklearn.linear_model.LogisticRegressionCV method), 386 decision_function() (sklearn.linear_model.MultiTaskElasticNet method), 1546 decision_function() (sklearn.linear_model.MultiTaskElasticNetCV method), 392 decision_function() (sklearn.linear_model.MultiTaskLasso method), 1540 decision_function() (sklearn.linear_model.MultiTaskLassoCV method), 398 decision_function() (sklearn.linear_model.OrthogonalMatchingPursuit method), 1550 decision_function() (sklearn.linear_model.OrthogonalMatchingPursuitCV method), 403 decision_function() (sklearn.linear_model.PassiveAggressiveClassifier method), 1553 decision_function() (sklearn.linear_model.PassiveAggressiveRegressor method), 1557 decision_function() (sklearn.linear_model.Perceptron method), 1560 decision_function() (sklearn.linear_model.Ridge method), 1576 decision_function() (sklearn.linear_model.RidgeClassifier method), 1579 decision_function() (sklearn.linear_model.RidgeClassifierCV method), 409 decision_function() (sklearn.linear_model.RidgeCV method), 406 decision_function() (sklearn.linear_model.SGDClassifier method), 1584 decision_function() (sklearn.linear_model.SGDRegressor method), 1590 decision_function() (sklearn.linear_model.TheilSenRegressor method), 1594 decision_function() (sklearn.model_selection.GridSearchCV method), 1231 decision_function() (sklearn.model_selection.RandomizedSearchCV method), 1236 decision_function() (sklearn.multiclass.OneVsOneClassifier method), 1701 decision_function() (sklearn.multiclass.OneVsRestClassifier method), 1699 decision_function() (sklearn.pipeline.Pipeline method), 1802 decision_function() (sklearn.qda.QDA method), 1918 decision_function() (sklearn.svm.LinearSVC method), 1865 decision_function() (sklearn.svm.LinearSVR method), 1878 decision_function() (sklearn.svm.NuSVC method), 1870 decision_function() (sklearn.svm.NuSVR method), 1881 decision_function() (sklearn.svm.OneClassSVM method), 1884 decision_function() (sklearn.svm.SVC method), 1859 decision_function() (sklearn.svm.SVR method), 1874 decision_path() (sklearn.ensemble.ExtraTreesClassifier method), 430 decision_path() (sklearn.ensemble.ExtraTreesRegressor method), 436 decision_path() (sklearn.ensemble.RandomForestClassifier method), 418 decision_path() (sklearn.ensemble.RandomForestRegressor method), 424 decision_path() (sklearn.ensemble.RandomTreesEmbedding method), 1375 decision_path() (sklearn.tree.DecisionTreeClassifier method), 1893 decision_path() (sklearn.tree.DecisionTreeRegressor method), 1899 decision_path() (sklearn.tree.ExtraTreeClassifier method), 1903 decision_path() (sklearn.tree.ExtraTreeRegressor method), 1908 DecisionTreeClassifier (class in sklearn.tree), 1890 DecisionTreeRegressor (class in sklearn.tree), 1897 Index 2021scikit-learn user guide, Release 0.18.2 decode() (sklearn.feature_extraction.text.CountVectorizer method), 1400 decode() (sklearn.feature_extraction.text.HashingVectorizer method), 1404 decode() (sklearn.feature_extraction.text.TfidfVectorizer method), 1411 densify() (sklearn.linear_model.LogisticRegression method), 1535 densify() (sklearn.linear_model.LogisticRegressionCV method), 387 densify() (sklearn.linear_model.PassiveAggressiveClassifier method), 1554 densify() (sklearn.linear_model.PassiveAggressiveRegressor method), 1557 densify() (sklearn.linear_model.Perceptron method), 1561 densify() (sklearn.linear_model.SGDClassifier method), 1584 densify() (sklearn.linear_model.SGDRegressor method), 1590 densify() (sklearn.svm.LinearSVC method), 1865 diag() (sklearn.gaussian_process.kernels.CompoundKernel method), 1474 diag() (sklearn.gaussian_process.kernels.ConstantKernel method), 1460 diag() (sklearn.gaussian_process.kernels.DotProduct