Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Laser Processing of Materials - Fundamentals, Applications and Developments الجمعة 17 سبتمبر 2021, 1:37 pm | |
|
أخواني في الله أحضرت لكم كتاب Laser Processing of Materials Fundamentals, Applications and Developments With 110 Figures Peter Schaaf Editor
و المحتوى كما يلي :
Contents 1 Introduction 1 Peter Schaaf References . 3 2 Basics of Lasers and Laser Optics . 5 Michelle Shinn 2.1 Introduction . 5 2.2 Optical Processes 5 2.3 Time Dependence . 8 2.3.1 Q-Switching . 8 2.3.2 Mode-Locking 9 2.3.3 Ultrashort Pulse Generation 9 2.3.4 Harmonic Generation . 9 2.4 Free-Electron Lasers 10 2.5 Laser Optics . 12 2.5.1 Optical Propagation . 13 2.5.2 Sizing Optical Elements and Other Tricks of the Trade 14 2.5.3 Fiber Optics . 14 2.5.4 Managing Diffraction . 15 2.5.5 The Aspheric Lens Beamshaper . 15 2.5.6 Holographic Optical Elements . 16 2.5.7 Laser Damage . 17 2.5.8 Optical Modeling Software . 19 2.6 Conclusions . 19 References . 19 3 Fundamentals of Laser-Material Interactions 21 Ettore Carpene, Daniel Höche, and Peter Schaaf 3.1 Basic Considerations 21 3.2 Laser . 22 3.3 Heat in Solids: Electronic and Lattice Dynamics 23 viiviii Contents 3.4 Laser-Material Interactions . 27 3.4.1 Single Photon and Multi-Photon Processes . 27 3.4.2 Laser Reflection and Absorption . 28 3.4.3 Temperature Profiles 31 3.5 Phenomena Occurring on the Target Surface 35 3.5.1 Vaporization . 35 3.5.2 Recondensation . 36 3.5.3 Plasma Formation . 37 3.5.4 Laser Supported Absorption Waves 39 3.6 Material Transport Phenomena . 42 3.7 Conclusions . 44 References . 44 4 Laser–Plasma Interactions 49 Ion N. Mihailescu and Jörg Hermann 4.1 Introduction . 49 4.2 Fundamentals of Laser–Plasma Interaction 50 4.3 Processes in Nanosecond Laser–Plasma Interactions . 55 4.3.1 Laser-Induced Gas Breakdown 55 4.3.2 Plasma Shielding During Laser Material Processing . 59 4.3.3 Laser-Supported Absorption Waves . 63 4.3.4 Plasma Shutter for Optical Limitation . 66 4.4 Plasma Interactions with Femtosecond Laser Pulses 69 4.4.1 Laser Beam Filamentation . 69 4.4.2 Generation of XUV Radiation by Laser Plasma 75 4.4.3 Plasma Mirror . 80 4.5 Conclusion 83 References . 84 5 Laser Ablation and Thin Film Deposition 89 Christof W. Schneider and Thomas Lippert 5.1 Pulsed Laser Ablation . 89 5.2 Lasers Used for Laser Ablation 91 5.3 Initial Ablation Processes and Plume Formation 92 5.3.1 Femtosecond Laser Irradiation . 93 5.3.2 Nanosecond Laser Irradiation 93 5.4 Plume Expansion 94 5.4.1 Plume Expansion in Vacuum . 94 5.4.2 Plume Expansion into a Background Gas . 94 5.4.3 Imaging 95 5.4.4 Kinetic Energy of Plume Species 97 5.4.5 Thin Film Growth . 98Contents ix 5.5 Laser Ablation of Polymers 104 5.5.1 Ablation Mechanism 105 5.5.2 Polymer Film Ablation .106 5.5.3 Film Pattern Transfer .107 5.6 Conclusions .109 References .109 6 Processing with Ultrashort Laser Pulses 113 Jürgen Reif 6.1 Introduction and General Considerations 113 6.2 Laser-Material Coupling 114 6.2.1 Nonlinear Absorption .115 6.2.2 Hot Electron Generation 116 6.2.3 Incubation .116 6.2.4 Resolution Below the Diffraction Limit .117 6.3 Dissipation Dynamics .118 6.3.1 Dissipation Channels .118 6.3.2 Transient Material Modification .118 6.4 Desorption/Ablation 120 6.4.1 Concept 120 6.4.2 Applications .120 6.5 3-D Bulk Modifications, Waveguide Writing 122 6.5.1 Bulk Structuring, Waveguide Writing .123 6.5.2 Multiphoton Polymerization .123 6.6 Phase Transformation, Laser Annealing .124 6.7 Medical Applications .124 6.8 Nanostructures and Nanoparticles 124 6.9 Conclusions .126 References .126 7 Creating Nanostructures with Lasers 131 Paolo M. Ossi and Maria Dinescu 7.1 Introduction .132 7.2 Fundamentals 133 7.2.1 Plasma–Gas Interaction at Increasing Gas Pressure in ns PLD: Experiments and Modeling 133 7.2.2 Nanoparticle Synthesis .140 7.2.3 Controlled Deposition of 2D Nanoparticle Arrays: Self-Organization, Surface Topography, and Optical Properties 143 7.3 NP Formation in Femtosecond PLD: Experimental Results and Mechanisms 146 7.4 Applications .151 7.4.1 Direct Writing .152 7.4.2 Laser LIGA .152x Contents 7.4.3 Laser Etching .153 7.4.4 Pulsed Laser Deposition 154 7.4.5 Matrix-Assisted Pulsed Laser Evaporation (MAPLE) 160 7.4.6 Laser-Assisted Chemical Vapor Deposition (LA-CVD) 161 7.4.7 Lasers for MEMS (Micro-Electro-Mechanical Systems) .163 7.5 Concluding Remarks 163 References .165 8 Laser Micromachining 169 Jürgen Ihlemann 8.1 Basic Considerations 169 8.2 Processing Limits .169 8.3 Materials and Processes .171 8.3.1 Polymers 171 8.3.2 Glass .173 8.3.3 Ceramics 173 8.3.4 Metals .174 8.3.5 Layer Ablation 175 8.3.6 Indirect Ablation 176 8.4 Hole Drilling 178 8.5 Patterning of Thin Films 179 8.5.1 Dielectric Masks 179 8.5.2 Diffractive Optical Elements .180 8.6 Fabrication of Micro Optics and Micro Fluidics 181 8.6.1 Gratings .181 8.6.2 Micro Lenses 182 8.6.3 Micro Fluidics 183 8.7 Conclusions .184 References .185 9 Laser Processing Architecture for Improved Material Processing .189 Frank E. Livingston and Henry Helvajian 9.1 Laser Machining and Materials Processing 190 9.1.1 Introduction .190 9.1.2 Materials, Thermodynamic Properties, and Light/Matter Interaction .192 9.1.3 Photolytic Control: Conventional Approaches and Future Trends .193 9.1.4 Process Control .194 9.2 Laser Genotype Pulse Modulation Technique .196 9.2.1 Concept 196 9.2.2 Experimental Setup and Design 198 9.2.3 Performance Tests and Diagnostics 204Contents xi 9.3 Selected Applications .211 9.3.1 Photosensitive Glass Ceramics: A Candidate Protean Material Class 211 9.3.2 Nanostructured Perovskite Thin-Films 215 9.4 Summary and Perspective 219 9.4.1 Laser Genotype Process Integration .219 9.4.2 Pulse Script Database: A Public Domain Catalog for Materials Processing 221 References .222 Index . Index Ablation debris, 182 Ablation rate, 94, 169, 171, 172 Absorbing defects, 173 Absorption coefficient, 29, 53 Absorption length, 59 Absorption wave life-time, 63 Absorption wave propagation velocity, 65 Adiabatic coefficient, 39 Aerosols, 73 Aforementioned depolymerization, 106 Algorithm for pulse script generation, 195 Ammosov–Delone–Krainov (ADK) model, 53 Amplified spontaneous emission (ASE), 80 Angular broadening, 96 Angular distribution of the propagation, 94 Anti-chirped laser pulse, 72 Application specific integrated circuit, ASIC), 198 Arbitrary waveform signal