Admin مدير المنتدى
عدد المساهمات : 18994 التقييم : 35488 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Electromagnetic Waves, Materials, and Computation with MATLAB الجمعة 08 أكتوبر 2021, 10:39 pm | |
|
أخواني في الله أحضرت لكم كتاب Electromagnetic Waves, Materials, and Computation with MATLAB Dikshitulu K. Kalluri
و المحتوى كما يلي :
Contents Preface xiii Acknowledgments . xix Author xxi Selected.List.of.Symbols xxiii List.of.Book.Sources xxv Part I Electromagnetics of Bounded Simple Media 1 Electromagnetics of Simple Media 3 1.1. Introduction 3 1.2. Simple.Medium 4 1.3. Time-Domain.Electromagnetics 5 1.3.1. Radiation.by.an.Impulse.Current.Source 7 1.4. Time-Harmonic.Fields .9 1.5. Quasistatic.and.Static.Approximations 11 2 Electromagnetics of Simple Media: One-Dimensional Solution 13 2.1. Uniform.Plane.Waves.in.Sourceless.Medium.(ρV.=.0,.Jsource.=.0) . 13 2.2. Good.Conductor.Approximation 14 2.3. Uniform.Plane.Wave.in.a.Good.Conductor:.Skin.Effect 15 2.4. Boundary.Conditions.at.the.Interface.of.a.Perfect.Electric. Conductor with a Dielectric . 15 2.5. AC.Resistance . 16 2.6. AC.Resistance.of.Round.Wires 18 2.7. Voltage.and.Current.Harmonic.Waves:.Transmission.Lines . 19 2.8. Bounded.Transmission.Line .23 2.9. Electromagnetic.Wave.Polarization 25 2.10. Arbitrary.Direction.of.Propagation .26 2.11. Wave.Reflection 27 2.12. Incidence.of.p.Wave:.Parallel-Polarized 28 2.13. Incidence.of.s.Wave:.Perpendicular-Polarized 30 2.14. Critical.Angle.and.Surface.Wave . 31 2.15. One-Dimensional.Cylindrical.Wave.and.Bessel.Functions .33 References 39 3 Two-Dimensional Problems and Waveguides 41 3.1. Two-Dimensional.Solutions.in.Cartesian.Coordinates 41 3.2. TM mn.Modes.in.a.Rectangular.Waveguide .43 3.3. TE mn.Modes.in.a.Rectangular.Waveguide 46 3.4. Dominant.Mode.in.a.Rectangular.Waveguide:.TE10.Mode .48 3.5. Power.Flow.in.a.Waveguide:.TE10.Mode .49 3.6. Attenuation.of.TE10.Mode.due.to.Imperfect.Conductors.and . Dielectric Medium .49 3.7. Cylindrical.Waveguide:.TM.Modes 50vi Contents 3.8. Cylindrical.Waveguide:.TE.Modes 51 3.9. Sector.Waveguide . 52 3.10. Dielectric.Cylindrical.Waveguide—Optical.Fiber 53 References 56 4 Three-Dimensional Solutions 57 4.1. Rectangular.Cavity.with.PEC.Boundaries:.TM.Modes 57 4.2. Rectangular.Cavity.with.PEC.Boundaries:.TE.Modes .58 4.3. Q.of.a.Cavity .59 Reference 60 5 Spherical Waves and Applications . 61 5.1. Half-Integral.Bessel.Functions . 61 5.2. Solutions.of.Scalar.Helmholtz.Equation . 62 5.3. Vector.Helmholtz.Equation 64 5.4. TMr.Modes 65 5.5. TEr.Modes 66 5.6. Spherical.Cavity . 67 6 Laplace Equation: Static and Low-Frequency Approximations .71 6.1. One-Dimensional.Solutions .72 6.2. Two-Dimensional.Solutions .72 6.2.1. Cartesian.Coordinates 72 6.2.2. Circular.Cylindrical.Coordinates .78 6.3. Three-Dimensional.Solution 83 6.3.1. Cartesian.Coordinates 83 6.3.2. Cylindrical.Coordinates .84 6.3.3. Spherical.Coordinates 84 References 87 7 Miscellaneous Topics on Waves .89 7.1. Group.Velocity.vg .89 7.2. Green’s.Function .90 7.3. Network.Formulation 94 7.3.1. ABCD.Parameters .94 7.3.2. S.Parameters 97 7.4. Stop.Bands.of.a.Periodic.Media .99 7.5. Radiation . 