method), 1471 diag() (sklearn.gaussian_process.kernels.Exponentiation method), 1458 diag() (sklearn.gaussian_process.kernels.ExpSineSquared method), 1469 diag() (sklearn.gaussian_process.kernels.Kernel method), 1454 diag() (sklearn.gaussian_process.kernels.Matern method), 1466 diag() (sklearn.gaussian_process.kernels.PairwiseKernel method), 1473 diag() (sklearn.gaussian_process.kernels.Product method), 1457 diag() (sklearn.gaussian_process.kernels.RationalQuadratic method), 1468 diag() (sklearn.gaussian_process.kernels.RBF method), 1464 diag() (sklearn.gaussian_process.kernels.Sum method), 1455 diag() (sklearn.gaussian_process.kernels.WhiteKernel method), 1462 dict_learning() (in module sklearn.decomposition), 1345 dict_learning_online() (in module sklearn.decomposition), 1346 DictionaryLearning (class in sklearn.decomposition), 1332 DictVectorizer (class in sklearn.feature_extraction), 1386 dist_to_rdist() (sklearn.neighbors.DistanceMetric method), 1764 distance_metrics() (in module sklearn.metrics.pairwise), 1674 DistanceMetric (class in sklearn.neighbors), 1762 DotProduct (class in sklearn.gaussian_process.kernels), 1470 DPGMM (class in sklearn.mixture), 1954 DummyClassifier (class in sklearn.dummy), 1349 DummyRegressor (class in sklearn.dummy), 1352 dump_svmlight_file() (in module sklearn.datasets), 1274 E EfficiencyWarning (class in sklearn.exceptions), 1385 ElasticNet (class in sklearn.linear_model), 1508 ElasticNetCV (class in sklearn.linear_model), 365 EllipticEnvelope (class in sklearn.covariance), 1177 empirical_covariance() (in module sklearn.covariance), 1200 EmpiricalCovariance (class in sklearn.covariance), 1175 error_norm() (sklearn.covariance.EllipticEnvelope method), 1179 error_norm() (sklearn.covariance.EmpiricalCovariance method), 1176 error_norm() (sklearn.covariance.GraphLasso method), 1182 error_norm() (sklearn.covariance.GraphLassoCV method), 1186 error_norm() (sklearn.covariance.LedoitWolf method), 1188 error_norm() (sklearn.covariance.MinCovDet method), 1192 error_norm() (sklearn.covariance.OAS method), 1195 error_norm() (sklearn.covariance.ShrunkCovariance method), 1198 estimate_bandwidth() (in module sklearn.cluster), 1160 estimators_samples_ (sklearn.ensemble.BaggingClassifier attribute), 1365 estimators_samples_ (sklearn.ensemble.BaggingRegressor attribute), 1369 estimators_samples_ (sklearn.ensemble.IsolationForest attribute), 1372 euclidean_distances() (in module sklearn.metrics.pairwise), 1674 explained_variance_score() (in module sklearn.metrics), 1651 Exponentiation (class in sklearn.gaussian_process.kernels), 1458 export_graphviz() (in module sklearn.tree), 1910 ExpSineSquared (class in sklearn.gaussian_process.kernels), 1469 extract_patches_2d() (in module sklearn.feature_extraction.image), 1393 ExtraTreeClassifier (class in sklearn.tree), 1902 2022 Indexscikit-learn user guide, Release 0.18.2 ExtraTreeRegressor (class in sklearn.tree), 1907 ExtraTreesClassifier (class in sklearn.ensemble), 427 ExtraTreesRegressor (class in sklearn.ensemble), 433 F f1_score() (in module sklearn.metrics), 1632 f_classif() (in module sklearn.feature_selection), 1441 f_regression() (in module sklearn.feature_selection), 1441 FactorAnalysis (class in sklearn.decomposition), 1312 FastICA (class in sklearn.decomposition), 1315 fastica() (in module sklearn.decomposition), 1343 fbeta_score() (in module sklearn.metrics), 1633 feature_importances_ (sklearn.ensemble.AdaBoostClassifier attribute), 1356 feature_importances_ (sklearn.ensemble.AdaBoostRegressor attribute), 1361 feature_importances_ (sklearn.ensemble.ExtraTreesClassifier attribute), 430 feature_importances_ (sklearn.ensemble.ExtraTreesRegressor