Admin مدير المنتدى
عدد المساهمات : 18996 التقييم : 35494 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Fundamentals of Graphics Using MATLAB الخميس 21 أكتوبر 2021, 10:16 pm | |
|
أخواني في الله أحضرت لكم كتاب Fundamentals of Graphics Using MATLAB Ranjan Parekh
و المحتوى كما يلي :
Contents Preface, xi Author, xv Chapter 1 Interpolating Splines 1 1.1 INTRODUCTION 1 1.2 LINEAR SPLINE (STANDARD FORMS) 4 1.3 LINEAR SPLINE (PARAMETRIC FORM) 10 1.4 QUADRATIC SPLINE (STANDARD FORM) 13 1.5 QUADRATIC SPLINE (PARAMETRIC FORM) 15 1.6 CUBIC SPLINE (STANDARD FORM) 18 1.7 CUBIC SPLINE (PARAMETRIC FORM) 22 1.8 PIECEWISE SPLINES (STANDARD FORM) 25 1.9 PIECEWISE SPLINES (PARAMETRIC FORM) 31 1.10 CHAPTER SUMMARY 39 1.11 REVIEW QUESTIONS 39 1.12 PRACTICE PROBLEMS 40 Chapter 2 Blending Functions and Hybrid Splines 41 2.1 INTRODUCTION 41 2.2 BLENDING FUNCTIONS 41 2.3 BLENDING FUNCTIONS OF INTERPOLATING SPLINES 46 2.4 HERMITE SPLINE 52 2.5 CARDINAL SPLINE 57 2.6 CATMULL–ROM SPLINE 61 2.7 BEZIER SPLINE 63 2.8 SPLINE CONVERSIONS 69vi Contents 2.9 CHAPTER SUMMARY 74 2.10 REVIEW QUESTIONS 74 2.11 PRACTICE PROBLEMS 75 Chapter 3 Approximating Splines 77 3.1 INTRODUCTION 77 3.2 LINEAR UNIFORM B-SPLINE 78 3.3 CHANGING NUMBER OF CONTROL POINTS 88 3.4 QUADRATIC UNIFORM B-SPLINE 89 3.5 JUSTIFICATION FOR KNOT-VECTOR VALUES 102 3.6 QUADRATIC OPEN-UNIFORM B-SPLINE 105 3.7 QUADRATIC NON-UNIFORM B-SPLINE 108 3.8 CUBIC UNIFORM B-SPLINE 109 3.9 CHAPTER SUMMARY 131 3.10 REVIEW QUESTIONS 131 3.11 PRACTICE PROBLEMS 132 Chapter 4 2D Transformations 133 4.1 INTRODUCTION 133 4.2 HOMOGENEOUS COORDINATES 135 4.3 TRANSLATION 136 4.4 SCALING 138 4.5 ROTATION 140 4.6 FIXED-POINT SCALING 143 4.7 FIXED-POINT ROTATION 145 4.8 REFLECTION 147 4.9 FIXED-LINE REFLECTION 149 4.10 SHEAR 152 4.11 AFFINE TRANSFORMATIONS 155 4.12 PERSPECTIVE TRANSFORMATIONS 159 4.13 VIEWING TRANSFORMATIONS 163 4.14 COORDINATE SYSTEM TRANSFORMATIONS 167 4.15 CHAPTER SUMMARY 168 4.16 REVIEW QUESTIONS 169 4.17 PRACTICE PROBLEMS 169Contents vii Chapter 5 Spline Properties 171 5.1 INTRODUCTION 171 5.2 CRITICAL POINTS 172 5.3 TANGENT AND NORMAL 176 5.4 LENGTH OF A CURVE 181 5.5 AREA UNDER A CURVE 183 5.6 CENTROID 189 5.7 INTERPOLATION AND CURVE FITTING 192 5.8 NOTES ON 2D PLOTTING FUNCTIONS 199 5.9 CHAPTER SUMMARY 205 5.10 REVIEW QUESTIONS 205 5.11 PRACTICE PROBLEMS 206 Chapter 6 Vectors 207 6.1 INTRODUCTION 207 6.2 UNIT VECTOR 208 6.3 DIRECTION COSINES 210 6.4 DOT PRODUCT 212 6.5 CROSS PRODUCT 214 6.6 VECTOR EQUATION OF A LINE 215 6.7 VECTOR EQUATION OF PLANE 218 6.8 VECTOR ALIGNMENT (2D) 222 6.9 VECTOR EQUATIONS IN HOMOGENEOUS COORDINATES (2D) 225 6.10 VECTOR EQUATIONS IN HOMOGENEOUS COORDINATES (3D) 229 6.11 NORMAL VECTOR AND TANGENT VECTOR 234 6.12 CHAPTER SUMMARY 239 6.13 REVIEW QUESTIONS 239 6.14 PRACTICE PROBLEMS 240 Chapter 7 3D Transformations 241 7.1 INTRODUCTION 241 7.2 TRANSLATION 241 7.3 SCALING 245 7.4 ROTATION 248 7.5 FIXED-POINT SCALING 251viii Contents 7.6 FIXED-POINT ROTATION 254 7.7 ROTATION PARALLEL TO PRIMARY AXES 256 7.8 VECTOR ALIGNMENT (3D) 264 7.9 ROTATION AROUND A VECTOR 270 7.10 ROTATION AROUND AN ARBITRARY LINE 273 7.11 REFLECTION 277 7.12 SHEAR 280 7.13 CHAPTER SUMMARY 283 7.14 REVIEW QUESTIONS 284 7.15 PRACTICE PROBLEMS 284 Chapter 8 Surfaces 287 8.1 INTRODUCTION 287 8.2 PARAMETRIC SURFACES 288 8.3 BEZIER SURFACES 293 8.4 IMPLICIT SURFACES 298 8.5 EXTRUDED SURFACES 307 8.6 SURFACES OF REVOLUTION 308 8.7 NORMAL VECTOR AND TANGENT PLANE 312 8.8 AREA AND VOLUME OF SURFACE OF REVOLUTION 317 8.9 TEXTURE MAPPING 320 8.10 SURFACE ILLUMINATION 