Admin مدير المنتدى
عدد المساهمات : 18992 التقييم : 35482 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Exploiting Chemical Diversity for Drug Discovery الإثنين 28 يونيو 2021, 11:57 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Exploiting Chemical Diversity for Drug Discovery Edited by Paul A. Bartlett Department of Chemistry, University of California, Berkeley Michael Entzeroth S*Bio Pte Ltd, Singapore
و المحتوى كما يلي :
Contents Section 1 Operational Developments in Chemistry Chapter 1 The Use of Polymer-Assisted Solution-Phase Synthesis and Automation for the High-Throughput Preparation of Biologically Active Compounds 3 Steven V. Ley, Mark Ladlow and Emma Vickerstaffe 1 Introduction 3 2 PASP Synthesis Approaches to Biologically Active Compounds 7 2.1 Applications to the Synthesis of Commercial Drug Molecules 7 2.2 Applications of PASP to the Synthesis of Biologically Active Natural Products 10 2.3 PASP Synthesis in the Library Production of Biologically Active Small Molecules 12 3 Automated PASP Synthesis of Biologically Active Molecules 19 3.1 Stepwise Automation of PASP Synthesis in Batch Mode 19 3.2 Fully Automated PASP Synthesis of Drug-Like Molecules in Batch Mode 21 3.3 Flow Chemistry and Automation in the Synthesis of Drug-Like Molecules 23 4 Conclusion 28 References 28 Chapter 2 Accelerated Chemistry: Microwave, Sonochemical, and Fluorous Phase Techniques 33 Kristofer Olofsson, Peter Nilsson and Mats Larhed 1 Introduction 332 Microwave Enhanced Chemistry 34 2.1 General 34 2.2 Applications in Medicinal Chemistry 35 2.3 Applications in Solid-Phase Chemistry 37 3 Sonochemistry as a Means to Accelerate Synthesis 37 3.1 General 37 3.2 Organometallic Sonochemistry 38 3.3 Heterocyclic and Pericyclic Chemistry 38 3.4 Applications in Medicinal Chemistry 39 4 Fluorous Phase Techniques 40 4.1 General 40 4.2 Reagents, Linkers, and Scavengers 42 4.3 Fluorous Protecting Groups 44 4.4 Fluorous Mixture Synthesis 44 4.5 Peptides and Oligosaccharides 45 4.6 Fluorous Applications in High-Throughput Chemistry 46 4.7 Microwave-Enhanced Fluorous Chemistry 46 5 Conclusion 48 Acknowledgements 48 References 48 Section 2 Conceptual Advances in Synthesis: “Prospecting” – Design of Discovery Libraries and the Search for Hits Chapter 3 Biosynthesis of “Unnatural” Natural Products 57 Yi Tang and Chaitan Khosla 1 Introduction 57 1.1 Polyketide Assembly 58 1.2 Three Major Classes of Polyketide Synthases 60 1.3 Methods for Engineered Biosynthesis 60 2 Type I Polyketide Synthases 61 2.1 Modular Architecture 61 2.2 The Erythromycin Synthase 63 2.3 Engineered Biosynthesis of Multimodular PKS Products 64 2.3.1 Domain Engineering 64 2.3.2 Module Engineering 66 2.3.3 Primer Unit Engineering and Precursor-Directed Biosynthesis 68 2.4 Multimodular PKSs that Exhibit Special Features 70 2.5 Fungal Type I PKSs 70 xii Contents3 Type II Polyketide Synthases 72 3.1 Dissociated Architecture 72 3.2 Combinatorial Biosynthesis of Type II Polyketides 75 3.2.1 Chain-Length Variations 76 3.2.2 Mix and Match of Tailoring Enzymes 76 3.2.3 Primer Unit Modifications 78 3.2.4 Reshuffling of Downstream Tailoring Enzymes 80 4 Type III Polyketide Synthase 81 4.1 Type III PKS Consists of a Homodimeric Ketosynthase 81 4.2 Engineered Biosynthesis of Type III Polyketides 84 5 Conclusions 85 Acknowledgments 86 References 86 Chapter 4 Combinatorial Synthetic Design: The Balance of Novelty and Familiarity 91 A. Ganesan 1 Biological Macromolecules – Strength in Numbers 91 1.1 Congruence between Biological and Chemical Space 93 1.2 The Libraries are Exhaustive within the Defined Boundaries 93 1.3 Highly Optimized Synthesis Procedures were Available 94 2 Oligomer Synthesis – Improving on Mother Nature 94 3 Random, Discovery, or Prospecting Libraries – the Quest for the Universal Scaffold 96 4 Privileged Scaffolds – Look Where the Light is Brightest 96 5 The Decoration or Synthesis of Novel Scaffolds – Aid for the Underprivileged 97 6 Target Class Libraries – Diversity with a Purpose 100 7 Peptide and Nucleotide Libraries Redux 101 8 Lead Discovery or Drug Discovery – Size does Matter 102 9 Natural Product Scaffolds for Combinatorial Chemistry – Why Reinvent the Wheel? 103 10 From Natural Products to Natural Product-Like Libraries – Hubris or Progress? 104 Contents xiii11 Lead Discovery and Combinatorial Chemistry – What have We Learned? 105 11.1 The Drug-Discovery Process cannot be Simplified to a Single Blueprint 106 11.2 Combinatorial Chemistry is an Extremely Powerful Technology 106 11.3 Combinatorial Chemistry is at its Best in Lead Optimization 107 11.4 Combinatorial Chemistry is about Making the Compounds that Fit Your Needs, not How They are Made 107 References 107 Chapter 5 Compound Collections: Acquisition, Annotation, and Access 112 Reg Richardson 1 Introduction 112 2 Commercial Offerings 113 3 Companies Providing Non-Proprietary, Non-Parallel Synthesised Libraries (Shared-Pool/‘Collected Collections’) 115 4 Companies Providing In-House Designed, Parallel Synthesised Libraries 117 5 Compound Selection and Database Filtering 119 6 Sub-structure Similarity/Dissimilarity 119 7 Pharmacophore Analysis 120 8 Annotation 124 9 Lipinski Rule-of-Five (LRoF) 126 10 Topological Polar Surface Area (tPSA) and Blood–Brain-Barrier Permeability (Log BB) 126 11 Solubility 128 12 Examples of the Use of Chemical Annotation and Pharmacophore-Based Lead-Hopping 129 13 Compound Acquisition 132 Acknowledgments 134 References 134 Chapter 6 Chemical Diversity: Definition and Quantification 137 Alan C. Gibbs and Dimitris K. Agrafiotis 1 Introduction 137 xiv Contents2 Diversity Metrics 138 2.1 Distance-Based Metrics 138 2.2 Cell-Base Diversity Metrics 140 2.3 Variance-Based Diversity Metrics 142 3 Molecular Description 143 3.1 Two-Dimensional Descriptors 143 3.2 Three-Dimensional Descriptors 145 3.3 Physicochemical and Electronic Descriptors 146 3.4 Descriptor Selection 146 4 Dimensionality Reduction 147 4.1 Principle Component Analysis 148 4.2 Singular-Value Decomposition 148 4.3 Factor Analysis (FA) 149 4.4 MultiDimensional Scaling 149 4.5 Stochastic Proximity Embedding 150 5 Subset Selection and Classification 151 5.1 Clustering 152 5.2 Partitioning Methods 153 5.3 Experimental Design 154 5.4 Reagent-Based Versus Product-Based Design 155 5.5 Random Versus Rational Design 155 6 Conclusion 156 Abbreviations 156 References 156 Section 3 Conceptual Advances in Synthesis: “Mining” – Turning a Hit into a Lead Chapter 7 Focused Libraries: The Evolution in Strategy from Large-Diversity Libraries to the Focused Library Approach 163 Ruben Tommasi and Ivan Cornella 1 Introduction 163 2 A Synergistic, Multidisciplinary Approach to Library Conception 164 2.1 Improvements in Synthetic Methods 164 2.2 Impact of In Silico Tools for Library Design 165 2.3 Influence of Biology in Library Design 166 3 Library Design Concepts 167 3.1 Impact of Diversity on Library Design 167 3.2 Diversity-Oriented Synthesis in Prospecting Library Design 168 3.3 Target-Oriented Library Design 168 3.4 Focus on Drug-Like Libraries 170 Contents xv4 Focused Libraries 170 4.1 Libraries Focused on Pharmacophore Models 170 4.2 Libraries Focused on Privileged Structures 172 4.3 Libraries Focused on Target Classes 172 4.3.1 GPCR-Targeted Libraries 173 4.3.2 Kinase-Targeted Libraries 174 4.3.3 Natural Product-Based Focused Libraries 174 4.4 Early Optimization or Hit-to-Lead Libraries 177 5 Summary 179 References 179 Chapter 8 Translating Peptides into Small Molecules 184 Gerd Hummel, Ulrich Reineke and Ulf Reimer 1 Peptides as Drugs: The Good, the Bad and the Ugly 184 2 Origin of Biologically Active Peptides 185 3 General Strategy for Translating Peptides into Small Molecules 186 4 Tailoring Peptide Sequences for their Translation into Small Molecules 186 5 Transformation of Peptide Ligands into Small Molecules using Computational Approaches 191 6 Conclusion 198 References 198 Section 4 Operational Developments in Screening and High Throughput Assays Chapter 9 High-Density Plates, Microarrays, Microfluidics 203 Christof Fattinger and Gregor Dernick 1 Functional High-Density Well Plates for High-Throughput Assays 204 1.1 Sample Plates for Low-Volume High-Throughput Screening 205 1.2 High-Density Assay Plates for HTS and Multidimensional Compound Profiling 206 1.3 Technical, Biological, and Economical Limits for Assay Miniaturization in High-Density Plates 208 1.4 384-Microtube Plate for High-Throughput Retrieval of Compound Subsets 210 1.5 Sample Management for HTS and Multidimensional Compound Profiling 211 xvi Contents2 Parallel Liquid Handling of Low-Volume Samples 215 2.1 Pipetting and Dispensing in High-Density Plates 215 2.2 High-Throughput Aliquoting of the HTS Library 219 2.3 A Microfluidic Well Plate for High-Throughput Solid/Liquid Separations 222 3 Microarray Assays on Chips 223 3.1 Microchannel Assay: A New Generation of Miniaturized Multiplexed Bioassays 226 4 Prospects for Multiparameter Assays 229 Acknowledgment 231 References 231 Chapter 10 Fluorescence Technologies for the Investigation of Chemical Libraries 233 Eric Trinquet and Gérard Mathis 1 Introduction 233 2 Dissociation-Enhanced Lanthanide Fluoroimmunoassay 234 3 Enzyme Fragment Complementation 236 4 Fluorescence Polarization 236 5 Fluorescence Correlation Spectroscopy 238 6 Amplified Luminescent Proximity Homogeneous Assay (AlphaScreen) 238 7 Fluorescence Resonance Energy Transfer 239 8 Bioluminescence Resonance Energy Transfer 241 9 Homogeneous Time Resolved Fluorescence 241 10 Conclusion 244 References 245 Chapter 11 The Use of Genetically Engineered Cell-Based Assays in in-vitro Drug Discovery 247 Renate Schnitzer and Wolfgang Sommergruber 1 Introduction 247 2 Genetic Engineering for Cell-Based Assays 248 2.1 Expression Systems 248 2.2 Choice of Cell Line and Promoter 249 2.3 Chromosomal Integration Site 250 3 Reporter-Based Assays 250 3.1 Chloramphenicol Acetyl Transferase, Secreted Placental Alkaline Phosphatase, β-Galactosidase 251 Contents xvii3.2 Green Fluorescent Protein 252 3.3 Luciferase 252 3.4 β-Lactamase 253 3.5 Examples of Applications 254 4 Assays to Measure Intracellular Calcium 256 5 Assays to Monitor Protein–Protein Interactions 257 5.1 Bioluminescence Resonance Energy Transfer and Fluorescence Resonance Energy Transfer 257 5.2 Enzyme Complementation 258 6 Conclusions and Outlook 259 References 260 Chapter 12 NMR-Based Screening: A Powerful Tool in Fragment-Based Drug Discovery 263 Jochen Klages, Murray Coles and Horst Kessler 1 Introduction 263 2 NMR Screening: General Aspects 266 3 Ligand- vs. Target-Detected Methods 268 3.1 Sample Requirements 268 4 Incorporation of NMR into the Drug Discovery Process 269 4.1 Hit Finding 270 4.1.1 STD and WaterLOGSY 270 4.1.2 Libraries of 19F-Containing Ligands 272 4.2 Hit Validation 273 4.2.1 Chemical Shift Mapping 273 4.3 Hit Optimization 274 4.3.1 Chemical Shift Mapping 274 4.3.2 Competition-Based Screening 275 4.3.3 Paramagnetic Spin Labels 276 5 Representative Case