generator (AWSG), 198 Aspheric lenses, 15 Atmospheric analyses, 73 Atomization, 149, 150 Attosecond pulses, 83 Attosecond radiation pulses, 80 AWSG flash memory board, 202 Background gas, 93 Background oxygen, 94 Backside wet etching, 176 Barium titanate (BaTiO3), 215 Basic physical processes, 21 Beam path, 14 Beam profile, 92 Beamshaper, 15 Beam splitter, 181 Bifurcations, 44 Bio-inspired synthetic pathways, 215 Blackbody spectrum, 148 Blast wave model, 95 Bragg reflectors, 182 Breakdown criterion, 56 Breakdown in hydrogen, 64 Breakdown modeling, 55 Breakdown threshold, 55 Breakdown threshold of gas, 68 Breakdown time, 67 Breakdown wave, 65 BreakdownWaveVelocity, 65 Bremsstrahlung, 77 Bulk solid lattice, 192 Bunch, 11 Bunch frequency, 11 Burst mode, 196 CA film, 145 CA materials, 140, 141 (CAM) software, 198 CAM system, 200 Carbonization, 104 Catalytic activation, 193 Cavity lengths, 11 Cavity Q, 8 Centre of mass velocity, 94 Centrosymmetric atomic structure, 79 Ceramic materials, 173 Characteristic times, 66 Chemical equilibrium, 98 Chirped pulse amplifier (CPA), 71 Clausius-Clapeyron equation, 31, 37 Cleaning, 80, 81 Cluster energy, 135 Cluster formation, 154 Cluster nucleation, 135 Cluster-assembled (CA), 132, 158 Clusters, 98 225226 Index Coalescence, 140, 144, 146, 148 Co-fabrication, 214 Coherence parameters, 180 Coherent molecular control process, 194 Coherent wake emission, 83 CO2 laser, 152 Colliding pulse amplification (CPA), 9 Collimating lens, 70 Collision, 96 Collisional and non-collisional processes, 52 Collisional heating, 132 Collisional sticking, 149, 150 Collision frequency, 52 Complete thermal equilibrium, 54 Complex stoichiometry, 154 Conductivity, 102 Conical emission, 72 Continuous wave (cw) mode, 22 Controlled cooling, 218 Controlled material transformation, 210 Controlled variation of the optical properties, 214 Convection, 42 Conventional laser direct-write processing, 216 Coulomb explosion, 93 Crack formation, 100 Cracking, 173 Critical density, 51, 64 Critical layer thickness, 104 Critical power, 71 Cr-masks, 179 Cumulative ablation, 162 Cut-off, 78 Damage, 17 2D-conducting interface layers, 103 Debye frequency, 25 Debye shielding length, 50 Debye temperature, 194 Defect-induced conductivity, 104 Defocusing, 79 Defocusing lens, 71 Delay generator, 69 Demultiplexers, 182 Deposition parameters, 102 Depth modulation, 180 Depth of focus (DOF), 170 Detonation wave, 65 Detrimental effects, 98 2D growth, 99 Diagnostic test, 204 Dielectric mask, 179 Dielectric mirrors, 179 Diffraction, 15 Diffractive optical elements (DOE), 15, 180 Diffractive phase elements, 180 Diffusion length, 57 Diffusion losses, 68 Diffusion model, 136 DiffusionLossCriterion, 57 Digitally scripted laser-induced phase conversion, 219 Digitally scripted laser processing, 198 Direct ablation of polymers, 106 Direct patterning, 105 Direct writing, 107, 152 Direct-write application, 194 Direct-write patterning, 211 Direct-write processing tool, 195 Dissolution kinetics, 212 Disturbance, 193 Divergence, 13 2D layering scheme, 194 Donor, 107 Drag model, 136 Drilling, 178 Droplets, 149 Drude model, 24 Drude’s model, 60 3D-vectored travel distance, 205 