329 8.11 NOTES ON 3D PLOTTING FUNCTIONS 335 8.12 CHAPTER SUMMARY 349 8.13 REVIEW QUESTIONS 350 8.14 PRACTICE PROBLEMS 350 Chapter 9 Projection 353 9.1 INTRODUCTION 353 9.2 2D PROJECTION 354 9.3 3D PROJECTION 361 9.4 MULTI-VIEW PROJECTION 366 9.5 AXONOMETRIC PROJECTION 369 9.6 FORESHORTENING FACTORS 371 9.7 ISOMETRIC, DIMETRIC, AND TRIMETRIC 375 9.8 OBLIQUE PROJECTION 382Contents ix 9.9 PERSPECTIVE PROJECTION 387 9.10 CHAPTER SUMMARY 391 9.11 REVIEW QUESTIONS 392 9.12 PRACTICE PROBLEMS 392 APPENDIX I: MATLAB FUNCTION SUMMARY 395 APPENDIX II: ANSWERS TO PRACTICE PROBLEMS 399 REFERENCES 407 INDEX 40 Index A Affine transformation, 155 Ambient reflection, 332 Approximating spline, 77 Area of revolution, 317 Area under curve, 183 Axonometric projection, 369 B Basis matrix, 10, 43, 61, 64, 67, 69 Bernstein polynomials, 63 Bezier spline, 63 Bezier surface, 293 Blending functions, 41, 46 B-spline, 77, 88, 102, 105, 108 C Cabinet projection, 383 Cardinal spline, 57 Cartesian equation, 215, 218 Catmull-rom spline, 61 Cavalier projection, 382 Centroid, 189 Constraint matrix, 5, 36 Continuity condition, 26, 32 Control points, 1, 88, 287 Coordinate system, 133–135, 167, 241–242 Cox de boor algorithm, 77, 79, 90, 109–110 Critical points, 172 Cross product, 214 Cubic spline, 18, 22 Curve fitting, 192 Curve segments, 25, 31 D Diffused reflection, 332 Dimetric projection, 375 Direction cosine, 210 Dot product, 212 E Extruded surface, 307 F Fixed-line reflection, 149 Fixed-point rotation, 145, 254 Fixed-point scaling, 143 Foreshortening factors, 371 G Geometry matrix, 10, 43, 69 H Hermite spline, 53 Homogeneous coordinates, 135, 225, 229, 354 Hybrid spline, 41, 52 I Identity matrix, 355, 361 Implicit surface, 298 Interpolating spline, 1, 46 Interpolation, 192 Isometric projection, 375 K Knot vector, 77, 102 L Length of curve, 181 Linear spline, 4, 10 Local control, 77410 Index M M ATLAB, xi MATLAB function summary, 395 Multi-view projection, 366 N Non-uniform b-spline, 77, 108 Normal, 176, 234, 312 O Oblique projection, 353, 356, 361, 382 Open uniform b-spline, 105 Orthographic projection, 353, 356, 361 P Parallel projection, 353, 355, 366 Parametric equations, 3, 10, 15, 22, 31 Parametric surface, 288, 293 Perspective projection, 353, 355, 361, 387 Perspective transformation, 159, 324, 361 Piecewise spline, 25, 31 Point of inflection, 172–173 Polynomial, 1, 3–4 Position vector, 207–208, 215, 218 Primary axis, 134, 222, 241 Primary plane, 241, 353 Projection, 353 Projection reference point, 353 Projection vector, 355 Q Quadratic spline, 13, 15 R Reflection, 147, 149, 277 Right-handed coordinate system, 133, 241 Rotation, 140, 145, 248, 254, 256, 270, 273 S Scaling, 138, 143, 245, 251 Shape parameter, 57, 61 Shear, 152, 155, 280 Spatial domain, 4, 13, 18 Specular reflection, 333 Spline conversion, 69 Spline properties, 171 Sub-division ratio, 15, 22 Surface, 288 Surface area, 317 Surface illumination, 329 Surface of revolution, 308, 317 T Tangent, 176, 234, 312 Texture mapping, 320 3D plotting functions, 335 3D projection, 353 Transformation matrix, 134–135 Translation, 136, 241 Trimetric projection, 375 2D plotting functions, 199 2D projection, 354 U Uniform b-spline, 78, 89, 105 Unit vector, 208 V Vector alignment, 222, 264 Vector equation of line, 215 Vector equation of plane, 218 Vectors, 207 Viewing direction, 334, 382 Viewing transformation, 163 Viewplane, 361 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Graphics Using MATLAB رابط مباشر لتنزيل كتاب Fundamentals of Graphics Using MATLAB
|
|