Studies 277 5.1 Fluorine Screening 277 5.2 SAR-by-NMR 282 5.3 Saturation Transfer Double Difference 285 6 Conclusion 287 References 288 Chapter 13 Screening Chemical Microarrays: Methods and Applications 291 Pappanaicken R. Kumaresan and Kit S. Lam 1 Introduction 291 1.1 In situ Synthesis of Peptide and Non-Peptide Microarrays 293 xviii Contents1.2 Spotting of Pre-Synthesized Small Molecules and Peptides 293 1.3 Carbohydrate Microarrays 293 1.4 One-Bead-One-Compound Combinatorial Library Bead-Arrays 294 2 Screening of Chemical Microarrays 295 2.1 Labeling Methods 296 2.1.1 Fluorescence Method 296 2.1.2 Chemiluminescence Method 297 2.1.3 Radiolabeling Methods 297 2.1.4 Colorimetric Methods 297 2.2 Label-Free Optical and Mass Spectrometry Methods 298 2.2.1 Surface Plasmon Resonance 298 2.2.2 Oblique-Incidence Optical Reflectivity Difference Microscopy 298 2.2.3 Surface-Enhanced Laser Desorption/Ionization Mass Spectrometry 298 2.2.4 Atomic Force Microscopy 299 2.2.5 Fiber-Optic Bead Methods 299 2.2.6 Laser-Detection Methods 299 2.2.7 Electrochemical Biosensor Method 299 2.2.8 Cell-Based Assays 300 3 Applications of Chemical Microarrays 300 3.1 Basic Science Applications 301 3.1.1 Protein-Binding Arrays 301 3.1.2 Carbohydrate Microarrays for Cell Receptors 302 3.1.3 Cell-Signaling Arrays 302 3.1.4 Enzyme Substrate/Inhibitor Arrays 303 3.1.5 Chemical-Detection Arrays 303 3.2 Medical Applications 304 3.2.1 Diagnostic Arrays 304 3.2.2 Immunological Arrays 304 3.2.3 Cell-Binding Arrays 305 3.2.4 Drug-Discovery Arrays 305 4 Conclusion 306 Acknowledgments 306 References 307 Contents xixSection 5 Conceptual Advances in Lead Evaluation: Screen Early and Often Chapter 14 Screen/Counter-Screen: Early Assessment of Selectivity 315 Martyn N. Banks, Litao Zhang and John G. Houston 1 Introduction 315 2 Approaches Used for Selection of Drug Candidates 317 2.1 Lead Evaluation and Liability Profiling 317 2.1.1 ADME Liability Profiling 318 2.1.2 The Lead Evaluation Process: Technologies and Methods 319 2.2 Specificity of Drug Candidates and the Construction of In Vitro Specificity Panels 323 2.2.1 Receptors 323 2.2.2 Protein Kinases 328 2.2.3 Ion Channels 331 3 Summary 332 References 332 Chapter 15 Concepts for In Vitro Profiling: Drug Activity, Selectivity and Liability 336 Michael B. Bolger, Robert Fraczkiewicz, Michael Entzeroth and Boyd Steere 1 Introduction 336 2 Physicochemical Parameters 339 2.1 Partition Coefficient 339 2.2 pKa 340 2.3 Solubility 343 2.3.1 Thermodynamic Solubility 343 2.3.2 To Buffer or not to Buffer 345 3 Permeability 348 4 Metabolism 350 5 Protein Binding 353 6 Toxicity 354 6.1 Cell Viability: MTS Assay for In Vitro Cytotoxicity 355 6.2 Membrane Damage: Release of LDH (Lactate Dehydrogenase) 355 6.3 Induction of Apoptosis: Caspase Activity 355 6.4 HERG Potassium Channel Interaction 355 xx Contents6.5 Microarrays 356 6.6 Recent Approaches 357 7 Investigation of Compound Selectivity 357 8 Conclusion and Outlook 357 References 360 Chapter 16 In Silico Surrogates for In Vivo Properties: Profiling for ADME and Toxicological Behavior 364 Michael B. Bolger, Robert Fraczkiewicz and Boyd Steere 1 In Silico Surrogates for In Vivo Properties 364 1.1 Molecular Descriptor Generation 365 1.2 Modeling Methods 366 1.3 Multiple Linear Regression 366 1.4 Partial Least Squares 367 1.5 Artificial Neural Network 367 1.6 Support Vector Machines 368 2 Estimation of Biopharmaceutical Properties 369 2.1 Partition Coefficient 369 2.2 pKa 369 2.3 Permeability 374 2.4 Solubility 374 2.5 Protein Binding 376 3 Estimation of Pharmacokinetic Properties 377 3.1 Clearance 377 3.2 Volume of Distribution 377 3.3 Metabolism 378 4 Estimation of Toxicological Properties 379 5 Integration of Surrogate Data and Estimations with Physiological Simulation 380 References 381 Chapter 17 Uses of High Content Screening in Chemical Optimization 386 Francesca Casano, Zhuyin Li and Tina Garyantes 1 Introduction 386 2 When is HCS Used 387 3 HCS Systems 388 3.1 Limitations of HCS 388 3.2 How to Pick an HCS System 389 Contents xxi4 Examples Show the Power of HCS 390 4.1 Example 1: NF-kB Nuclear Translocation Assay (from Prelux) 390 4.2 Example 2: Characterization of Apoptosis Pathways Using High-Throughput Image-Based Assays (from Prelux) 394 4.3 Example 3: Gap Junction Inhibitors (from sanofi-aventis) 400 5 Summary 402 References 404 Subject Index absorbance, 322 absorption, 339, 365 gastrointestinal, 375 ACAT model, see model, advanced compartmental absorption and transit acceptor hydrogen-bond, 374 ACP, see acyl carrier protein activity mitochondrial, 355 actuator piezo, 225 acyl carrier protein, 60 adenosine monophosphate cyclic, 325 adenosine receptor ligands, 131 adenylate cyclase, 325 ADME, 318, 348, 349 aequorin, 326 AFM, see atomic force microscopy agonist, 325 air gap trailing (TAG), 220 albumin human serum, 353 aliquot liquid, 213 microliter, nanoliter, 215, 219 alkaline phosphatase, 298 allophycocyanin, 242 alphascreen, see assay, amplified luminescent proximity homogeneous Ames, 379 aminotransferase, 63, 75 analysis FACS, 253 fluorescence intensity distribution (FIDA), 208, 238, 326 maximum redundancy (MRA), 367 principal component (PCA), 148, 150, 165, 367 sensitivity, 365 analytics LC/MS/MS, 222 angiogenesis, 254 angiotensin-II receptor antagonists microwave synthesis, 36 anisotropy fluorescence, 208, 233 ANN, see network, artificial neural annotation, 124, 129 antagonist, see also G-protein coupled receptor cholecystokinin, 172 