Dynamic release layer (DRL), 107 Dynamical restocking, 72 Edge curling, 175 Edge definition, 180 Effective collision frequency, 52 Effective temperature, 97 Ejection of droplets, 93 Electrical conductivity, 29 Electric field plane wave, 28 Electroacoustic transducer elements, 215 Electron avalanche process, 17 Electron bunch, 11 Electron diffusion, 57 Electron-electron, 23 Electron-electron scattering time, 25 Electron-electron thermalization, 24 Electron gas, 25 Electron-hole pair, 23 Electronic reconstruction, 103 Electronic relaxation, 93 Electronic temperature, 24, 25 Electronic thermalization, 24 Electron-lattice scattering, 24 Electron-phonon coupling, 25, 93 Debye sphere, 51Index 227 Electron-phonon interactions, 23 Electron scattering, 24 Electrostatic energy analyzer, 97 Electron’s trajectory, 11 Emission intensity profiles, 96 Energy growth rate, 55 Energy losses, 56 EO cell, 203 Epitaxial growth, 99 Erbium doped fiber amplifers (EDFA), 7 Evaporation, 31 Evaporation of nanoparticles, 63 Excimer lasers, 152 Excitation, 97 Excitation of electrons, 27 Expanding vapor plume, 36 Expansion, 35 Extinction coefficient, 28 Fast photography, 139, 143 Femtosecond laser, 152 Fermi energy, 24 Fermi liquid theory, 24 Fiber laser, 194 Fiber optics, 14 Filamentation, 50 Film growth, 90, 98 Fluence, 147, 148, 150 Fluorescent molecules, 184 Flux velocity, 136 Focal plane, 13 Focal volume, 63 Focussability, 22 Foturan, 211 Fragmentation, 150 Free-electron laser (FEL), 10, 76 Free energy, 192 Free energy of the film surface, 99 Free expansion, 134 Front side ablation, 175, 180 Fs ablation, 93, 132, 146 Fundamental physical processes, 44 Gain, 6 Galilean telescope, 15 Gaussian profile, 30 G-code, 201 Genotype-inspired, digitally scripted laser direct-write technique, 217 Genotype pulse script, 196 Geometrical optics, 13 Giant pulsing, 8 Gibbs energy, 191, 192 Glasses, 173 Global minimum energy state, 192 Grating, 181 Griem, 54 Group dispersion parameter, 72 Group velocity dispersion parameter, 70 Growth kinetic, 90 Growth modes, 99 Growth rate of electron energy, 52 Hagen-Rubens-equation, 29 Hardware control system, 203 Harmonic generation, 10, 80 H-code, 202 Heat-affected zone (HAZ), 151 Heat conduction, 29 Heat diffusion length, 59 Heat source, 21 Hemispherical shock wave, 95 Heterostructure, 103 HHG by plasma mirrors, 83 High angle annular dark field (HAADF), 103 High-energy particle accelerator, 76 High fidelity photon modulation, 216 High-order harmonic generation (HHG), 77 High-order harmonic generation efficiency, 79 High-order harmonics, 82 High-power pulsed laser, 159 Hole arrays, 179 Hole drilling, 178 Holographic optical elements (HOE), 15, 16 Hydrodynamic motion, 35 Hydrodynamic speed, 35 IB effect, 55 Images distances, 13 Imaging, 76, 95 Impact velocity, 142 Impurities, 61 Incubation effects, 193 Indirect ablation, 176 Indium-tin-oxide (ITO), 108 Inherent limitations, 196 Injection nozzles, 179 Integrated position synchronized output (PSO), 198 Intense laser, 39 Intra-pulse, 216 Inverse bremsstrahlung (IB), 52, 55, 93 Inversion, 22 Ion-damage, 103228 Index Ionic compensation mechanism, 104 Ionization, 140 Ionization avalanche, 61 