102 7.5.1. Hertzian.Dipole . 105 7.5.2. Half-Wave.Dipole 106 7.5.3. Dipoles.of.Arbitrary.Length 108 7.5.4. Shaping.the.Radiation.Pattern 108 7.5.5. Antenna.Problem.as.a.Boundary.Value.Problem 109 7.5.6. Traveling.Wave.Antenna.and.Cerenkov.Radiation . 109 7.5.7. Small.Circular.Loop.Antenna . 110 7.5.8. Other.Practical.Radiating.Systems . 111 7.6. Scattering . 111 7.6.1. Cylindrical.Wave.Transformations 112 7.6.2. Calculation.of.Current.Induced.on.the.Cylinder . 112Contents vii 7.6.3. Scattering.Width . 114 7.7. Diffraction . 115 7.7.1. Magnetic.Current.and.Electric.Vector.Potential . 115 7.7.2. Far-Zone.Fields.and.Radiation.Intensity . 118 7.7.3. Elemental.Plane.Wave.Source.and.Radiation.Intensity 119 7.7.4. Diffraction.by.the.Circular.Hole . 120 References 122 Part II Electromagnetic Equations of Complex Media 8 Electromagnetic Modeling of Complex Materials 125 8.1. Volume.of.Electric.Dipoles 125 8.2. Frequency-Dependent.Dielectric.Constant 128 8.3. Modeling.of.Metals 130 8.4. Plasma.Medium . 131 8.5. Polarizability.of.Dielectrics 133 8.6. Mixing.Formula . 137 8.7. Good.Conductors.and.Semiconductors 138 8.8. Perfect.Conductors.and.Superconductors 140 8.9. Magnetic.Materials 147 References 152 9 Artificial Electromagnetic Materials . 153 9.1. Artificial.Dielectrics.and.Plasma.Simulation . 153 9.1.1. One-Dimensional.Artificial.Dielectric . 154 9.1.2. Experimental.Simulation.of.Loss-Free.Plasma.Medium 157 9.1.3. Experimental.Simulation.of.Lossy.Plasma.Medium . 158 9.1.4. Experimental.Simulation.of.Plasma.Using.Strip.Medium . 159 9.1.5. Experimental.Simulation.of.a.Warm.Plasma.Medium . 159 9.1.6. Comprehensive.Theory.of.Artificial.Dielectrics 160 9.2. Left-Handed.Materials 160 9.2.1. Electromagnetic.Properties.of.a.Left-Handed.Material 166 9.2.2. Boundary.Conditions,.Reflection,.and.Transmission 168 9.2.3. Artificial.Left-Handed.Materials 170 9.3. Chiral.Medium . 174 References 177 10 Waves in Isotropic Cold Plasma: Dispersive Medium 179 10.1. Basic.Equations . 179 10.2. Dielectric–Dielectric.Spatial.Boundary 182 10.3. Reflection.by.a.Plasma.Half-Space 185 10.4. Reflection.by.a.Plasma.Slab 187 10.5. Tunneling.of.Power.through.a.Plasma.Slab . 192 10.6. Inhomogeneous.Slab.Problem . 195 10.7. Periodic.Layers.of.Plasma . 196 10.8. Surface.Waves .200 10.9. Transient.Response.of.a.Plasma.Half-Space 204viii Contents 10.9.1. Isotropic.Plasma.Half-Space.s.Wave 204 10.9.2. Impulse.Response.of.Several.Other.Cases. . Including.Plasma.Slab 206 10.10. Solitons 206 References 206 11 Spatial Dispersion and Warm Plasma .209 11.1. Waves.in.a.Compressible.Gas .209 11.2. Waves.in.Warm.Plasma . 211 11.3. Constitutive.Relation.for.a.Lossy.Warm.Plasma . 215 11.4. Dielectric.Model.of.Warm.Loss-Free.Plasma . 217 11.5. Conductor.Model.of.Warm.Lossy.Plasma 218 11.6. Spatial.Dispersion.and.Nonlocal.Metal.Optics . 