urotensin-II receptor, 195 antibiotic, 306 antibody, 226, 297, 298, 300 antioxidant, 239 apoptosis, 328, 390, 394, 395, 397–400 aptamer, 101 aromatase, 75 array, 225, 230 cell-binding, 305 cell-signalling, 302 chemical-detection, 303 drug discovery, 305 glycoconjugated, 294 monosaccharide, 303 oligosaccharide, 294 polysaccharide, 294 protein-binding, 302 SPOT, 293 arrest cell cycle, 390 aspiration, 216 assay Subject Indexamplified luminescent proximity homogeneous, 238, 239 binding, 295 cell-based, 327 cell-binding, 296, 299 colorimetric, 206, 207 fluorescence, 207, 252 homogeneous, 206, 236 kinase, 297 microfluidic, 229 microtiter plate-based, 209 optical, 206 parallel artificial membrane permeation (PAMPA), 350 peptidase, 297, 303 radioactive, 206 reporter-based, 250, 255, 256, 326 scintillation proximity (SPA), 326, 328, 329, 331 asthma, 390 atomic force microscopy (AFM), 299 augmented atoms, 143 autofluorescence, 244 automated synthesis, 19, 21, 23 automation, 315, 320 autoradiography, 297 background fluorescence, 208 baculovirus, 248 BCS, see classification system, biopharmacutical BCUT parameters, 128 β-cyclodextrin chromatography column, 42 bead, 230, 291 bead array, 294, 295, 301 benzodiazepine, 172 library, 97 β-galactosidase, 236, 251, 258, 259 Biginelli condensation sonochemical, 39 bilayer lipid, 340 membrane, 339 binary descriptors, 139 binding conformation, 188 energy, 371 plasma protein, 376, 377 protein, 353 radioligand, 356 site, ATP, 329 binning, 142, 153 biocatalysis sonochemistry, 40 biochip, 304 biological space, 169 biologically active molecules, synthesis, 7, 12, 19 biomarker, 304, 356 biosynthesis combinatorial, 57, 67, 77 engineered, 57, 60, 65, 84 erythromycin, 62 lovastatin, 70, 71 natural products, 57 precursor-directed, 68, 80 tyllosin, 62 β-lactamase, 251, 253, 254, 255 blood-brain barrier, 126 bond rotatable, 338 bowel disease inflammatory, 390 BRET, see energy transfer, bioluminescence resonance CADD, see computer-assisted drug design calcium intracellular, 256, 325, 326, 332 calmodulin, 302 caloporoside sonochemical synthesis, 40 camera charge-coupled device (CCD), 297, 298, 322 cAMP, see adenosine monophosphate, cyclic capacity binding, 353 406 Subject Indexcapillary pump, 227 carbohydrates sonochemical synthesis, 40 carcinogen, 380 cardiotoxicity, 356 caspase, 395–399 caspase-3, 355 caspase-7, 355 CAT, see transferase, chloramphenicol acetyl catch-and-release, 5, 19, 26, 27 CAVEAT, 192 cavitation, 37 CCD Camera, see camera, charge-coupled device cell antigen-presenting, 302 apoptotic, 395, 398 Caco-2, 349, 350 chinese hamster ovary (CHO), 248, 250 epithelial, 339 Mandin Darby Canine Kidney (MDCK), 349 viability, 355 cell cycle, 328 cell death programmed, 394 centrifugation, 209, 223 CFP, see protein, cyan fluorescent cGMP, see guanine monophosphate, cyclic chemical shift, 267, 273, 274, 280, 283 chemical shift dispersion, 267 chemical shift mapping, 273 chemical space, 169 chemiluminescence, 239 chemistry combinatorial, 336, 338 medicinal, 337, 358 microwave-enhanced, 34–37 chemotaxis, 390 cherry picking, 212 chips microfluidic, 204 chloramphenicol, 251 CHO, see cell, chinese hamster ovary chromatography fluorous, 42 classification system biopharmaceutical (BCS), 374, 375 clearance, 352, 357 click chemistry, 103 cLogP, 126 clustering, 152, 153, 165 CMV, see virus, cytomegalo coefficient lipophilicity, 338 partition, 338, 369 combinatorial biosynthesis, 57, 67, 77 combinatorial chemistry, 163 dynamic, 103 combinatorial library one-bead-one-compound (OBOC), 185, 291, 294, 297–302, 305, 306 combinatorial synthesis, 14 COMET, see consortium for metabonomic toxicology CoMFA, see comparative molecular field analysis Committee for Proprietary Medicinal Products (CPMP), 356 common ion effect, 344 communication cell-to-cell, 390, 400, 401 comparative molecular field analysis (CoMFA), 145 complementation enzyme fragment, 235, 258 compound acquistion, 132 compound fingerprint, 119 compound selection, 119 computer-assisted drug design (CADD), 165 concavalin A, 303 condensation nuclear, 397, 399 conformational constraint, 188 conformational flexibility, 188 conjugate, 302 conjugation, 351 Subject Index 407consortium for metabonomic toxicology (COMET), 353 constant dissociation, 340, 353 ionization, 343, 365 consumption ATP, 330 contract research organization (CRO), 357 cooperative research and development agreement (CRADA), 380 correlation spectroscopy fluorescence, 238 correlation time, 271 coumarin, 297 counterion, 344, 346, 347 CPMP, see committee, for Proprietary Medicinal Products CRADA, see cooperative research and development agreement CRE, see responsive element, cAMP CRIPT, see polarization transfer, crossrelaxation-induced CRO, see contract research organization cross-relaxation, 271 cyclase, 75 cyclic peptide, 285 cyclin-dependent kinase-2 (CDK-2) inhibitors, 177 cyclization scan, 188, 189 cytochrome C release, 395, 396, 398, 399 cytochrome P450, 317, 318, 351, 378, 379 cytokine, 174 cytotoxicity, 319, 354, 355, 357, 387 database filtering, 119 DEBS (6-deoxyerythronolide-B synthase), 62, 63 deconvolution, 44, 117, 164, 186 dehydratase, 61 dehydrogenase lactate, 355 DELFIA, see fluoroimmunoassay, dissociation-enhanced lanthanide density optical, 206 depository Smart Compound, 213, 214 descriptor, 122, 128, 137, 139, 144 2-dimensional, 143 3-dimensional, 145 atomic, 371, 373 binary, 138, 142 continuous, 138 electronic, 375 entropy, 147 field, 145 geometric, 375 molecular, 