Ionization channel, 75 Irradiance, 30 Island growth, 99 ITO patterning, 179 Keldysh parameter, 53 Kerr effect, 70, 81 Kerr lens mode-locking (KLM), 9 Kinetic energy, 97 Knudsen layer, 35, 94, 136 LaAlO3, 103 Laser, 22 Laser ablation, 151 Laser ablation systems, 91 Laser assisted chemical vapor deposition, 161 Laser assisted etching (LAE), 153 Laser beam filamentation, 69, 72 Laser damage, 17 Laser etching, 153 Laser fluence, 32 Laser-generated plasma, 132, 139, 150 Laser genotype pulse modulation processing, 196 Laser genotype pulse modulation technique, 191 Laser-induced breakdown, 63 Laser-induced breakdown spectroscopy (LIBS), 54 Laser-induced damage thresholds (LIDT), 18 Laser-induced forward transfer (LIFT), 105, 107 Laser-induced plasma, 92 Laser-induced X-ray plasma, 77 Laser LIGA, 152 Laser pulse script, 203, 209 Laser spot size, 30 Laser-supported absorption wave (LSAW), 38, 63 Laser-supported combustion wave (LSCW), 38 Laser-supported detonation wave (LSDW), 38 Laser supported radiation (LSR), 40 Laser-triggered lightning, 74 Latent heat, 30 Lattice dynamics, 23 Lattice temperature, 24, 26 Layer thickness, 100 Layer-by layer growth, 99 LIBDE, 177 LIBWE, 177 Light channelling, 170 Light detection and ranging (LIDAR), 73 Liquid-vapor interface, 35 Liquid-vapor phase transition, 31 Local phonon modes, 193 Local thermal equilibrium (LTE), 26, 54 Long duration contrasts, 80 Lorentz model, 28 Low background pressure, 95 Luminous ablation plume, 89 Machining of glass, 195 Mach number, 36 Marangoni convection, 43 Material preparation, 195 Material transport phenomena, 42 Matrix, 156 Matrix-assisted pulsed laser evaporation (MAPLE), 106, 160 Maxwell-Boltzmann distribution, 94 Maxwell’s equations, 70 M-code, 200, 202 Mechanical fragmentation, 132 MEH-PPV, 106 Melt ejection, 42 Melting depth, 33 MEMS, 163 Metallic nanoclusters, 156 Metals, 174 Metastable, non-equilibrium state, 192 Microcrater, 179 Microelectronic fabrication, 75 Micro fluidic devices, 183 Micro lenses, 182 Micromachining, 151, 169 Micro optical structures, 181 Mie absorption, 63 Misfit-dislocations, 100 Mixed model, 105 Mixed-propagation, 138 Mixed-propagation model, 141, 143, 145 Mn-plume species, 95 Mode-locking, 9 Model of mixed-propagation, 133 Model the laser ablation, 105 Modified diffusion model, 136 Modified drag model, 138 Modulation, 190 Modulation of photon flux, 195 Molecular collision time, 69 Molecular dynamics (MD) simulations, 147, 148Index 229 Moving focus, 71 Multihole pattern, 178 Multilayer stacks, 179 Multiphoton absorption, 53, 171 Multiphoton ionization, 55, 57, 71 Multiphoton ionization rate, 58 Multi-photon processes, 27 Multiple scattering, 94 Multistep attenuators, 212 N-photon transition probability, 27 Nano-particle formation, 93 Nanoparticles, 156, 211 Nanopearls, 160 Nano-structuring, 158 Nanotubes, 162 Nanowires, 159 National Ignition Facility (NIF), 7 Nature of the photon flux delivery, 195 Nd:YAG laser, 152 Neutral species, 98 Nitrification, 44 Noncollisional interaction, 78 Non-equilibrium velocity, 35 Nonlinear optics, 70 Nonlinear processes, 29 Nonlinear refractive index, 81 Non-thermal evaporation process, 99 Nozzle plates, 178 NP asymptotic