219 11.7. Technical.Definition.of.Plasma.State .220 11.7.1. Temperate.plasma .220 11.7.2. Debye.Length,.Collective.Behavior,.and. . Overall.Charge.Neutrality .220 11.7.3. Unneutralized.Plasma 221 References 221 12 Wave in Anisotropic Media and Magnetoplasma 223 12.1. Introduction 223 12.2. Basic.Field.Equations.for.a.Cold.Anisotropic.Plasma.Medium 223 12.3. One-Dimensional.Equations:.Longitudinal.Propagation.and. . L and R Waves 224 12.4. One-Dimensional.Equations:.Transverse.Propagation:.O.Wave 229 12.5. One-Dimensional.Solution:.Transverse.Propagation:.X.Wave 229 12.6. Dielectric.Tensor.of.a.Lossy.Magnetoplasma.Medium 234 12.7. Periodic.Layers.of.Magnetoplasma .235 12.8. Surface.Magnetoplasmons 235 12.9. Surface.Magnetoplasmons.in.Periodic.Media .236 12.10. Permeability.Tensor .236 References 236 13 Optical Waves in Anisotropic Crystals . 239 13.1. Wave.Propagation.in.a.Biaxial.Crystal.along.the.Principal.Axes . 239 13.2. Propagation.in.an.Arbitrary.Direction . 241 13.3. Propagation.in.an.Arbitrary.Direction:.Uniaxial.Crystal 243 13.4. k-Surface 244 13.5. Group.Velocity.as.a.Function.of.Polar.Angle . 246 13.6. Reflection.by.an.Anisotropic.Half-Space 249 References 250 14 Electromagnetics of Moving Media 251 14.1. Introduction 251 14.2. Snell’s.Law . 251 14.3. Galilean.Transformation .253 14.4. Lorentz.Transformation 257 14.5. Lorentz.Scalars,.Vectors,.and.Tensors .259Contents ix 14.6. Electromagnetic.Equations.in.Four-Dimensional.Space 262 14.7. Lorentz.Transformation.of.the.Electromagnetic.Fields 266 14.8. Frequency.Transformation.and.Phase.Invariance 266 14.9. Reflection.from.a.Moving.Mirror 267 14.10. Constitutive.Relations.for.a.Moving.Dielectric .272 14.11. Relativistic.Particle.Dynamics . 273 14.12. Transformation.of.Plasma.Parameters 275 14.13. Reflection.by.a.Moving.Plasma.Slab . 276 14.14. Brewster.Angle.and.Critical.Angle.for.Moving.Plasma.Medium 277 14.15. Bounded.Plasmas.Moving.Perpendicular.to.the.Plane. of.Incidence .277 14.16. Waveguide.Modes.of.Moving.Plasmas .277 14.17. Impulse.Response.of.a.Moving.Plasma.Medium . 278 References 278 Part III Electromagnetic Computation 15 Introduction and One-Dimensional Problems .283 15.1. Electromagnetic.Field.Problem:.Formulation.as.Differential. and Integral Equations 283 15.2. Discretization.and.Algebraic.Equations .286 15.3. One-Dimensional.Problems .286 15.3.1. Finite.Differences 287 15.3.2. Method.of.Weighted.Residuals .290 15.3.2.1. Collocation.(Point.Matching) . 291 15.3.2.2. Subdomain.Method 292 15.3.2.3. Galerkin’s.Method . 292 15.3.2.4. Method.of.Least.Squares 292 15.3.3. Moment.Method . 296 15.3.4. Finite-Element.Method 301 15.3.5. Variational.Principle .302 References 310 16 Two-Dimensional Problem . 311 16.1. Finite-Difference.Method . 311 16.2. Iterative.Solution 315 16.3. Finite-Element.Method 317 16.3.1. Two.Elements . 323 16.3.2. Global.and.Local.Nodes . 326 16.3.3. Standard.Area.Integral 330 16.4. FEM.for.Poisson’s.Equation.in.Two.Dimensions . 