143, 170, 365, 366 physicochemical, 146 quantum-mechanical, 371 selection, 146 topological, 143, 375, 376 descriptor space, 138, 140 design combinatorial synthetic, 168 D-optimal, 142, 143, 154 experimental, 154 ligand-based, 192 poduct-based, 155 random vs. rational, 155 reagent-based, 155 scaffold, 168 target-oriented library, 168 detection electrochemical biosensor, 299 fluorescence, 208, 225 laser, 299 detection methods, see screening methods device piezo-driven, 225 DFM, see mean, deviation from diffusion molecular, 267 spin, 270 dihydropteridine library microwave-assisted fluorous phase, 48 408 Subject Indexdimensionality reduction, 147 dimethyl sulfoxide (DMSO), 205, 206, 210, 211, 212, 219–222, 322, 345 dispensing, 216 acoustic wave, 322 low-volume, 209 dissimilarity, 138, 140 distribution, 365 volume of, 377 diversity, 100, 113, 119, 163, 167 diversity analysis, 137, 147, 152 diversity metrics, see metrics DMPK, 353 DMSO, see dimethyl sulfoxide domain catalytic, 329 ligand binding, 327 domain engineering, 64, 67 donor hydrogen-bond, 374 D-optimal design, 142, 143, 154 DOS, see synthesis, diversity-oriented dPSA, see polar surface area, dynamic drug discovery, 315 drugability, 357 drug-like definitions, 125, 130, 265 duodenum, 346 dye fluorescent, 226 EBV, see virus, Epstein-Barr EFC, see complementation, enzyme fragment efficacy, 387 eigenvector, 148 electrophoresis capillary, 341 electrophysiology patch-clamp, 331 encoding library, 294 energy transfer bioluminescence resonance (BRET), 241, 242, 243, 257–259 fluorescence resonance (FRET), 208, 239, 241, 243, 244, 253, 257–259, 296, 326, 328 resonance, 257, 258 time-resolved fluorescence resonance (DELFIA), 331 enoylreductase, 61 EPA, 379 epitope mapping, 301 epothilone biosynthesis, 68 epothilone C synthesis, 10, 11 erythromycin biosynthesis, 62 synthase, 63 europium, 242, 243 evaporation, 204, 226 excretion, 365 experiments high-throughput, 203 extraction solid-phase (SPE), 5 three-phase liquid, 41 FA, see anisotropy, fluorescence factor analysis, 149 false positives, 273 FCS, see spectroscopy, fluorescence correllation FDA (Federal Drug Adminstration), 379, 380 FI, see intensity, fluorescence FIDA, see analysis, fluorescence intensity distribution fingerprint compound, 119 molecular, 167 pharmacophoric, 167 FLIPR, see plate reader, fluorescence imaging flow systems, 23 flow-through synthesis, 23 FLT, see measurements, fluorescence lifetime Fluid gastrointestinal, 346–348 Subject Index 409FLUO-3, 256 FLUO-4, 256 FluoMar, 43 fluorescein, 222 fluorescence, 234, 236, 237, 242, 244, 322, 328, 387, 391, 394, 403 correlation, 296 intensity, 391, 400, 402 laser-induced, 296 polarization, 296 time-resolved, 208, 296, 330 fluorescence energy transfer homogeneous time-resolved (HTRF), 234, 235, 241, 244, 296, 326, 330, 331 fluoricity, 41 fluorinated compounds, 41 fluoroimmunoassay dissociation-enhanced lanthanide (DELFIA), 234, 235, 242, 330 fluorophore, 207, 208 fluorous mixture synthesis (FMS), 44ff fluorous phase chemistry, 40–47 microwave-enhanced, 46 fluorous silica, 41 fluorous solid-phase extraction (F-SPE), 42 fluorous tag, 41, 44, 46 FMS, see fluorous mixture synthesis FP, see polarization, fluorescence fragmentation, 395–398 fragment-based screening, 265 FRET, see energy transfer, fluorescence resonance F-SPE, see fluorous solid-phase extraction gallbladder, 346 gap junction, 400–402 gastrointestinal tract, 339, 345, 346 gene expression, 248, 390 genomics, 352 genotoxicity, 354 GFP, see protein, green fluorescent GI tract, see gastrointestinal tract glass slides, 293, 297 glycoprotein, 304 glycotransferase, 63, 75 gold-conjugation, 298 GPCR, see receptors, G proteincoupled G-protein coupled receptors, 170, 173, 285 antagonist, 100, 101, 196 guanine monophosphate cyclic, 325 guanylate cyclase, 325 HCS, see screening, high-content HCV, see virus, hepatitis C Heck coupling microwave-assisted fluorous phase, 47 microwave-enhanced, 35 sonochemical, 38 hepatocytes, 350, 351, 355 cryopreserved, 351 hepatotoxicity, 354–356 hERG, 331, 332, 355, 356 heterocycle synthesis sonochemical, 39 high-density well plates, 203, 204 high-throughput chemistry fluorous applications, 46 histone deacetylase (HDAc) inhibitors synthesis, 22 hit rate, 163 hit validation, 164 HIV protease inhibitors microwave synthesis, 35, 36 Hoechst 33342, 391, 393, 397, 400 Hormone binding, 327 dimerization, 327 HTRF, see fluorescence energy transfer, homogeneous time-resolved HTS, see screening, high throughput IdMOC, see system, integrated discrete multiorgan cell culture images fluorescence, 208 410 Subject Indeximaging cellular fluorescent, 248 imaging technology digital fluorescence microscopy, 401 immune response, 390 immunoassay sandwich, 228 index topological, 365 inducer, 250 induction cytochrome P450, 318, 351 inhibitor allosteric, 329, 331 inhibitor ATP-competitive, 329 cyclin-dependent kinase-2 (CDK2), 177 peptidase, 99, 101 phosphodiesterase-4 (PDE-4), 165 protein kinase, 329 thrombin, 193, 194 integrin, 194, 197, 285, 287 intellectual property (IP), 117, 133 intensity fluorescence, 208, 228, 233, 236, 239 interaction drug-drug, 319, 352 ligand, 324 ligand receptor, 325 protein-protein, 302 internalisation receptor, 390 intestine small, 346, 348 ion channel ligand-gated, 331 ion channel voltage-gated, 332 ionization, 365 ionization potential , 371 IP, see intellectual property IRORI radiofrequency tagged system, 291 Isomap, see isometric feature mapping isometric feature