size, 133, 141 NP formation, 133 NPs, 140 Nucleation, 98 Numerical aperture (NA), 170 Numerical control intermediate (NCI), 200 Optical absorption length, 29 Optical breakdown, 55, 68 Optical fiber, 183 Optical frequency doubling, 92 Optical penetration depth, 59 Optical reflectivity, 33 Optical resolution, 170 Optical transport system, 13 Organic light emitting diode (OLED), 108 Oscillating mirror model, 82 Oscilloscope traces, 208 Outcoupler, 6 Outcoupler mirror, 12 Outcoupling mirror, 6 Oxygen background, 96 Oxygen defects, 102 Partially ionized, 39 Partial pressure, 90 Particle cooling, 142 Pattern script, 201 Patterned maneuvers, 209 PEDOT:PSS, 106 Penning effect, 57 Percolated structure, 145 Perovskite thin-films, 215 Phase explosion, 150, 151 Phase transformations, 30, 216 Photochemical degradation, 104 Photochemical models, 105 Photoexposure, 211 Photoionization, 93, 132 Photoionization cross section, 53 Photomechanical spallation, 150 Photon absorption, 92 Photon bath, 71 Photon modulation, 193 Photophysical models, 105 Photophysical processes, 211 Photostructurable glass ceramic, 211 Photothermal models, 105 Photovoltaic cells, 179 Physical optics, 14 Piston effect, 39, 43 Pixel by pixel irradiation, 180 Planar waveguides, 181 Plasma, 37 Plasma-assisted ablation, 176 Plasma breakdown, 52 Plasma formation, 60 Plasma frequency, 28, 51 Plasma heating efficiency, 53 Plasma luminosity, 142 Plasma mirror, 81 Plasma oscillations, 51, 134 Plasma parameter, 50 Plasma shielding, 59 Plasma shutter, 68 Plasma’s optical thickness, 59 Plasma surface pressure, 41 Plasma temperature, 65 Plasmatron, 39 Plume dynamics, 95 Plume expansion, 94 Plume imaging, 67 Plume mass, 95 Plume sharpening, 134 Plume species, 97 Plume splitting, 134 PMMA, 156 Pockels cells, 80, 203230 Index Polarization-dependent crystallization, 198 Polyimide ablation, 207 Polymers, 104, 171 Polysilicon, 153 Ponderomotive potential, 52 Ponderomotive wave, 11 Postpulses, 80 Precision laser modulation techniques, 193 Preionization, 57 Prepulse, 80 Prepulse contrast, 81 Process Script, 201 Processing limits, 169 Propagation factor, 70 Propagation mechanism, 66 Protocols, 195 PSOCFG command, 202 PSO control, 204 PSO firing, 204 Pulse chirp, 70 Pulsed laser deposition (PLD), 89, 154 Pulsed mode, 22 Pulsed reactive crossed beam laser ablation (PRCLA), 90 Pulse modulation, 194 Pulse train, 194 Pyroelectric phase transformation, 198 Q - Switching, 8 Quasi-adiabatic initial expansion, 54 Quasi-transparent plasma, 71 Quiver energy, 52, 79 Radiofrequency, 158 Raman-active bands, 216 Rarefaction, 41 Raster patterning, 213 Reactive atmosphere, 37 Reactive pulsed laser deposition, 156 Rear side ablation, 175 Rear surface absorption, 173 Recoil pressure, 42 Recombination, 97 Recondensation, 36 Redeposition, 172 Reduce the kinetic energy, 94 Re-excitations, 97 Reflection and absorption, 28 Reflectivity, 29 Refraction, 10 Refractive index, 28, 70 Relativistic electrons, 75 Relaxation, 25 Relaxation mechanism, 100 Resistive bolometers, 215 Resonant cavities, 8 Resonator, 9 Retrodiffused emission, 72 Ripples, 35 Saha equation, 37 S-code, 202 “scratch-dig” values, 18 Screw dislocation, 100 