attribute), 436 feature_importances_ (sklearn.ensemble.GradientBoostingClassifier attribute), 443 feature_importances_ (sklearn.ensemble.GradientBoostingRegressor attribute), 450 feature_importances_ (sklearn.ensemble.RandomForestClassifier attribute), 418 feature_importances_ (sklearn.ensemble.RandomForestRegressor attribute), 425 feature_importances_ (sklearn.ensemble.RandomTreesEmbedding attribute), 1376 feature_importances_ (sklearn.tree.DecisionTreeClassifier attribute), 1893 feature_importances_ (sklearn.tree.DecisionTreeRegressor attribute), 1900 feature_importances_ (sklearn.tree.ExtraTreeClassifier attribute), 1904 feature_importances_ (sklearn.tree.ExtraTreeRegressor attribute), 1908 FeatureAgglomeration (class in sklearn.cluster), 1143 FeatureHasher (class in sklearn.feature_extraction), 1389 FeatureUnion (class in sklearn.pipeline), 1805 fetch_20newsgroups() (in module sklearn.datasets), 1250 fetch_20newsgroups_vectorized() (in module sklearn.datasets), 1251 fetch_california_housing() (in module sklearn.datasets), 1264 fetch_covtype() (in module sklearn.datasets), 1265 fetch_kddcup99() (in module sklearn.datasets), 1266 fetch_lfw_pairs() (in module sklearn.datasets), 1259 fetch_lfw_people() (in module sklearn.datasets), 1260 fetch_mldata() (in module sklearn.datasets), 1262 fetch_olivetti_faces() (in module sklearn.datasets), 1263 fetch_rcv1() (in module sklearn.datasets), 1267 fetch_species_distributions() (in module sklearn.datasets), 1270 fit() (in module sklearn.svm.libsvm), 1886 fit() (sklearn.calibration.CalibratedClassifierCV method), 1784 fit() (sklearn.cluster.AffinityPropagation method), 1134 fit() (sklearn.cluster.AgglomerativeClustering method), 1137 fit() (sklearn.cluster.bicluster.SpectralBiclustering method), 1171 fit() (sklearn.cluster.bicluster.SpectralCoclustering method), 1174 fit() (sklearn.cluster.Birch method), 1139 fit() (sklearn.cluster.DBSCAN method), 1142 fit() (sklearn.cluster.FeatureAgglomeration method), 1145 fit() (sklearn.cluster.KMeans method), 1150 fit() (sklearn.cluster.MeanShift method), 1156 fit() (sklearn.cluster.MiniBatchKMeans method), 1153 fit() (sklearn.cluster.SpectralClustering method), 1159 fit() (sklearn.covariance.EmpiricalCovariance method), 1176 fit() (sklearn.covariance.GraphLassoCV method), 1186 fit() (sklearn.covariance.LedoitWolf method), 1189 fit() (sklearn.covariance.MinCovDet method), 1192 fit() (sklearn.covariance.OAS method), 1196 fit() (sklearn.covariance.ShrunkCovariance method), 1198 fit() (sklearn.cross_decomposition.CCA method), 1797 fit() (sklearn.cross_decomposition.PLSCanonical method), 1794 fit() (sklearn.cross_decomposition.PLSRegression method), 1789 fit() (sklearn.decomposition.DictionaryLearning method), 1334 fit() (sklearn.decomposition.FactorAnalysis method), 1314 fit() (sklearn.decomposition.FastICA method), 1317 fit() (sklearn.decomposition.IncrementalPCA method), 1303 fit() (sklearn.decomposition.KernelPCA method), 1311 fit() (sklearn.decomposition.LatentDirichletAllocation method), 1341 fit() (sklearn.decomposition.MiniBatchDictionaryLearning method), 1337 fit() (sklearn.decomposition.MiniBatchSparsePCA method), 1329 fit() (sklearn.decomposition.NMF method), 1324 fit() (sklearn.decomposition.PCA method), 1298 fit() (sklearn.decomposition.ProjectedGradientNMF method), 1308 fit() (sklearn.decomposition.RandomizedPCA method), 1945 fit() (sklearn.decomposition.SparseCoder method), 1331 Index 2023scikit-learn user guide, Release 0.18.2 fit() (sklearn.decomposition.SparsePCA method), 1326 fit() (sklearn.decomposition.TruncatedSVD method), 1319 fit() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis method), 