mapping (Isomap), 150, 151 isotope NMR active, 268 Jarvis-Patrick clustering, 152 ketoreductase, 61 ketosynthase, 58, 81 kinase assays, 297 janus (JAK), 174 library, 174 protein, 236, 328, 329 labeling methods, 296 lanthanide, 242 laser desorption/ionisation matrix-assisted (MALDI), 222, 223 latrunculin library, 175, 176 lead discovery, 315 lead identification microarrays, 300 lead optimisation microarrays, 300 lead-hopping, 123, 129 liability, 327, 337, 357 library annotation, 124 aptamer, 101 benzodiazepine, 97 combinatorial, 91, 117, 291, 294, 297, 300 deletion, 187 design, 91, 163ff discovery, 96 drug-like, 170 encoding, 294 19F-containing, 272, 280 focused, 96, 163, 170 GPCR-targeted, 173 heterocyclic/small molecule, 293, 302 high-throughput screening (HTS), 211 hit-to-lead, 177 Subject Index 411kinase inhibitor, 100, 174 large-mixture, 163 latrunculin, 175, 176 lead-finding, 165 lead-like, 102 natural product, 103, 104 natural product-like, 168, 174 NMR screening, 270, 282 non-proprietary, 115 NP-complete, 93 oligocarbamate, 94–96 oligonucleotide, 94, 101 oligophosphate, 95, 96 parallel, 117 peptide, 92–93, 101, 185 peptoid, 94, 95 privileged scaffold, 96 prospecting, 96, 168 providers, 118 random, 96 shared-pool, 115 singleton, 165 sonochemical synthesis, 40 sparse, 117 synthesis, 4, 12, 20, 23, 27 target class, 100, 172 targeted chemical, 386 targeted, non-targeted, 115 truncation, 187 virtual, 117, 128 lifetime, 233 lifetime fluorescence, 234, 240 ligand 19F-containing, 272, 277, 278 ligand-based design, 192 ligands µ-opiate receptor, 178 linker fluorous, 42, 43 safety-catch, 105 traceless, 43 Lipinski’s “rule of five”, 96, 102, 126, 170, 184, 265, 274, 337, 374, 380 lipophilicity, 365, 374 liquid handling, 203, 208, 215, 217 liver, perfusion, 350 slices, 350, 351 loading module, 61 localization sub-cellular, 389, 390 Log BB, 126, 127 Lonapalene sonochemical synthesis, 40 lovastatin biosynthesis, 70 luciferase, 251, 252, 328 firefly, 253 Renilla (Rluc), 241, 252 lumazine, 278 luminescence, 330, 387 MALDI, see Laser desorption/ionisation, matrix assisted mappicine library fluorous mixture synthesis, 44, 45 mass spectroscopy surface-enhanced laser desorption/ionisation (SELDI-MS), 298, 299 mass spectroscopy, 294, 299 MDS, see multidimensional scaling mean deviation from (DFM), 217, 220, 221 measurement fluorescence lifetime, 208 ion flux membrane potential, 356 medicine, clinical, 304 personalized, 304 megasynthases, 61, 63 membrane biological, 339 outer mitochondrial, 395 metabolism, 318, 350, 365, 377, 378 in vitro, 338, 350, 351 microsomal, 351 Phase I, 351 Phase II, 351 metabonomics, 352 412 Subject Indexmethod quantum mechanical, 365 methyltransferase, 63, 75 metrics cell-based, 140, 153 distance-based, 138 diversity, 138 variance-based, 142 Michaelis-Menten kinetics, 348, 352 microarray, 203, 204, 210, 217, 226, 291–293, 297, 298, 304 applications, 300 bead arrays, 294, 301 carbohydrate, 293, 294, 301–305 cell-binding, 305 cell-signaling, 302 chemical, 291, 295, 300–302, 305 chemical-detection, 303 comparison, 301 diagnostic, 304 DNA, 291, 304 drug discovery, 305 enzyme substrate/inhibitor, 303 immunological, 304 non-peptide, 293 oligonucleotide, 303 peptide, 300, 301, 302, 305 peptide/peptoid, 292, 302 planar, 292, 293, 295,300, 301 preparation, 291 protein-binding, 301 screening, 295 small-molecule, 292, 305 spatially adressable, 291, 301 spatially separable, 291, 294 SPOT, 293, 297 microconstant, 370 microdissociation, 341 microfabrication, 230 microfluidics, 210, 217 microscopy atomic force, 299 confocal, 239, 389, 393 fluorescent, 388, 389 microsome, 350, 351 microtubes, 210 microwave synthesis, 14 microwave-enhanced chemistry, 14, 34–37 mimotope, 92 miniaturization, 203, 209, 215, 224, 229, 320 mitochondria, 395 mixture chemical, 367 MLR, see regression, multiple linear model Advanced Compartmental Absorption and Transit (ACAT), 381 predictive, 368 modelling in silico, 377 modulation-phase, 240 modulator selective androgen receptor (SARM), 328 module engineering, 66 molecular dynamics ensemble, 196 molecular fingerprint, 144, 150 morphology, 396, 397, 402 MRA, see analysis, maximum redundancy MSAR, see relationship, multiparameter structure activity MTS, 355 multidimensional scaling (MDS), 149 multidispensing, 215 multiplexing, 226 murisolin library fluorous mixture synthesis, 45 mutagenicity, 379 natural products “unnatural”, 57 biosynthesis, 57 fluorous mixture synthesis, 45 polyketide, 58 synthesis, 10 NCE, see new chemical entity Subject Index 413network artificial neural (ANN), 367–369, 376, 377 neuraminic acid analogues sonochemical synthesis, 39 neurotoxicity, 356 new chemical entity (NCE), 112, 336, 354, 358 NF-κB, 390, 391, 394 NMR, see resonance, nuclear magnetic NOE, see nuclear Overhauser effect nuclear Overhauser effect, 266, 267, 270 OBOC, see one-bead-one-compound oblique-incidence optical reflectivity difference (OI-RD), 298 OD, see density, optical OI-RD, see difference, oblique-incidence optical reflectivity oncogenesis, 390 one-bead-one-compound (OBOC) combinatorial library, 185, 291, 294, 297–302, 305, 306 organometallic sonochemistry, 38 output fluorescence, 233 oxygenase, 75 PAMPA, see assay, parallel artificial membrane permeation parallelization, 229 partition coefficient, 378 partitioning, 153, 154 PASP, see synthesis, polymer-assisted solution phase pathway signalling, 250 PCA, see principle component analysis PDMS, see poly(dimethyl)siloxane peptidase