Self-amplified stimulated emission (SASE), 7, 11 Self-focusing, 71 Self-guiding, 72 Self-phase modulation, 72 Semiconductor saturable-absorber mirror (SESAM), 196 Separation of the plume, 96 Shadowing, 144 Sharpening, 96 Shock wave, 41, 59, 63, 95, 134, 141 Shock wave model, 136 Silicon technology, 163 Silver islands, 144 SimpleBreakdownCriterion, 61 Single photon processes, 27 Single-walled nanohorns, 162 Single-walled nanotubes, 161 Site-selective and patterned micro- and nanoscale transformation, 215 Site-selective formation, 197 Slicing, 75 Software, 19 Software control system, 198 Soft X-ray lasers, 8 Solar cells, 178 Solidification, 32 Solid state laser, 22 Spectroscopic detection scheme, 195 Spherical lenses, 182 Spontaneous emission, 6 Square wave, 209 Stable shock wave front, 138 Stimulated emission, 22 Stopping distance, 95 Strain, 100 Structural conversion, 215 Structure resolution, 170 Sub-micron patterning, 182 Subtractive diffraction geometry, 72 Superconducting linear accelerator, 10Index 231 Superconducting radiofrequency (SRF) linac, 11 Supercritical density, 81 Supercritical plasma, 81 Supersaturation, 37, 99, 100 Surface debris, 172 Surface defects, 61 Surface plasmon resonance (SPR), 145 Surface reflectivity, 60 Surface relief, 180 Surface temperature profiles, 33 Surface tension, 42 Surface topography, 34 Synchronized-image-scanning (SIS), 183 Synchrotron radiation, 75 Tabletop, 76 Target surface, 35 Temperature profiles, 31 Temporal broadening, 72 Temporal dephasing, 72 Temporal profile, 194 Terrace width, 100 Thermal conductivity, 33 Thermal decomposition, 107 Thermal diffusion length, 29 Thermal pyroelectric detectors, 215 Thermal radiation, 38 Thermocapillary effect, 42 Thermodynamical critical temperature, 150 Thermodynamical equilibrium, 35 Thermoionic effect, 60 Thermopiles, 215 Thin film growth, 93 Thin film patterning, 179 Three-dimensional concentration mapping, 73 Three-step model, 79 Threshold condition, 6 Threshold fluence, 105 Threshold irradiance, 27 Threshold voltage, 104 THz radiation, 75 Time-bandwidth product, 9 Time dependence of laser, 8 Time of flight analysis, 106 Time-resolved photoemission experiments, 24 Titania, 160 Top hat, 43 Transfer precise patterns, 107 Transmitted fraction, 68 Tungsten oxide, 157 Tunneling ionization, 53, 79 Turbulence, 44, 135 Twinning, 100 Two-temperature model (TTM), 25 Ultrafast optical switches, 69 Ultrashort laser damage, 18 Vacuum conditions, 94 Vapor pressure, 31 Vaporization, 35, 93 Vaporization threshold, 59 Vaporization threshold of defect, 62 Vaporization threshold reduction, 62 Vaporization time, 67 Velocity compensation, 208 Viscosity, 137 Vlasov equation, 53 Voltage pulse, 209 Voltage pulse script, 203 Wavelength, 22 4! criterion, 14 White light LIDAR, 73 Wiggler, 11 X-ray emission, 81 X-ray emission spectrum, 78 X-ray imaging, 76 X-ray laser, 76 XUV-lithography, 75 XUV radiation, 75 XUV source, 76 Z-pinch, 76 Z-positioning, 170
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Laser Processing of Materials - Fundamentals, Applications and Developments رابط مباشر لتنزيل كتاب Laser Processing of Materials - Fundamentals, Applications and Developments
|
|