332 16.5. FEM.for.Homogeneous.Waveguide.Problem 336 16.5.1. Second-Order.Node-Based.Method .343 16.5.2. Vector.Finite.Elements 350 16.5.3. Fundamental.Matrices.for.Vector.Finite.Elements 355 16.5.4. Application.of.Vector.Finite.Elements.to.Homogeneous. Waveguide Problem .359 16.6. Characteristic.Impedance.of.a.Transmission.Line:.FEM . 362x Contents 16.7. Moment.Method:.Two-Dimensional.Problems .365 16.8. Moment.Method:.Scattering.Problem . 374 16.8.1. Formulation . 374 16.8.2. Solution . 376 References 380 17 Advanced Topics on Finite-Element Method 381 17.1. Node-.and.Edge-Based.FEM 381 17.2. Weak.Formulation.and.Weighted.Residual.Method 386 17.2.1. Weak.Form.of.the.Differential.Equation . 387 17.2.2. Galerkin.Formulation.of.the.WRM.Method:.Homogeneous. Waveguide Problem . 387 17.3. Inhomogeneous.Waveguide.Problem .390 17.3.1. Example.of.Inhomogeneous.Waveguide.Problem . 391 17.4. Open.Boundary,.Absorbing.Boundary,.Conditions,. . and Scattering Problem . 392 17.4.1. Boundary.Condition.of.the.Third.Kind 396 17.4.1.1. A.Simple.Example . 397 17.4.2. Example.of.Electromagnetic.Problems.with.Mixed.BC 400 17.5. The.3D.Problem 406 17.5.1. Volume.Coordinates .406 17.5.2. Functional 409 17.5.3. S,.T,.and.g.Matrices .409 17.5.4. 3D.Edge.Elements . 411 17.5.5. Higher-Order.Edge.Elements 411 References 412 18 Case Study Ridged Waveguide with Many Elements . 413 18.1. Homogenous.Ridged.Waveguide 413 18.1.1. Node-Based.FEM 415 18.1.2. Edge-Based.FEM . 417 18.1.3. Second-Order.Node-Based.FEM 419 18.1.4. HFSS.Simulation . 419 18.2. Inhomogeneous.Waveguide . 421 18.2.1. Loaded.Square.Waveguide 421 18.2.2. Inhomogeneous.Ridged.WG .423 19 Finite-Difference Time-Domain Method .429 19.1. Air-Transmission.Line .429 19.2. Finite-Difference.Time-Domain.Solution .430 19.3. Numerical.Dispersion .435 19.4. Waves.in.Inhomogeneous,.Nondispersive.Media:.FDTD.Solution 438 19.5. Waves.in.Inhomogeneous,.Dispersive.Media 441 19.6. Waves.in.Debye.Material:.FDTD.Solution 444 19.7. Stability.Limit.and.Courant.Condition .444 19.8. Open.Boundaries .445 19.9. Source.Excitation 446 19.10. Frequency.Response 446 References 448Contents xi 20 Finite-Difference Time-Domain Method Simulation of Electromagnetic Pulse Interaction with a Switched Plasma Slab 449 20.1. Introduction 449 20.2. Development.of.FDTD.equations 450 20.2.1. Total-Field.and.Scattered-Field.Formulation 451 20.2.2. Lattice.Truncation:.PML 453 20.2.3. FDTD.Formulation.for.an.R.Wave.in.a.Switched.Plasma.Slab 453 20.3. Interaction.of.a.Continuous.Wave.with.a.Switched.Plasma.Slab 454 20.4. Interaction.of.a.Pulsed.Wave.with.a.Switched.Plasma.Slab 455 References 460 21 Approximate Analytical Methods Based on Perturbation and Variational Techniques 461 21.1. Perturbation.of.a.Cavity 461 21.1.1. Theory.for.Cavity.Wall.Perturbations . 461 21.1.2. Cavity.Material.Perturbation 466 21.2. Variational.Techniques.and.Stationary.Formulas . 469 21.2.1. Rayleigh.Quotient .469 21.2.2. Variational.Formulation:.Scalar.Helmholtz.Equation . 