inhibitors synthesis, 15–18 peptide scan, 185 peptide secondary structure, 190 peptide synthesis fluorous capping reagents, 46 peptides, 184ff peptidomimetics, 293 peptoid, 94, 158, 292, 293 peptoid nucleic acids, 293 perceptron multi-layer, 368 perfluorinated compounds, 41 pericyclic reactions sonochemical, 39 permeability, 339, 340, 348, 350, 374, 375 CNS, 339 paracellular, 340, 349, 350 transcellular, 340, 349, 350 P-glycoprotein (PgP), 349 PgP, see P-glycoprotein pH, 347–349 phage display, 185 pharmacokinetics, 352, 364 pharmacophore 3-center, 122 analysis, 119, 120, 123 definition, 170 features, 193 model, 185, 186, 192, 193 space, 113 thrombin, 193 phosholipase C, 325 phosphatase secreted placental alkaline (SEAP), 251, 294 phosphatidylinositol-3-kinase, 325 phosphodiesterase, 325 phosphoimager, 297 phosphorylation, 303 phosphotyrosine, 282 photobleaching, 208 photon-counting, 240 pin printer, 225 pins synthesis, 91 pipetting low-volume, 209 384-well parallel, 220 parallel, 215 pKa, 340, 342, 369 PKS, see polyketide synthase 414 Subject Indexplate 384-well, 401, 402 plate formats, 133 plate reader fluorescence imaging (FLIPR), 255 plates 1536-well, 204, 207, 209, 215, 219, 243, 255–256 384-microtubes, 210, 213, 214 384-well, 204–207, 209, 210, 212, 215, 219, 252, 255, 322, 388, 400–402 96-well, 207, 212, 213, 230, 321 high-density, 209, 210, 215, 217 microfluidic well, 223 polar surface area (PSA) dynamic (dPSA), 127 topological (tPSA), 126, 127, 170 polarization fluorescence, 208, 234–237, 296, 322, 326, 328, 330 immobilized metal ion affinity-based (IMAP), 331 polarization transfer cross-relaxation-induced (CRIPT), 268 poly(dimethyl)siloxane (PDMS), 227 polyketide aromatic, 72 assembly, 58 polyketide synthase (PKS) bacterial, 81 chimeric, 64, 67 fungal, 70 plant, 81 primer unit, 68, 78 Type I, 58, 60 Type II, 72, 74 Type III, 81, 82 polymer-assisted solution phase (PASP) synthesis, 4, 7, 19 polysporin synthesis, 13 portion mixing, 185 positional scanning, 186 potency, 337 potential pharmacophore point (PPP), 145 PPAR, see receptor, peroxisome proliferator-activated PPP, see potential pharmacophore point precision, 217, 218, 222 prediction in silico, 364, 371 principle component analysis (PCA), 146, 148, 165, 367 privileged structures, 172 process drug discovery, 203 processing parallel, 203 product solubility, 344 profile toxicology, 338 profiling, 317, 322, 338, 341, 357, 358 property in vivo, 364 pharmaceutical, 357 pharmacokinetic, 337, 338 physicochemical, 337 property space, 142, 153 prospecting library, 96 protecting group fluorous, 44 protein cyan fluorescent (CFP), 240, 257 gap junction, 400 green fluorescent (GFP), 241, 248, 251, 252, 257, 395–399 yellow fluorescent (YFP), 240, 257 protein folding, 304 protein structure similarity clustering (PSSC), 175 protein tyrosine phosphatase 1B NMR screening, 282 X-ray structure, 284 proteomics, 166, 222, 352 proteosome, 390 protonation, 341 PS, see resins, polystyrene PSA, see polar surface area Subject Index 415PSSC, see protein structure similarity clustering PTP1B, see protein tyrosine phosphatase 1B QSAR, see quantitative structure-activity relationship QT interval, 356 QT prolongation, 356 quantitative structure-activity relationship (QSAR), 147, 165 quantum yield, 233 quencher, 239, 241 radioisotope, 297 radioligand, 331 rate metabolic, 352 reaction multicomponent, 164 palladium-catalyzed, 35 phase-vanishing, 43 reactor flow-through, 24 readout fluorescence, 209 optical, 209 reagents fluorous, 42 polymer-supported, 4, 11, 23, 34 receptor µ-opiate, ligands, 178 adrenergic, 324 androgen, 327 classes 1, 2 and 3, 324 dopamine, 324 estrogen, 327 G protein-coupled, 100, 101, 196, 170, 173, 236, 247, 250, 251, 254, 255, 257, 258, 285, 306, 323, 325, 326, 329 glucocorticoid, 327 lectin, 302 mineralcorticoid, 327 monoamine, 324 nuclear, 323, 327 orphan, 324 peroxisome proliferator-activated (PPAR), 328 progesterone, 327 retinoid acid, 327 serotonin, 324 urotensin-II, 195 vitamin D, 327 recursive partitioning (RP), 153 reflectrometry, 296 regression linear, 366 multiple linear (MLR), 366 partial least square, 367 relationship linear free energy, 370, 371, 375 multiparameter structure activity (MSAR), 317, 332 quantitative structure property, 369–371, 373 structure liability (SLR), 317, 319, 332 structure-activity (SAR), 203, 282, 387, 388 structure-property, 366 relaxation, NMR, 266, 276 reporter gene expression, 251 reporter ligand, 276 resin macroporous, 6 resin Marshall, 43 resin Merrifield, 39 resin polystyrene (PS), 6 resin scavenger, 4, 25 resin Wang, 40 resolution, 388, 389, 394, 401 resonance nuclear magnetic (NMR), 195, 263–274, 276–278, 283, 284, 287, 352 surface plasmon (SPR), 296, 298 416 Subject IndexResofurin, 236 responsive element cAMP, 254 TPA, 254 RGD motif, 95, 96, 285 rheumatoid arthritis, 390 riboflavin synthase, 277, 278 Rluc, see Luciferase Renilla rosiglitazone synthesis, 8, 9 rotatable bonds, 170 RP, see recursive partitioning Rule-of-Five, see Lipinski’s “rule of five” Rule-of-Three, 102 S9 fraction, 351 Salmeterol synthesis, 9, 10 samples, liquid, 213 powder, 212 SAR, see structure-activity relationship SAR-by-NMR, 103, 274, 275, 282 SARM, see modulator, selective androgen receptor saturation transfer difference (STD), 268, 270, 285, 286 saturation transfer double difference (STDD), 277, 286, 287 scaffold decoration, 99 natural product, 103, 104 non-peptidic, 192 novel, 97 privileged, 97 scaling allometric, 352 scanning, 