1495 fit() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis method), 1499 fit() (sklearn.dummy.DummyClassifier method), 1350 fit() (sklearn.dummy.DummyRegressor method), 1353 fit() (sklearn.ensemble.AdaBoostClassifier method), 1356 fit() (sklearn.ensemble.AdaBoostRegressor method), 1361 fit() (sklearn.ensemble.BaggingClassifier method), 1365 fit() (sklearn.ensemble.BaggingRegressor method), 1369 fit() (sklearn.ensemble.ExtraTreesClassifier method), 431 fit() (sklearn.ensemble.ExtraTreesRegressor method), 437 fit() (sklearn.ensemble.GradientBoostingClassifier method), 443 fit() (sklearn.ensemble.GradientBoostingRegressor method), 450 fit() (sklearn.ensemble.IsolationForest method), 1372 fit() (sklearn.ensemble.RandomForestClassifier method), 418 fit() (sklearn.ensemble.RandomForestRegressor method), 425 fit() (sklearn.ensemble.RandomTreesEmbedding method), 1376 fit() (sklearn.ensemble.VotingClassifier method), 1378 fit() (sklearn.feature_extraction.DictVectorizer method), 1387 fit() (sklearn.feature_extraction.FeatureHasher method), 1391 fit() (sklearn.feature_extraction.image.PatchExtractor method), 1395 fit() (sklearn.feature_extraction.text.CountVectorizer method), 1400 fit() (sklearn.feature_extraction.text.HashingVectorizer method), 1404 fit() (sklearn.feature_extraction.text.TfidfTransformer method), 1406 fit() (sklearn.feature_extraction.text.TfidfVectorizer method), 1411 fit() (sklearn.feature_selection.GenericUnivariateSelect method), 1414 fit() (sklearn.feature_selection.RFE method), 1432 fit() (sklearn.feature_selection.RFECV method), 1436 fit() (sklearn.feature_selection.SelectFdr method), 1424 fit() (sklearn.feature_selection.SelectFpr method), 1422 fit() (sklearn.feature_selection.SelectFromModel method), 1426 fit() (sklearn.feature_selection.SelectFwe method), 1429 fit() (sklearn.feature_selection.SelectKBest method), 1419 fit() (sklearn.feature_selection.SelectPercentile method), 1416 fit() (sklearn.feature_selection.VarianceThreshold method), 1438 fit() (sklearn.gaussian_process.GaussianProcess method), 1949 fit() (sklearn.gaussian_process.GaussianProcessClassifier method), 1451 fit() (sklearn.gaussian_process.GaussianProcessRegressor method), 1447 fit() (sklearn.grid_search.GridSearchCV method), 1926 fit() (sklearn.grid_search.RandomizedSearchCV method), 1931 fit() (sklearn.isotonic.IsotonicRegression method), 1478 fit() (sklearn.kernel_approximation.AdditiveChi2Sampler method), 1482 fit() (sklearn.kernel_approximation.Nystroem method), 1485 fit() (sklearn.kernel_approximation.RBFSampler method), 1486 fit() (sklearn.kernel_approximation.SkewedChi2Sampler method), 1488 fit() (sklearn.kernel_ridge.KernelRidge method), 1491 fit() (sklearn.lda.LDA method), 1916 fit() (sklearn.linear_model.ARDRegression method), 1504 fit() (sklearn.linear_model.BayesianRidge method), 1507 fit() (sklearn.linear_model.ElasticNet method), 1511 fit() (sklearn.linear_model.ElasticNetCV method), 367 fit() (sklearn.linear_model.HuberRegressor method), 1516 fit() (sklearn.linear_model.Lars method), 1519 fit() (sklearn.linear_model.LarsCV method), 372 fit() (sklearn.linear_model.Lasso method), 1522 fit() (sklearn.linear_model.LassoCV method), 376 fit() (sklearn.linear_model.LassoLars method), 1528 fit() (sklearn.linear_model.LassoLarsCV method), 382 fit() (sklearn.linear_model.LassoLarsIC method), 413 fit() (sklearn.linear_model.LinearRegression method), 1530 fit() (sklearn.linear_model.LogisticRegression method), 1535 fit() (sklearn.linear_model.LogisticRegressionCV method), 387 fit() (sklearn.linear_model.MultiTaskElasticNet method), 1546 fit() (sklearn.linear_model.MultiTaskElasticNetCV method), 393 