470 21.2.3. Variational.Formulation:.Vector.Helmholtz.Equation 473 References 477 Part IV Appendices Appendix 1A: Vector Formulas and Coordinate Systems . 481 Appendix 1B: Retarded Potentials and Review of Potentials for the Static Cases 491 Appendix 1C: Poynting Theorem .499 Appendix 1D: Low-Frequency Approximation of Maxwell’s Equations R, L, C, and Memristor M . 501 Appendix 2A: AC Resistance of a Round Wire When the Skin Depth δ Is Comparable to the Radius a of the Wire .507 Appendix 2B: Transmission Lines: Power Calculation 511 Appendix 2C: Introduction to the Smith Chart . 515 Appendix 2D: Nonuniform Transmission lines 535 Appendix 4A: Calculation of Losses in a Good Conductor at High Frequencies: Surface Resistance RS .543 Appendix 6A: On Restricted Fourier Series Expansion 545 Appendix 7A: Two- and Three-Dimensional Green’s Functions .549 Appendix 9A: Experimental Simulation of a Warm-Plasma Medium .563 Appendix 9B: Wave Propagation in Chiral Media 571 Appendix 10A: Backscatter from a Plasma Plume due to Excitation of Surface Waves . 573xii Contents Appendix 10B: Classical Photon Theory of Electromagnetic Radiation 585 Appendix 10C: Photon Acceleration in a Time-Varying Medium . 591 Appendix 11A: Thin Film Reflection Properties of a Warm Isotropic Plasma Slab between Two Half-Space Dielectric Media . 613 Appendix 11B: The First-Order Coupled Differential Equations for Waves in Inhomogeneous Warm Magnetoplasmas 635 Appendix 11C: Waveguide Modes of a Warm Drifting Uniaxial Electron Plasma . 639 Appendix 12A: Faraday Rotation versus Natural Rotation 645 Appendix 12B: Ferrites and Permeability Tensor .649 Appendix 14A: Electromagnetic Wave Interaction with Moving Bounded Plasmas .653 Appendix 14B: Radiation Pressure Due to Plane Electromagnetic Waves Obliquely Incident on Moving Media 661 Appendix 14C: Reflection and Transmission of Electromagnetic Waves Obliquely Incident on a Relativistically Moving Uniaxial Plasma Slab . 667 Appendix 14D: Brewster Angle for a Plasma Medium Moving at a Relativistic Speed . 685 Appendix 14E: On Total Reflection of Electromagnetic Waves from Moving Plasmas 691 Appendix 14F: Interaction of Electromagnetic Waves with Bounded Plasmas Moving Perpendicular to the Plane of Incidence . 695 Appendix 16A: MATLAB Programs 705 Appendix 16B: Cotangent Formula 715 Appendix 16C: Neumann Boundary Conditions: FEM Method . 719 Appendix 16D: Standard Area Integral 727 Appendix 16E: Numerical Techniques in the Solution of Field Problems 733 Appendix 17A: The Problem of Field Singularities 747 Appendix 18A: Input Data .753 Appendix 18B: Main Programs . 769 Appendix 18C: Function Programs 773 Appendix 21A: Complex Poynting Theorem . 787 Part V Problems Problems #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Electromagnetic Waves, Materials, and Computation with MATLAB رابط مباشر لتنزيل كتاب Electromagnetic Waves, Materials, and Computation with MATLAB
|
|