388, 393, 394 scavenger fluorous, 42, 43 scavenger polymer-supported, 4 screening competition-based, 275 fragment-based, 265, 266 high throughput (HTS), 203, 209, 211, 212, 214, 216–220, 233–235, 237, 240, 241, 247, 249, 251, 254–257, 259, 315, 316, 320, 332, 336, 338, 349, 350, 358, 386, 387 high-content (HCS), 208, 386–403 in silico, 128, 264, 265 protein phosphatase 1B, 282 riboflavin synthase, 277 ultra-high-throughput, 207, 215, 306 virtual, 128, 194, 336 screening methods, 292, 295 atomic force microscopy, 299 biosensor-based, 292, 299 cell-based, 300 chemiluminescence, 292, 297 colorimetric, 292, 296, 297 electrochemical, 292, 299 fiber-optic, 299 fluorescence, 292, 296 label-free optical, 298 laser detection, 299 mass spectrometric, 298 NMR-based, 263ff radioisotope, 292, 297 reflectivity-based, 298 SEAP, see phosphatase, secreted placental alkaline second messenger, 400 SELDI-MS, see mass spectrometry, surface-enhanced laser desorption/ionization selectivity, 322, 337, 338 sensitivity, 208 signal chemiluminescent, 236 fluorescent, 236 signal transduction peptide arrays, 302 sildenafil synthesis, 7 Similog keys, 144 singleton, 165 singular-value decomposition (SVD), 148 SLR, see relationship, structure liability Subject Index 417Society for Biomolecular Screening (SBS), 204, 215 solid-phase organic (SPOS) synthesis, 4 solubility, 343, 346–348, 350, 365, 374, 376 calculation of, 128 equilibrium, 345 intrinsic, 343 thermodynamic, 343, 345 sonochemistry, 37–40 in biocatalysis, 40 organometallic, 38 SPA, see assay, scintillation proximity space 3-dimensional, 92, 103 biological, 93, 169 chemical, 93, 169 conformational, 196 pharmacophore, 113 SPE, see extraction, solid-phase SPE, see stochastic proximity embedding specificity, 323, 324 spectroscopy fluorescence correlation (FCS), 208, 238 transverse relaxation-optimized (TROSY), 268 UV, 341 water-ligand observed via gradient, 271, 276, 287 spectrum 19F, 279–281 spin labels, paramagnetic, 276 split-and-mix synthesis concept, 93 SPOS, see synthesis, solid-phase organic SPOT, see synthesis, SPOT SPR, see resonance, surface plasmon stability protein, 304 state index atom-type electrotopological, 365 STD, see saturation transfer difference STDD, see saturation transfer double difference stochastic proximity embedding, 141, 150 storage automated, 212 storage conditions, 212 structural fragments, 144 structural similarity, 119 structure-activity relationship (SAR), 146, 147, 177, 186, 265, 274 subset classification, 151 substitution scan, 191 substructure key, 144 support vector machine (SVM), 368 surface area, 376 surface coating non-binding, 209 surface tension, 204, 225 surrogate, 337, 364 Suzuki coupling microwave-assisted fluorous phase, 47 microwave-enhanced, 35 sonochemical, 38 SVD, see singular-value decomposition SVM, see support vector machine synthesis angiotensin-II receptor antagonists, 36 automated, 19, 21, 23 biologically active molecules, 7, 12, 19 combinatorial, 14, 93 diversity-oriented, 168 epothilone C, 10, 11 flow-through, 23 histone deacetylase (HDAc) inhibitors, 22 in situ, 291, 293 IRORI, 291 library, 4, 12, 20, 23, 27 light-directed, 291, 293, 300 418 Subject Indexmicro-mirror device, 291 microwave, 14, 33ff natural products, 10 oligonucleotide, 293 parallel, 42, 291, 292, 306 peptidase inhibitors, 15–18, 35, 36 photolithographic, 291, 293 polymer-assisted solution phase (PASP), 4, 7, 19 polysporin, 13 rosiglitazone, 8, 9 salmeterol, 9, 10 sildenafil, 7 solid-phase organic (SPOS), 4, 34, 37, 42 solid-phase peptide, 293 split-and-mix, 93, 44, 117, 291, 293, 296, 306 SPOT, 185, 291–293, 301 Ultrasound, see sonochemistry Synthon ammonia, 43 system expression, 248 integrated discrete multiorgan cell culture (IdMOC), 357 microfluidic, 226 optical imaging, 231 TAG, see air gap trailing tagging fluorous, 44 Tanimoto coefficient, 119, 139, 167 TEER, see transepithelial electrical resistance testing hypothesis, 365 thioesterase, 61 thrombin inhibitor, 193, 194 titration acid-base, 341 TNF-a, see tumor necrosis factor-a toxicity, 327, 354, 356, 357, 365, 380, 386, 387, 390, 397 TPA, see responsive element, TPA tPSA, see polar surface area, topological trafficking protein, 304 training descriptor, 366 training set, 145, 366 transcription factor, 390, 397 transduction signal, 250, 302 transepithelial electrical resistance (TEER), 348 transfer fluorescence energy, 208 transferase chloramphenicol acetyl (CAT), 251 PKS-associated, 63 Translocation nuclear, 390, 391, 393, 394 protein, 391 TRF, see fluorescence, energy transfer TROSY, see spectroscopy, transverse relaxation-optimized trueness, 217, 222 tumor necrosis factor-a (TNF-a), 228, 390, 391 turn peptide: α-, β- & γ-, 190 tyrphostin, 174 ubiquitination, 390 Ugi reactions microwave-assisted fluorous phase, 47 uHTS, see screening, ultra-highthroughput ultrasound synthesis, see sonochemistry uretupamine, 302 Ussing chamber, 348 Veber filter, 127, 170 vector, 248 viability cell, 390 Subject Index 419420 Subject Index virus cytomegalo (CMV), 249 Epstein-Barr (EBV), 248 hepatitis C, 254 Herpes simplex, 249 viscosity, 225 WaterLOGSY, see spectroscopy, waterligand observed via gradient XL665, see allophycocyanin X-ray structure protein tyrosine phosphatase 1B, 284 YFP, see protein, yellow fluorescent Z’ factor, 218, 219
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Exploiting Chemical Diversity for Drug Discovery رابط مباشر لتنزيل كتاب Exploiting Chemical Diversity for Drug Discovery
|
|