fit() (sklearn.linear_model.MultiTaskLasso method), 1541 fit() (sklearn.linear_model.MultiTaskLassoCV method), 398 fit() (sklearn.linear_model.OrthogonalMatchingPursuit method), 1551 2024 Indexscikit-learn user guide, Release 0.18.2 fit() (sklearn.linear_model.OrthogonalMatchingPursuitCV method), 403 fit() (sklearn.linear_model.PassiveAggressiveClassifier method), 1554 fit() (sklearn.linear_model.PassiveAggressiveRegressor method), 1557 fit() (sklearn.linear_model.Perceptron method), 1561 fit() (sklearn.linear_model.RandomizedLasso method), 1566 fit() (sklearn.linear_model.RandomizedLogisticRegression method), 1569 fit() (sklearn.linear_model.RANSACRegressor method), 1572 fit() (sklearn.linear_model.Ridge method), 1576 fit() (sklearn.linear_model.RidgeClassifier method), 1579 fit() (sklearn.linear_model.RidgeClassifierCV method), 409 fit() (sklearn.linear_model.RidgeCV method), 406 fit() (sklearn.linear_model.SGDClassifier method), 1584 fit() (sklearn.linear_model.SGDRegressor method), 1590 fit() (sklearn.linear_model.TheilSenRegressor method), 1595 fit() (sklearn.manifold.Isomap method), 1610 fit() (sklearn.manifold.LocallyLinearEmbedding method), 1608 fit() (sklearn.manifold.MDS method), 1613 fit() (sklearn.manifold.SpectralEmbedding method), 1615 fit() (sklearn.manifold.TSNE method), 1619 fit() (sklearn.mixture.BayesianGaussianMixture method), 1695 fit() (sklearn.mixture.DPGMM method), 1955 fit() (sklearn.mixture.GaussianMixture method), 1689 fit() (sklearn.mixture.GMM method), 1952 fit() (sklearn.mixture.VBGMM method), 1958 fit() (sklearn.model_selection.GridSearchCV method), 1231 fit() (sklearn.model_selection.RandomizedSearchCV method), 1237 fit() (sklearn.multiclass.OneVsOneClassifier method), 1702 fit() (sklearn.multiclass.OneVsRestClassifier method), 1699 fit() (sklearn.multiclass.OutputCodeClassifier method), 1704 fit() (sklearn.multioutput.MultiOutputClassifier method), 1708 fit() (sklearn.multioutput.MultiOutputRegressor method), 1706 fit() (sklearn.naive_bayes.BernoulliNB method), 1717 fit() (sklearn.naive_bayes.GaussianNB method), 1710 fit() (sklearn.naive_bayes.MultinomialNB method), 1714 fit() (sklearn.neighbors.KernelDensity method), 1766 fit() (sklearn.neighbors.KNeighborsClassifier method), 1728 fit() (sklearn.neighbors.KNeighborsRegressor method), 1737 fit() (sklearn.neighbors.LSHForest method), 1759 fit() (sklearn.neighbors.NearestCentroid method), 1745 fit() (sklearn.neighbors.NearestNeighbors method), 1722 fit() (sklearn.neighbors.RadiusNeighborsClassifier method), 1732 fit() (sklearn.neighbors.RadiusNeighborsRegressor method), 1741 fit() (sklearn.neural_network.BernoulliRBM method), 1771 fit() (sklearn.neural_network.MLPClassifier method), 1776 fit() (sklearn.neural_network.MLPRegressor method), 1782 fit() (sklearn.pipeline.FeatureUnion method), 1806 fit() (sklearn.pipeline.Pipeline method), 1802 fit() (sklearn.preprocessing.Binarizer method), 1809 fit() (sklearn.preprocessing.Imputer method), 1813 fit() (sklearn.preprocessing.KernelCenterer method), 1814 fit() (sklearn.preprocessing.LabelBinarizer method), 1817 fit() (sklearn.preprocessing.LabelEncoder method), 1820 fit() (sklearn.preprocessing.MaxAbsScaler method), 1823 fit() (sklearn.preprocessing.MinMaxScaler method), 1826 fit() (sklearn.preprocessing.MultiLabelBinarizer method), 1821 fit() (sklearn.preprocessing.Normalizer method), 1828 fit() (sklearn.preprocessing.OneHotEncoder method), 1830 fit() (sklearn.preprocessing.PolynomialFeatures method), 1833 fit() (sklearn.preprocessing.RobustScaler method), 1835 fit() (sklearn.preprocessing.StandardScaler method), 1837 fit() (sklearn.qda.QDA method), 1919 fit() (sklearn.random_projection.GaussianRandomProjection method), 1846 fit() (sklearn.random_projection.SparseRandomProjection method), 1848 fit() (sklearn.semi_supervised.LabelPropagation method), 1852 fit() (sklearn.semi_supervised.LabelSpreading method), 1855 fit() (sklearn.svm.LinearSVC method), 1865 fit() (sklearn.svm.LinearSVR method), 1878 fit() (sklearn.svm.NuSVC method), 1870 fit() (sklearn.svm.NuSVR method), 1881 fit() (sklearn.svm.OneClassSVM method), 1884 fit() (sklearn.svm.SVC method), 1859 fit() (sklearn.svm.SVR method), 1875 fit() (sklearn.tree.DecisionTreeClassifier method), 1894 fit() (sklearn.tree.DecisionTreeRegressor method), 1900 fit() (sklearn.tree.ExtraTreeClassifier method), 1904 Index 2025scikit-learn user guide, Release 0.18.2 fit() (sklearn.tree.ExtraTreeRegressor method), 1908 fit_grid_point() (in module sklearn.grid_search), 1960 fit_grid_point() (in module sklearn.model_selection), 1240 fit_predict() (sklearn.base.ClusterMixin method), 1131 fit_predict() (sklearn.cluster.AffinityPropagation method), 1134 fit_predict() (sklearn.cluster.AgglomerativeClustering method), 1137 fit_predict() (sklearn.cluster.Birch method), 1139 fit_predict() (sklearn.cluster.DBSCAN method), 1142 fit_predict() (sklearn.cluster.KMeans method), 1150 fit_predict() (sklearn.cluster.MeanShift method), 1156 fit_predict() (sklearn.cluster.MiniBatchKMeans method), 1153 fit_predict() (sklearn.cluster.SpectralClustering method), 1160 fit_predict() (sklearn.mixture.DPGMM method), 1955 fit_predict() (sklearn.mixture.GMM method), 1952 fit_predict() (sklearn.mixture.VBGMM method), 1959 fit_predict() (sklearn.pipeline.Pipeline method), 1803 fit_transform() (sklearn.base.TransformerMixin method), 1132 fit_transform() (sklearn.cluster.Birch method), 1139 fit_transform() (sklearn.cluster.FeatureAgglomeration method), 1145 fit_transform() (sklearn.cluster.KMeans method), 1150 fit_transform() (sklearn.cluster.MiniBatchKMeans method), 1153 fit_transform() (sklearn.cross_decomposition.CCA method), 1798 fit_transform() (sklearn.cross_decomposition.PLSCanonical method), 1794 fit_transform() (sklearn.cross_decomposition.PLSRegression method), 1789 fit_transform() (sklearn.cross_decomposition.PLSSVD method), 1800 fit_transform() (sklearn.decomposition.DictionaryLearning method), 1334 fit_transform() (sklearn.decomposition.FactorAnalysis method), 1314 fit_transform() (sklearn.decomposition.FastICA method), 1317 fit_transform() (sklearn.decomposition.IncrementalPCA method), 1303 fit_transform() (sklearn.decomposition.KernelPCA method), 1311 fit_transform() (sklearn.decomposition.LatentDirichletAllocation method), 1341 fit_transform() (sklearn.decomposition.MiniBatchDictionaryLearning method), 1338 fit_transform() (sklearn.decomposition.MiniBatchSparsePCA method), 1329 fit_transform() (sklearn.decomposition.NMF method), 1324 fit_transform() (sklearn.decomposition.PCA method), 1298 fit_transform() (sklearn.decomposition.ProjectedGradientNMF method), 1308 fit_transform() (sklearn.decomposition.RandomizedPCA method), 1946 fit_transform() (sklearn.decomposition.SparseCoder method), 1331 fit_transform() (sklearn.decomposition.SparsePCA method), 1326 fit_transform() (sklearn.decomposition.TruncatedSVD method), 1320 fit_transform() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis method), 1495 fit_transform() (sklearn.ensemble.ExtraTreesClassifier method), 431 fit_transform() (sklearn.ensemble.ExtraTreesRegressor method), 437 fit_transform() (sklearn.ensemble.GradientBoostingClassifier method), 443 fit_transform() (sklearn.ensemble.GradientBoostingRegressor method), 450 fit_transform() (sklearn.ensemble.RandomForestClassifier method), 419 fit_transform() (sklearn.ensemble.RandomForestRegressor method), 425 fit_transform() (sklearn.ensemble.RandomTreesEmbedding method), 1376 fit_transform() (sklearn.ensemble.VotingClassifier method), 1378 fit_transform() (sklearn.feature_extraction.DictVectorizer method), 1387 fit_transform() (sklearn.feature_extraction.FeatureHasher method), 1391 fit_transform() (sklearn.feature_extraction.text.CountVectorizer method), 1400 fit_transform() (sklearn.feature_extraction.text.HashingVectorizer method), 1404 fit_transform() (sklearn.feature_extraction.text.TfidfTransformer method), 1406 fit_transform() (sklearn.feature_extraction.text.TfidfVectorizer method), 1411 fit_transform() (sklearn.feature_selection.GenericUnivariateSelect method), 1414 fit_transform() (sklearn.feature_selection.RFE method), 1432 fit_transform() (sklearn.feature_selection.RFECV method), 1436 fit_transform() (sklearn.feature_selection.SelectFdr method), 1424 fit_transform() (sklearn.feature_selection.SelectFpr method), 1422 2026 Indexscikit-learn user guide, Release 0.18.2 fit_transform() (sklearn.feature_selection.SelectFromModel method), 1426 fit_transform() (sklearn.feature_selection.SelectFwe method), 1429 fit_transform() (sklearn.feature_selection.SelectKBest method), 1419 fit_transform() (sklearn.feature_selection.SelectPercentile method), 1417 fit_transform() (sklearn.feature_selection.VarianceThreshold method), 1438 fit_transform() (sklearn.isotonic.IsotonicRegression method), 1478 fit_transform() (sklearn.kernel_approximation.AdditiveChi2Sampler method), 1482 fit_transform() (sklearn.kernel_approximation.Nystroem method), 1485 fit_transform() (sklearn.kernel_approximation.RBFSampler method), 1487 fit_transform() (sklearn.kernel_approximation.SkewedChi2Sampler method), 1488 fit_transform() (sklearn.lda.LDA method), 1916 fit_transform() (sklearn.linear_model.LogisticRegression method), 1536 fit_transform() (sklearn.linear_model.LogisticRegressionCV method), 387 fit_transform() (sklearn.linear_model.Perceptron method), 1561 fit_transform() (sklearn.linear_model.RandomizedLasso method), 1566 fit_transform() (sklearn.linear_model.RandomizedLogisticRegression method), 1569 fit_transform() (sklearn.linear_model.SGDClassifier method), 1584 fit_transform() (sklearn.linear_model.SGDRegressor method), 1591 fit_transform() (sklearn.manifold.Isomap method), 1611 fit_transform() (sklearn.manifold.LocallyLinearEmbedding method), 1608 fit_transform() (sklearn.manifold.MDS method), 1613 fit_transform() (sklearn.manifold.SpectralEmbedding method), 1615 fit_transform() (sklearn.manifold.TSNE method), 1619 fit_transform() (sklearn.neural_network.BernoulliRBM method), 1772 fit_transform() (sklearn.pipeline.FeatureUnion method), 1806 fit_transform() (sklearn.pipeline.Pipeline method), 1803 fit_transform() (sklearn.preprocessing.Binarizer method), 1810 fit_transform() (sklearn.preprocessing.FunctionTransformer method), 1811 fit_transform() (sklearn.preprocessing.Imputer method), 1813 fit_transform() (sklearn.preprocessing.KernelCenterer method), 1815 fit_transform() (sklearn.preprocessing.LabelBinarizer method), 1817 fit_transform() (sklearn.preprocessing.LabelEncoder method), 1820 fit_transform() (sklearn.preprocessing.MaxAbsScaler method), 1823 fit_transform() (sklearn.preprocessing.MinMaxScaler method), 1826 fit_transform() (sklearn.preprocessing.MultiLabelBinarizer method), 1822 fit_transform() (sklearn.preprocessing.Normalizer method), 1828 fit_transform() (sklearn.preprocessing.OneHotEncoder method), 1831 fit_transform() (sklearn.preprocessing.PolynomialFeatures
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Scikit-learn User Guide رابط مباشر لتنزيل كتاب Scikit-learn User Guide
|
|